Michael Hanke

Introduction

Finite Difference Ap proximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Example: Partial Differential Equations

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

Michael Hanke

Outline

Introduction

- Finite Difference Approximations
- Implementation of Differential Operators
- Boundary Conditions
- Summary of the Course

1 Introduction

- **2** Finite Difference Approximations
- **3** Implementation of Differential Operators
- **4** Boundary Conditions
- **5** Summary of the Course

Michael Hanke

What Do We Have

Introduction

Finite Difference Approximations

- Implementation of Differential Operators
- Boundary Conditions

Summary of the Course

- Two simple classes for structured grids (Domain, Curvebase)
- A simple implementation of a matrix class (Matrix; don't use it for production codes!)

Michael Hanke

What Do We Want

Introduction

- Finite Difference Approximations
- Implementation of Differential Operators
- Boundary Conditions
- Summary of the Course

• A class for representing grid functions

- Imposing boundary conditions
- A class for solving PDEs

Our running example will be the heat equation in 2D,

$$\frac{\partial}{\partial t}u = \frac{\partial^2}{\partial x^2}u + \frac{\partial^2}{\partial y^2}u.$$

Michael Hanke

Introduction

Finite Difference Ap proximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

The Domain Class

This is what we have so far:

```
class Domain {
  public:
    Domain(Curvebase&, Curvebase&, Curvebase&);
    void generate_grid(...);
    // more members
  private:
    Curvebase *sides[4];
    // more members
};
```

- We will need additional members for handling grids. *Since grids* do not allow any algebraic manipulation, using our Matrix class is not appropriate.
- We will use C-style arrays.
- It might be more convenient to use STL containers (e.g., vector).

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

The Domain Class: Enhanced

```
class Domain {
 public:
    Domain(Curvebase&, Curvebase&, Curvebase&,
           Curvebase&) : m(0), n(0), x(nullptr),
           y(nullptr) {}
    void generate_grid(int m_, int n_);
    int xsize() { return m; }
    int ysize() { return n; }
    Point operator()(int i, int j);
    bool grid_valid() { return m != 0; }
    // more members
 private:
    Curvebase *sides[4]:
    int m, n;
    double *x, *y;
    // more members
};
```

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

One Dimensional Differences 1

Consider a grid Ω_h,

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_m = b$$

• Let $h_i = x_i - x_{i-1}$. Then define, for a grid function $u : \Omega_h \to \mathbb{R}$,

$$D_{-}u_{i} = \frac{u_{i} - u_{i-1}}{h_{i}}$$
$$D_{+}u_{i} = \frac{u_{i+1} - u_{i}}{h_{i+1}}$$

- If u is the restriction of a smooth function onto Ω_h, these approximations are first order accurate.
- If the grid is equidistant, D_+D_- is a second order accurate approximation of $u''(x_i)$ and

$$D_+D_-u_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2}$$

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

One Dimensional Differences 2

$$Du_i=\frac{u_{i+1}-u_{i-1}}{2h}$$

- First oder approximation to u' on a general grid
- · Second order accuracy on a constant stepsize grid

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

- The operators introduced above are not applicable at boundaries.
- Possibility 1: One-sided differences

$$Du_0 = \frac{3u_0 - 4u_1 + u_2}{3h}$$
$$Du_m = \frac{u_{m-2} - 4u_{m-1} + 3u_m}{3h}$$

• Possibility 2: Use ghost points

$$Du_{0} = \frac{u_{1} - u_{-1}}{2h}$$
$$Du_{m} = \frac{u_{m+1} - u_{m-1}}{2h}$$

How to get values for the ghost points?

© Michael Hanke 2018

Boundaries

Michael Hanke

Introduction

Finite Difference Approximations

- Implementation of Differential Operators
- Boundary Conditions
- Summary of the Course

Nonuniform Grids

Order of approximation is determined using Taylor expansions.Ansatz:

$$u'(x_i) \approx a_- u(x_{i-1}) + a_0 u(x_i) + a_+ u(x_{i+1}) =: D_0 u(x_i)$$

• Taylor expansion:

$$u(x_{i-1}) = u(x_i) - h_i u'(x_i) + \frac{1}{2} h_i^2 u''(x_i) + O(h^3)$$
$$u(x_{i+1}) = u(x_i) + h_{i+1} u'(x_i) + \frac{1}{2} h_{i+1}^2 u''(x_i) + O(h^3)$$

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Nonuniform Grids (cont)

• Inserting into the expression for $D_0 u$, we obtain after coefficient comparison

$$a_{-} = \frac{-h_{i+1}}{h_i(h_i + h_{i+1})}$$
$$a_0 = \frac{h_{i+1} - h_i}{h_i h_{i+1}}$$
$$a_+ = \frac{h_i}{h_{i+1}(h_i + h_{i+1})}$$

and

$$D_0u(x_i) - u'(x_i) = \frac{1}{6}h_ih_{i+1}u'''(x_i) + \dots$$

- For an equidistant grid, the coefficients reduce to $a_{-} = -1/2h$, $a_{0} = 0$, $a_{+} = 1/2h$.
- One sided expressions??

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

• Assume that the grid is created using a mapping $\phi : [0, 1] \rightarrow [a, b]$ with $x_i = \phi(s_i), i = 0, \dots, m$ with a uniform grid

$$s_i = i\sigma, \quad \sigma = m^{-1}.$$

• Then,
$$du/ds = du/dx \cdot dx/ds$$
, and

$$u_x(x_i) \approx \frac{1}{dx(s_i)/ds} \frac{u_{i+1}-u_{i-1}}{2\sigma}$$

is a second order approximation.

An Alternative Idea

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

And Another Idea

• If the derivative dx/ds is not known, it can be approximated with second order accuracy by

$$\frac{dx}{ds}(s_i)\approx\frac{x_{i+1}-x_{i-1}}{2\sigma}$$

such that

$$u_{x}(x_{i}) \approx \frac{u_{i+1} - u_{i-1}}{x_{i+1} - x_{i-1}}$$

is second order accurate!

- Needed: ϕ is a smooth mapping!
- Note: We need only two grid points in order to obtain the same order of accuracy as in the approximation in physical domain.

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Approximation of u''

Going either way, we have an approximation

 $u'(x_i) \approx D_0 u_i.$

A second order approximation to the second derivative can be defined by

 $u''(x_i) \approx D_2 u_i = D_0 D_0 u_i.$

This approximation evaluates to a five-point stencil!

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Example: Comparison of Accuracy

$$egin{aligned} u(x) &= \sin x \ x(s) &= 2\pi rac{1 + anh(\delta(s-1)/2)}{ anh(\delta/2)}, \quad \delta = 5 \end{aligned}$$

Hyperbolic tangent stretching, 100 gridpoints.

© Michael Hanke 2018

Michael Hanke

Conclusions

Introduction

Finite Difference Approximations

- Implementation of Differential Operators
- Boundary Conditions
- Summary of the Course

- All approximations are 2nd order accurate.
- In this simple example, approximation in physical domain is more accurate.
- The stencil (number of grid points used) is larger in physical domain for obtaining the same order of accuracy.

Michael Hanke

2D: Physical Domain

Introduction

Finite Difference Approximations

Ansatz:

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

$u_{x}(x_{i,i})$

$$u_x(x_{i,j}, y_{i,j}) \approx \sum_{k,l} a_{kl} u_{i+k,j+l}$$

Taylor expansion around $(x_{i,j}, y_{i,j})$:

$$\begin{split} \sum_{k,l} a_{k,l} u_{i+k,j+l} \\ &= \sum_{k,l} a_{k,l} \sum_{\nu=0} \frac{1}{\nu!} \left((x_{i+k,j+l} - x_{i,j}) \frac{\partial}{\partial x} + (y_{i+k,j+l} - y_{i,j}) \frac{\partial}{\partial y} \right)^{\nu} u \\ &= \sum_{\nu=0} \sum_{p=0}^{\nu} \left[\sum_{k,l} a_{k,l} \frac{1}{\nu!} {\nu \choose p} (x_{i+k,j+l} - x_{i,j})^p (y_{i+k,j+l} - y_{i,j})^{\nu-p} \right] \frac{\partial^p}{\partial x^p} \frac{\partial^{\nu-p}}{\partial y^{\nu-p}} u \end{split}$$

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

First order:

$$\sum_{k,l} a_{k,l} = 0$$
$$\sum_{k,l} a_{k,l} (x_{i+k,j+l} - x_{i,j}) = 1$$
$$\sum_{k,l} a_{k,l} (y_{i+k,j+l} - y_{i,j}) = 0$$

Second order additionally:

$$\sum_{k,l} a_{k,l} (x_{i+k,j+l} - x_{i,j})^2 = 0$$
$$\sum_{k,l} a_{k,l} (x_{i+k,j+l} - x_{i,j}) (y_{i+k,j+l} - y_{i,j}) = 0$$
$$\sum_{k,l} a_{k,l} (y_{i+k,j+l} - y_{i,j})^2 = 0$$

So we expect 6 gridpoints necessary for second order accuracy!

© Michael Hanke 2018

18 (40)

$D_{0,x}$ in Physical Domain

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Stencil in Reference Coordinates

Remember:

- Let Φ to a (smooth) one-to-one mapping $\Phi : [0,1]^2 \to \Omega$.
- For given m, n, a uniform grid on $[0, 1]^2$ can be defined by:

$$\xi_i = ih_1, \quad h_1 = 1/m, \quad i = 0, \dots, m,$$

 $\eta_j = jh_2, \quad h_2 = 1/n, \quad j = 0, \dots, n.$

• A strucured grid on Ω can then simply be obtained via

$$x_{ij} = \Phi_x(\xi_i, \eta_j), \quad y_{ij} = \Phi_y(\xi_i, \eta_j), \quad i = 0, \ldots, m, j = 0, \ldots, n.$$

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Reference Coordinates (cont)

• Using the chain rule of differentiation, we obtain

$$\frac{\partial u(x,y)}{\partial \xi} = \frac{\partial u}{\partial x} \cdot \frac{\partial \Phi_x}{\partial \xi} + \frac{\partial u}{\partial y} \cdot \frac{\partial \Phi_y}{\partial \xi}$$
$$\frac{\partial u(x,y)}{\partial \eta} = \frac{\partial u}{\partial x} \cdot \frac{\partial \Phi_x}{\partial \eta} + \frac{\partial u}{\partial y} \cdot \frac{\partial \Phi_y}{\partial \eta}$$

Since the transformation Φ_x, Φ_y is known, this is a linear system for the partial derivatives $\partial u/\partial x, \partial u/\partial y$.

Let

$$J = \begin{pmatrix} \frac{\partial \Phi_{\mathbf{x}}}{\partial \xi} & \frac{\partial \Phi_{\mathbf{y}}}{\partial \xi} \\ \frac{\partial \Phi_{\mathbf{x}}}{\partial \eta} & \frac{\partial \Phi_{\mathbf{y}}}{\partial \eta} \end{pmatrix}$$

Then

$$\frac{\partial u}{\partial x} = \frac{1}{\det J} \left(\frac{\partial u}{\partial \xi} \cdot \frac{\partial \Phi_y}{\partial \eta} - \frac{\partial u}{\partial \eta} \cdot \frac{\partial \Phi_y}{\partial \xi} \right)$$
$$\frac{\partial u}{\partial y} = \frac{1}{\det J} \left(\frac{\partial u}{\partial \eta} \cdot \frac{\partial \Phi_x}{\partial \xi} - \frac{\partial u}{\partial \xi} \cdot \frac{\partial \Phi_x}{\partial \eta} \right)$$

Michael Hanke

Introduction

Finite Difference Approximations

- Implementation of Differential Operators
- Boundary Conditions
- Summary of the Course

Reference Coordinates (cont)

- The derivatives with respect to reference coordinates can be approximated by standard stencils (4-point stencil).
- Once all partial derivatives w r t ξ have been evaluated, the necessary partial derivatives w r t x, y can be computed.

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Class for Grid Functions: Requirements

- (Scalar) grid functions are defined on grids.
- We are using structured grids as represented in the class Domain.
- Operations allowed with grid functions:
 - Addition, multiplication by a scalar (they form a vector space)
 - Pointwise multiplication (together, this becomes a commutative algebra)
 - Differentiation (e.g., by finite differences)
 - Computation of norms
 - Integration (? maybe)

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Further Considerations

- In the two-dimensional case, many of these operations are already implemented in the Matrix class!
- However, some operations are not meaningful for grid functions, e.g., matrix-matrix multiplication.
- A grid functions lives only on a specific grid:
 - Shall the grid be part of an object?
 - Many grid functions share the same grid!
 - Algebraic manipulations are only defined for grid functions living on the same grid

Michael Hanke

Introduction

Finite Difference Ap proximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Remember: The Matrix Class

```
class Matrix {
  int m, n; // should be size_t
  double *A:
public:
  Matrix(int m_{-} = 0, int n_{-} = 0) : m(m_{-}), n(n_{-}),
             A(nullptr) {
    if (m*n > 0) {
      A = new double[m*n];
      std::fill(A,A+M*n,0.0);
    }
}
// etc
};
```

Michael Hanke

Introduction

Finite Difference Ap proximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Implementation of Grid Functions

```
class GFkt {
 private:
    Matrix u:
    Domain *grid;
 public:
    GFkt(Domain *grid_) : u(grid_->xsize()+1,
                   grid_->ysize()+1), grid(grid_) {}
    GFkt(const GFkt& U) : u(U.u), grid(U.grid) {}
    GFkt& opearator=(const GFkt& U);
    GFkt operator+(const GFkt& U) const;
    GFkt operator*(const GFkt& U) const;
// etc
};
```

Michael Hanke

```
Implementation
of Differential
Operators
```

Boundary

Summary of

}

}

```
A Sample Implementation
```

```
GFkt GFkt::operator+(const GFkt& U) const {
  if (grid == U.grid) { // defined on the same grid?
     GFkt tmp(grid);
     tmp.u = u+U.u; // Matrix::operator+()
     return tmp;
  }
  else error();
GFkt GFkt::operator*(const GFkt& U) const {
  if (grid == U.grid) { // defined on the same grid?
    GFkt tmp(grid);
    for (int j = 0; j <= grid.ysize(); j++)</pre>
      for (int i = 0; i <= grid.xsize(); i++)</pre>
        tmp.u(i,j) = u(i,j)*U.u(i,j);
    return tmp;
  }
  else error():
```

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

A Problem And Its Solution

- The grid is handled by the caller.
- In the above implementation, the caller may delete the grid such that all objects referring to it have a dangling pointer!
- In C++ 11 there is a solution: smart pointers
- Smart pointers belong to the C++ library, include file: memory

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Smart Pointers

- There are two types of them: shared_ptr and unique_ptr.
- Both classes are in fact template classes: The template argument is a typename.
- shared_ptr uses a reference count: As soon as the reference count reaches 0, the dynamic object will be destroyed. But not earlier!
- This way, all resources will be freed (including dynamic memory).
- *C-type pointers and smart pointers cannot be mixed!* There is always an explicit type cast necessary! Recommendation: Avoid mixing.

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Smart Pointers (cont)

- Create a smart pointer, initialize it to 0 (nullptr): shared_ptr<class> p1;
- The equivalent of new:

shared_ptr<class> p2 = make_shared<class>(args);

• The following statement is in error:

shared_ptr<class> p3 = new class(args); // Error!

But this works:

• There is no equivalent of delete needed.

Michael Hanke

Introduction

Finite Difference Ap proximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

A Better Implementation of GFkt

```
class GFkt {
  private:
    Matrix u;
    shared_ptr<Domain> grid;
  public:
    GFkt(shared_ptr<Domain> grid_) :
        u(grid_->xsize()+1,grid_->ysize()+1),
        grid(grid_) {}
    GFkt(const GFkt& U) : u(U.u), grid(U.grid) {}
// etc
};
```

Notes:

- We assume silently that, once a grid has been generated, it will never be changed!
- It is most probably a good idea to use shared pointers in Domain, too:

shared_ptr<Curvebase> sides[4];

```
PDEs
```

Michael Hanke

Introduction

```
Finite
Difference Ap-
proximations
```

```
Implementation
of Differential
Operators
```

Boundary Conditions

Summary of the Course

```
Implementation of D_{0,x}
```

```
GFkt GFkt::Dox() const {
   GFkt tmp(grid);
   if (grid->grid_valid()) {
      // generate derivative in tmp
      // according to one of the possibilities above
   }
   return tmp;
}
```

- The function D0y can be implemented similarly.
- In order to reduce overhead, it might be a good idea to implement even

```
void GFkt::D0xy(GFkt *dx, GFkt *dy) const;
```

Michael Hanke

Boundary Conditions

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Name	Prescribed	Interpretation
Dirichlet	и	Fixed temperature
Neumann	∂u/∂n	Energy flow
Robin (mixed)	$\partial u/\partial n + f(u)$	Temperature dependent flow
Periodic		

Boundary conditions have a crucial impact on the solution.

Michael Hanke

Introduction

Finite Difference Ap proximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

What are Boundary Conditions?

1 The mathematician's point of view:

domain + differential equation + boundary conditions

2 The physicist's point of view:

- differential equation \longrightarrow physics domain \longrightarrow space boundary conditions \longrightarrow influence of outer world
- **3** The software engineer's point of view:
 - differential equation \longrightarrow expression of
 - domain \longrightarrow grid differentials
 - boundary conditions \longrightarrow what??

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Object-Oriented Representation

- As part of the PDE
 - mathematical interpretation
 - requires high-level representation of equation and discretization
 - difficult to obtain efficiency

• As part of the grid function

- mathematically correct
- no class for PDEs needed
- convenient for exlicit time-stepping
- As part of the operator (e.g., D_0)
 - · convenient for implicit and explicit methods
 - can be difficult to implement
 - may encounter mathematical contradictions if used wronly

Michael Hanke

Introduction

```
Finite
Difference Ap
proximations
```

```
Implementation
of Differential
Operators
```

```
Boundary
Conditions
```

```
Summary of the Course
```

A First Attempt

Associate boundary conditions with grid functions:

```
class Solution {
  public:
    Solution(Domain *D) : sol(D) {}
    ~Solution();
    void timesteps(double dt, int nsteps);
    void init(); // Set initial condition
    void print();
  private:
    GFkt sol;
    void impose_bc();
};
```

impose_bc() will be called in timesteps() for imposing the boundary conditions.

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course • The proposed implementation is questionable because the boundary conditions and timestepping are "hardwired".

Discussion

• It is better to have a *class* for boundary conditions:

```
class BCtype {
  public:
    BCtype(GFkt& u, int boundary_id);
    virtual void impose(GFkt& u) = 0;
};
```

- The actual definition of the boundary condition takes place in derived classes.
- This way, several boundaries can share the same condition (e.g., homogeneous Dirichlet conditions).
- Classes can be derived for Dirichlet, Neumann, Robin boundary conditions.

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Example Implementation

Assumptions:

- The grid has four distinct edges (as ours in the previous Domain class).
- Each edge is associated with one boundary condition, only.

Then:

```
class Solution {
  public:
    Solution(Domain *D) : sol(D) {}
    ~Solution();
    void print();
  private:
    GFkt sol;
    shared_ptr<BCtype> bcs[4];
    virtual void init() = 0;
    virtual void bc() = 0;
};
```

We have separated: the grid, the equation, the initial conditions, and the boundary conditions.

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Time Stepping

For the heat equation in 2D, we can implement the explicit Euler method now:

```
Solution u(&d);
u.init();
for (int step=0; step < maxsteps; step++) {
    u += dt*(u.D2x()+u.D2y());
    t += dt;
    u.bc();
}
```

(Provided the missing functions are implemented along the lines provided before)

Michael Hanke

Introduction

Finite Difference Approximations

Implementation of Differential Operators

Boundary Conditions

Summary of the Course

Summary

- Finite difference approximations on structured grids.
- Smart pointers
- Implementation strategies for differential operators, boundary conditions, and time steppers.

Michael Hanke

Introduction

- Finite Difference Approximations
- Implementation of Differential Operators
- Boundary Conditions
- Summary of the Course

Course Summary

C++

- Basic elements of C++
- Abstract data types, C++ classes
- Constructors, destructors, memory management, copy, move
- Operator overloading
- Inheritance, abstract classes
- Templates, STL
- I/O

Scientific Computing

- Structured grids, differential operators, boundary conditions
- Implemetation strategies and their C++ tools
- Efficient programming
- Scientific libraries