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What Do We Have

• Two simple classes for structured grids (Domain, Curvebase)
• A simple implementation of a matrix class (Matrix; don’t use it
for production codes!)

c©Michael Hanke 2018 3 (40)



PDEs

Michael
Hanke

Introduction

Finite
Difference Ap-
proximations

Implementation
of Differential
Operators

Boundary
Conditions

Summary of
the Course

What Do We Want

• A class for representing grid functions
• Imposing boundary conditions
• A class for solving PDEs

Our running example will be the heat equation in 2D,

∂

∂t
u =

∂2

∂x2 u +
∂2

∂y2 u.
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The Domain Class
This is what we have so far:

class Domain {
public:

Domain(Curvebase&, Curvebase&, Curvebase&,
Curvebase&);

void generate_grid(...);
// more members

private:
Curvebase *sides[4];
// more members

};

• We will need additional members for handling grids. Since grids
do not allow any algebraic manipulation, using our Matrix class
is not appropriate.

• We will use C-style arrays.
• It might be more convenient to use STL containers (e.g.,
vector).
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The Domain Class: Enhanced

class Domain {
public:

Domain(Curvebase&, Curvebase&, Curvebase&,
Curvebase&) : m(0), n(0), x(nullptr),
y(nullptr) {}

void generate_grid(int m_, int n_);
int xsize() { return m; }
int ysize() { return n; }
Point operator()(int i, int j);
bool grid_valid() { return m != 0; }
// more members

private:
Curvebase *sides[4];
int m, n;
double *x, *y;
// more members

};
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One Dimensional Differences 1

• Consider a grid Ωh,

a = x0 < x1 < · · · < xn−1 < xm = b.

• Let hi = xi − xi−1. Then define, for a grid function u : Ωh → R,

D−ui =
ui − ui−1

hi

D+ui =
ui+1 − ui

hi+1

• If u is the restriction of a smooth function onto Ωh, these
approximations are first order accurate.

• If the grid is equidistant, D+D− is a second order accurate
approximation of u′′(xi ) and

D+D−ui =
ui+1 − 2ui + ui−1

h2
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One Dimensional Differences 2

Dui =
ui+1 − ui−1

2h

• First oder approximation to u′ on a general grid
• Second order accuracy on a constant stepsize grid
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Boundaries

• The operators introduced above are not applicable at boundaries.
• Possibility 1: One-sided differences

Du0 =
3u0 − 4u1 + u2

3h

Dum =
um−2 − 4um−1 + 3um

3h

• Possibility 2: Use ghost points

Du0 =
u1 − u−1

2h

Dum =
um+1 − um−1

2h

How to get values for the ghost points?
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Nonuniform Grids

• Order of approximation is determined using Taylor expansions.
• Ansatz:

u′(xi ) ≈ a−u(xi−1) + a0u(xi ) + a+u(xi+1) =: D0u(xi )

• Taylor expansion:

u(xi−1) = u(xi )− hiu′(xi ) +
1
2
h2
i u
′′(xi ) + O(h3)

u(xi+1) = u(xi ) + hi+1u′(xi ) +
1
2
h2
i+1u

′′(xi ) + O(h3)
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Nonuniform Grids (cont)

• Inserting into the expression for D0u, we obtain after coefficient
comparison

a− =
−hi+1

hi (hi + hi+1)

a0 =
hi+1 − hi

hihi+1

a+ =
hi

hi+1(hi + hi+1)

and
D0u(xi )− u′(xi ) =

1
6
hihi+1u′′′(xi ) + . . .

• For an equidistant grid, the coefficients reduce to a− = −1/2h,
a0 = 0, a+ = 1/2h.

• One sided expressions??
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An Alternative Idea

• Assume that the grid is created using a mapping
φ : [0, 1]→ [a, b] with xi = φ(si ), i = 0, . . . ,m with a uniform
grid

si = iσ, σ = m−1.

• Then, du/ds = du/dx · dx/ds, and

ux(xi ) ≈
1

dx(si )/ds
ui+1 − ui−1

2σ

is a second order approximation.
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And Another Idea

• If the derivative dx/ds is not known, it can be approximated
with second order accuracy by

dx
ds

(si ) ≈
xi+1 − xi−1

2σ

such that
ux(xi ) ≈

ui+1 − ui−1

xi+1 − xi−1

is second order accurate!

• Needed: φ is a smooth mapping!
• Note: We need only two grid points in order to obtain the same

order of accuracy as in the approximation in physical domain.
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Approximation of u′′

Going either way, we have an approximation

u′(xi ) ≈ D0ui .

A second order approximation to the second derivative can be defined
by

u′′(xi ) ≈ D2ui = D0D0ui .

This approximation evaluates to a five-point stencil!
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Example: Comparison of Accuracy

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3
x 10

−3 Error

Grid mapping − x’(s)        
Grid mapping − approx. x’(s)
Physical domain             

u(x) = sin x

x(s) = 2π
1 + tanh(δ(s − 1)/2)

tanh(δ/2)
, δ = 5

Hyperbolic tangent stretching, 100 gridpoints.
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Conclusions

• All approximations are 2nd order accurate.
• In this simple example, approximation in physical domain is more
accurate.

• The stencil (number of grid points used) is larger in physical
domain for obtaining the same order of accuracy.
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2D: Physical Domain

Ansatz:
ux(xi,j , yi,j) ≈

∑
k,l

aklui+k,j+l

Taylor expansion around (xi,j , yi,j):

∑
k,l

ak,lui+k,j+l

=
∑
k,l

ak,l
∑
ν=0

1
ν!

(
(xi+k,j+l − xi,j )

∂

∂x
+ (yi+k,j+l − yi,j )

∂

∂y

)νu
=
∑
ν=0

ν∑
p=0

∑
k,l

ak,l
1
ν!

(ν
p

)
(xi+k,j+l − xi,j )

p(yi+k,j+l − yi,j )
ν−p

 ∂p

∂xp
∂ν−p

∂yν−p u
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D0,x in Physical Domain
First order: ∑

k,l

ak,l = 0

∑
k,l

ak,l(xi+k,j+l − xi,j) = 1

∑
k,l

ak,l(yi+k,j+l − yi,j) = 0

Second order additionally: ∑
k,l

ak,l(xi+k,j+l − xi,j)
2 = 0

∑
k,l

ak,l(xi+k,j+l − xi,j)(yi+k,j+l − yi,j) = 0

∑
k,l

ak,l(yi+k,j+l − yi,j)
2 = 0

So we expect 6 gridpoints necessary for second order accuracy!
c©Michael Hanke 2018 18 (40)
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Stencil in Reference Coordinates

Remember:
• Let Φ to a (smooth) one-to-one mapping Φ : [0, 1]2 → Ω.
• For given m, n, a uniform grid on [0, 1]2 can be defined by:

ξi = ih1, h1 = 1/m, i = 0, . . . ,m,
ηj = jh2, h2 = 1/n, j = 0, . . . , n.

• A strucured grid on Ω can then simply be obtained via

xij = Φx(ξi , ηj), yij = Φy (ξi , ηj), i = 0, . . . ,m, j = 0, . . . , n.
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Reference Coordinates (cont)
• Using the chain rule of differentiation, we obtain

∂u(x , y)

∂ξ
=
∂u
∂x
· ∂Φx

∂ξ
+
∂u
∂y
· ∂Φy

∂ξ

∂u(x , y)

∂η
=
∂u
∂x
· ∂Φx

∂η
+
∂u
∂y
· ∂Φy

∂η

Since the transformation Φx ,Φy is known, this is a linear system
for the partial derivatives ∂u/∂x , ∂u/∂y .

• Let

J =

(
∂Φx
∂ξ

∂Φy
∂ξ

∂Φx
∂η

∂Φy
∂η

)
Then

∂u
∂x

=
1

det J

(
∂u
∂ξ
· ∂Φy

∂η
− ∂u
∂η
· ∂Φy

∂ξ

)
∂u
∂y

=
1

det J

(
∂u
∂η
· ∂Φx

∂ξ
− ∂u
∂ξ
· ∂Φx

∂η

)
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Reference Coordinates (cont)

• The derivatives with respect to reference coordinates can be
approximated by standard stencils (4-point stencil).

• Once all partial derivatives w r t ξ have been evaluated, the
necessary partial derivatives w r t x , y can be computed.
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Class for Grid Functions:
Requirements

• (Scalar) grid functions are defined on grids.
• We are using structured grids as represented in the class Domain.
• Operations allowed with grid functions:

• Addition, multiplication by a scalar (they form a vector space)
• Pointwise multiplication (together, this becomes a commutative

algebra)
• Differentiation (e.g., by finite differences)
• Computation of norms
• Integration (? maybe)
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Further Considerations

• In the two-dimensional case, many of these operations are
already implemented in the Matrix class!

• However, some operations are not meaningful for grid functions,
e.g., matrix-matrix multiplication.

• A grid functions lives only on a specific grid:
• Shall the grid be part of an object?
• Many grid functions share the same grid!
• Algebraic manipulations are only defined for grid functions living

on the same grid

c©Michael Hanke 2018 23 (40)



PDEs

Michael
Hanke

Introduction

Finite
Difference Ap-
proximations

Implementation
of Differential
Operators

Boundary
Conditions

Summary of
the Course

Remember: The Matrix Class

class Matrix {
int m, n; // should be size_t
double *A;

public:
Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_),

A(nullptr) {
if (m*n > 0) {

A = new double[m*n];
std::fill(A,A+M*n,0.0);

}
}
// etc
};
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Implementation of Grid Functions

class GFkt {
private:

Matrix u;
Domain *grid;

public:
GFkt(Domain *grid_) : u(grid_->xsize()+1,

grid_->ysize()+1), grid(grid_) {}
GFkt(const GFkt& U) : u(U.u), grid(U.grid) {}
GFkt& opearator=(const GFkt& U);
GFkt operator+(const GFkt& U) const;
GFkt operator*(const GFkt& U) const;

// etc
};
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A Sample Implementation
GFkt GFkt::operator+(const GFkt& U) const {

if (grid == U.grid) { // defined on the same grid?
GFkt tmp(grid);
tmp.u = u+U.u; // Matrix::operator+()
return tmp;

}
else error();

}

GFkt GFkt::operator*(const GFkt& U) const {
if (grid == U.grid) { // defined on the same grid?

GFkt tmp(grid);
for (int j = 0; j <= grid.ysize(); j++)

for (int i = 0; i <= grid.xsize(); i++)
tmp.u(i,j) = u(i,j)*U.u(i,j);

return tmp;
}
else error();

}
c©Michael Hanke 2018 26 (40)
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A Problem And Its Solution

• The grid is handled by the caller.
• In the above implementation, the caller may delete the grid such
that all objects referring to it have a dangling pointer!

• In C++ 11 there is a solution: smart pointers
• Smart pointers belong to the C++ library, include file: memory

c©Michael Hanke 2018 27 (40)
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Smart Pointers

• There are two types of them: shared_ptr and unique_ptr.
• Both classes are in fact template classes: The template
argument is a typename.

• shared_ptr uses a reference count: As soon as the reference
count reaches 0, the dynamic object will be destroyed. But not
earlier!

• This way, all resources will be freed (including dynamic memory).
• C-type pointers and smart pointers cannot be mixed! There is
always an explicit type cast necessary! Recommendation: Avoid
mixing.
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Smart Pointers (cont)

• Create a smart pointer, initialize it to 0 (nullptr):

shared_ptr<class> p1;

• The equivalent of new:

shared_ptr<class> p2 = make_shared<class>(args);

• The following statement is in error:

shared_ptr<class> p3 = new class(args); // Error!

• But this works:

shared_ptr<class> p3 =
shared_ptr<class>(new class(args));

• There is no equivalent of delete needed.
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A Better Implementation of GFkt
class GFkt {

private:
Matrix u;
shared_ptr<Domain> grid;

public:
GFkt(shared_ptr<Domain> grid_) :

u(grid_->xsize()+1,grid_->ysize()+1),
grid(grid_) {}

GFkt(const GFkt& U) : u(U.u), grid(U.grid) {}
// etc
};

Notes:
• We assume silently that, once a grid has been generated, it will

never be changed!
• It is most probably a good idea to use shared pointers in
Domain, too:

shared_ptr<Curvebase> sides[4];
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Implementation of D0,x

GFkt GFkt::D0x() const {
GFkt tmp(grid);
if (grid->grid_valid()) {

// generate derivative in tmp
// according to one of the possibilities above

}
return tmp;

}

• The function D0y can be implemented similarly.
• In order to reduce overhead, it might be a good idea to
implement even

void GFkt::D0xy(GFkt *dx, GFkt *dy) const;
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Boundary Conditions

Name Prescribed Interpretation
Dirichlet u Fixed temperature
Neumann ∂u/∂n Energy flow

Robin (mixed) ∂u/∂n + f (u) Temperature dependent flow
Periodic

Boundary conditions have a crucial impact on the solution.
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What are Boundary Conditions?

1 The mathematician’s point of view:

domain
+ differential equation
+ boundary conditions

2 The physicist’s point of view:
differential equation −→ physics
domain −→ space
boundary conditions −→ influence of outer world

3 The software engineer’s point of view:
differential equation −→ expression of

differentials
domain −→ grid
boundary conditions −→ what??
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Object-Oriented Representation

• As part of the PDE
• mathematical interpretation
• requires high-level representation of equation and discretization
• difficult to obtain efficiency

• As part of the grid function
• mathematically correct
• no class for PDEs needed
• convenient for exlicit time-stepping

• As part of the operator (e.g., D0)
• convenient for implicit and explicit methods
• can be difficult to implement
• may encounter mathematical contradictions if used wronly
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A First Attempt

Associate boundary conditions with grid functions:

class Solution {
public:

Solution(Domain *D) : sol(D) {}
~Solution();
void timesteps(double dt, int nsteps);
void init(); // Set initial condition
void print();

private:
GFkt sol;
void impose_bc();

};

impose_bc() will be called in timesteps() for imposing the
boundary conditions.
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Discussion

• The proposed implementation is questionable because the
boundary conditions and timestepping are “hardwired”.

• It is better to have a class for boundary conditions:

class BCtype {
public:

BCtype(GFkt& u, int boundary_id);
virtual void impose(GFkt& u) = 0;

};

• The actual definition of the boundary condition takes place in
derived classes.

• This way, several boundaries can share the same condition (e.g.,
homogeneous Dirichlet conditions).

• Classes can be derived for Dirichlet, Neumann, Robin boundary
conditions.
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Example Implementation
Assumptions:

• The grid has four distinct edges (as ours in the previous Domain
class).

• Each edge is associated with one boundary condition, only.
Then:

class Solution {
public:

Solution(Domain *D) : sol(D) {}
~Solution();
void print();

private:
GFkt sol;
shared_ptr<BCtype> bcs[4];
virtual void init() = 0;
virtual void bc() = 0;

};

We have separated: the grid, the equation, the initial conditions, and
the boundary conditions.
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Time Stepping

For the heat equation in 2D, we can implement the explicit Euler
method now:

Solution u(&d);
u.init();
for (int step=0; step < maxsteps; step++) {

u += dt*(u.D2x()+u.D2y());
t += dt;
u.bc();

}

(Provided the missing functions are implemented along the lines
provided before)
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Summary

• Finite difference approximations on structured grids.
• Smart pointers
• Implementation strategies for differential operators, boundary
conditions, and time steppers.
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Course Summary

C++
• Basic elements of C++
• Abstract data types, C++ classes
• Constructors, destructors, memory management, copy, move
• Operator overloading
• Inheritance, abstract classes
• Templates, STL
• I/O

Scientific Computing
• Structured grids, differential operators, boundary conditions
• Implemetation strategies and their C++ tools
• Efficient programming
• Scientific libraries
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