
Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

The IO-Library

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

c©Michael Hanke 2018 1 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Outline

1 Introduction

2 Basics About Streams

3 Formatted And Unformatted I/O

4 A Comprehensive Example

5 Summary

c©Michael Hanke 2018 2 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Introduction

We have already used some I/O-functionality in C++:
• cin, cout, cerr objects which read and write the standard
channels, respectively.

• cerr is typically used to write error or debug messages.
• The <‌< and >‌> operators which are used to read input or to
write output.

• The header files <iostream> and <iomanip> containing the
declarations of the classes and standard objects.

• Simple attributes like endl or formatting.

c©Michael Hanke 2018 3 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

What More is Available?

iostream Classes for describing character streams. Contains,
among others, the classes istream and ostream.

fstream Classes for reading and writing from/to a file.
Contains, among others, the classes ifstream and
ofstream.

sstream Classes for reading and writing from/to a string.
Contains, among others, the classes istringstream,
ostringstream, stringstream.

• Operators for formatted I/O: <‌<, >‌>
• Member functions for unformatted I/O
• Functions for quering and setting the state of a stream (eg,
eof())

c©Michael Hanke 2018 4 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Be Careful

• I/O objects cannot be copied.
• I/O objects cannot be assigned.

c©Michael Hanke 2018 5 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Condition States

Each stream owns a flag byte indicating the state(s) of that stream.

Flag Meaning

failbit The last I/O operation failed
eofbit At an earlier reading attempt, the file was read behind its end
badbit System level failure during I/O

c©Michael Hanke 2018 6 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Manipulating Flags

Function Explanation
void clear() Reset all flags
bool good() Returns true if all flags are reset
bool fail() Returns true if badbit or failbit is set
bool eof() Returns true if eofbit is set
bool bad() Returns true if badbit is set

bool operator!() Returns fail()
operator bool() Returns not fail()

Note: The programmer can also set flags by bit manipulations, eg:

cin.clear(cin.rdstate()&~cin.failbit);

(resets failbit of cin)

c©Michael Hanke 2018 7 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Example: Wrong Usage of eof()

char c;
while (!cin.eof()) {
cin.get(c);
// Do something

}

Question: What is wrong?

c©Michael Hanke 2018 8 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Correct Usage of eof()

char c;
while (true) {
cin.get(c);
if (cin.eof()) break;
// Do something

}

Question: Why does the following version work?

char c;
while (cin.get(c)) {
// Do something

}

c©Michael Hanke 2018 9 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Flushing An Output Buffer

• For efficiency reasons, output streams use a buffer.
• This may become a problem if user input is required:

os <‌< “Enter a value: “;
is >‌> myvalue;

How can it be ensured that the prompt is written before the
program waits for the input?

c©Michael Hanke 2018 10 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Conditions For Flushing the Buffer

• The program completes normally.
• If the buffer is completely filled, its contents will be flushed.
• The programmer can require flushing by using manipulators:

cout <‌< “hi!” <‌< endl;
cout <‌< “hi!” <‌< flush;
cout <‌< “hi!” <‌< ends; // for strings

• The unitbuf manipulator sets the stream to empty the buffer
after each output operation (standard for cerr!).

• An output stream is tied to an input stream. Eg, cout will be
flushed if cin will be read.

c©Michael Hanke 2018 11 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

File I/O

• Streams can be associated with a file. This accomplished by an
fstream object.

• Basic operations:

Function

fstream fs; Creates an unbound stream

fstream fs(s); Creates an fstream on bound file s (of char* or string type) to it

fstream fs(s,mode); As before, but opening with a mode

void fs.open(s) Bounds the (text file) file s to fs

void fs.open(s,mode)

void fs.close() Closes fs

bool fs.is_open()

Mode can be in, out, app, trunc, ate, binary (defined in class
ios).

c©Michael Hanke 2018 12 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Example: A File Copy Program

#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdlib>
#define MAX_PATH_LEN 1024;
using namespace std;

c©Michael Hanke 2018 13 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Example (cont)
int main() {
char c, fn[MAX_PATH_LEN];
cout <‌< “Source file name: “;
cin >‌> setw(MAX_PATH_LEN) >‌> fn;
ifstream f1(fn);
if (!f1) {
cerr <‌< “Error while opening file!”);
exit(EXIT_FAILURE);

}
cout <‌< “Destination file: “;
cin >‌> setw(MAX_PATH_LEN) >‌> fn;
ofstream f2(fn);
if (!f2) {
cerr <‌< “Error creating file!”;
exit(EXIT_FAILURE);

}
while (f1.get(c)) f2.put(c);

}

c©Michael Hanke 2018 14 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Formatted I/O

• Unless the file mode binary is given, streams are considered to
be text streams.

• The coding of the streams depends on the computer’s
localization (LATIN1, ISO8859-15, UTF-8 etc).

• Formatted I/O is easiest handled by using the operators <‌< and
>‌>.

• Manipulators can be used to change the format state.
• Format changing manipulators usually remain in effect for all
subsequent I/O.

• When defining own classes, it is often a good idea to provide
resonable replacements for <‌< and >‌>.

• Since formatting is handled by manipulators, it is often a good
idea not to explicitely use formatting in the own
implementations.

• For details, consult the documentation.

c©Michael Hanke 2018 15 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Unformatted I/O
• Unformatted I/O considers the file as a sequence of bytes. So
the corresponding built-in type is char.

• I/O is accomplished by member functions of the corresponding
class.

• All these member functions return a reference to the stream
object involved (with only a minor number of exceptions).

• Each stream has a marker indicating the actual position where
the next byte is read from/put to.

When is unformatted I/O useful?

• Checkpointing in larger programs.
• Temporary files, eg, for out-of-memory algorithms.

Warning
Binary files are inherently system dependent. A common problem is
to use files generated on big-endian machines on little-endian ones
and vice versa!

c©Michael Hanke 2018 16 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Single-Byte Operations

Operation Explanation

is.get(c) Put the next byte from is in char c

os.put(c) Put the char c onto os

int is.get() Returns the next byte from is

is.unget() Reduce the position marker by one

int is.peek() Same as is.get(), but do not change the position pointer

is.putback(c) Same as is.unget() but c must be the one last read

Note: is.get() and is.peek() can return an end-of-file marker:

while ((ch = cin.get()) != EOF) // Do something

c©Michael Hanke 2018 17 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Multi-Byte Operations

Operation Explanation

is.read(sink,size) Reads up to size bytes from is into sink

streamsize is.gcount() Returns numbers of bytes read by the last unformatted call

os.write(source,size) Writes size bytes from source to os

is.ignore(size=1,delim=EOF) Reads and ignores at most size bytes up to and including delim

c©Michael Hanke 2018 18 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Multi-Byte Operations (cont)

• is.get(sink,size,delim) and
is.getline(sink,size,delim) read bytes until one of the
following conditions is met:

• size-1 bytes are read;
• End-of-file is encountered;
• The delim character is encountered.

• getline(sink,size,delim) reads delim and discards it.
• get(sink,size,delim) lets delim on the input stream!

c©Michael Hanke 2018 19 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

File Direct Access

• The position marker for indicating the next I/O position can be
manipulated:

Operation Explanation

streamoff is.tellg() Returns the marker position
streamoff os.tellp()

is.seekg(pos) Sets the marker position
os.seekp(pos)

is.seekg(off,dir) Move the marker off positions from the
os.seekp(off,dir) position defined by dir (beg, end, cur)

• The g-versions should be used for istreams, while the p-versions
for o-streams.

• Obviously, using these functions is only meaningful for file or
string I/O.

c©Michael Hanke 2018 20 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Remark

• For binary files (and direct access), it might be worth to consider
the C counterparts.

• However, do not mix C++ and C output to the same files!

c©Michael Hanke 2018 21 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

The Problem

Given a class:

class Matrix {
int m_, n_;
double *x_;

public:
Matrix() : m_(0), n_(0) {}
void dump(char *file) const;

};

Write a function to dump the matrix to a file!

c©Michael Hanke 2018 22 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

A Solution
#include <iostream>
void Matrix::dump(char *file) const {

ofstream f(file, ofstream::out | ofstream::binary);
if (!f) {
cerr <‌< “Error creating file!”;
exit(EXIT_FAILURE);

}
f.write(&m_, sizeof(int));
if (!f){

cerr <‌< “Error writing to file!”;
exit(EXIT_FAILURE);

}
f.write(&n_, sizeof(int));
if (!f){

cerr <‌< “Error writing to file!”;
exit(EXIT_FAILURE);

}
f.write(x_, m_*n_*sizeof(double));
if (!f){

cerr <‌< “Error writing to file!”;
exit(EXIT_FAILURE);

}
f.close();

}
c©Michael Hanke 2018 23 (24)



Introduction

Michael
Hanke

Introduction

Basics About
Streams

Formatted
And
Unformatted
I/O

A Comprehen-
sive
Example

Summary

Summary

• Some more details about C++ I/O

• What comes next:
• Move, copy, domains

c©Michael Hanke 2018 24 (24)


	Introduction
	Basics About Streams
	Formatted And Unformatted I/O
	A Comprehensive Example
	Summary

