
Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Inheritance

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

c©Michael Hanke 2018 1 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Outline

1 Introduction

2 A Boundary Class

3 Dynamic Binding

4 Summary

c©Michael Hanke 2018 2 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Introduction

• In the previous lecture we have developed a method for grid
generation for PDEs on special (“four-sided”) domains.

• The sides can be described by rather general (smooth) curves.
• The present lecture aims at:

• Developing a general class for handling computational domains
(structured grids)

• Developing classes for handling sides (discrete curves)
• Providing the necessary object-oriented tools available in C++
• In particular: Inheritance

c©Michael Hanke 2018 3 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

A Domain Class Skeleton

class Domain {
public:
Domain(Curvebase&, Curvebase&, Curvebase&,

Curvebase&);
void generate_grid (...);
// more members

private:
Curvebase *sides[4];
// more members

};

c©Michael Hanke 2018 4 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

A Boundary Curve Skeleton

A first attempt:

class Curvebase {
public:
double x(double s); // Curve parametrization
double y(double s);
double xp(double p); // Same in user coordinates
double yp(double p);
// more members

private:
double a, b; // Range for p
// more members

};

c©Michael Hanke 2018 5 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Parametrized Curves

• Parametrized curves are given by

(x(p), y(p)), p ∈ [a, b]

with the non-empty finite interval [a, b].
• Example:

(x(p), y(p)) = (p, a0
√
p + a1p), 0 ≤ a < b.

The class should support
• specification of parameters a, b, a0, a1
• computation of x(p) and y(p)

c©Michael Hanke 2018 6 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Example Curve

c©Michael Hanke 2018 7 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Implementation

class Bcurve {
public:

Bcurve(double a, double b, double a0, double a1) :
a_(a), b_(b), a0_(a0), a1_(a1) {}

double xp(double p) {return p;}
double yp(double p) {return a0_*std::sqrt(p)+a1_*p;}

private:
double a_, b_, a0_, a1_;

};

In a real implementation it should be checked that
• in the constructor: 0 ≤ a < b,
• in x and y: a ≤ p ≤ b.

c©Michael Hanke 2018 8 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Boundary Representation

• The user should be allowed to provide the representation of the
curve as it is most convenient for him/her.

• This parametrization by p may not be convenient for grid
generation. Grid generation should be controlled by numerical
aspects.

• In particular, equidistant grids should be easy to generate.

Solution:
• Specify the curve using arbitrary X(p), p ∈ [a, b].
• Specify node distribution using x(s), s ∈ [0, 1] , the normalized
arc length.

c©Michael Hanke 2018 9 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Transformation to Arc Length
Coordinates

• Arc length l(p) of {X(q)|q ∈ [a, p]}:

l(p) =
∫ p

a

√
X ′(q)2 + Y ′(q)2dq

• Given s, find p such that X(p) = x(s) amounts to solving the
nonlinear scalar equation

f (p) = l(p)− s · l(b) = 0.

• Appropriate method: Newtond method: Given p0, iterate until
convergence

pi+1 = pi − f (pi )/f ′(pi )

c©Michael Hanke 2018 10 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Remarks

• Points along the curve can be computed for any s ∈ [0, 1].
• Evaluating x(s) is (much) more expensive then evaluating X(p).
• Only “a few” points needed initially to generate grid on the
boundaries.

• Useful, when the exact curve is not known, e.g., spline
representation from a CAD model.

• Smoothnes of X is required if numerical
integration/differentiation is used. Why?

c©Michael Hanke 2018 11 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Declaration

class Curvebase {
public:
Curvebase(double a = 0.0, double b = 1.0) :

a_(a), b_(b);
double x(double s); // Coordinates in arc length
double y(double s);
~Curvebase();
// more members

protected:
double a_, b_;
double xp(double p); // User parametrization
double yp(double p);
double dxp(double p); // derivatives
double dyp(double q);
double integrate(double p);
// more members

};

c©Michael Hanke 2018 12 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Inheritance

• We can define classes for many different curves along the lines of
Curvebase: Lines, circles, Bcurve etc

• This approach is possible but not very elegant:
• several classes representing small variations of the same concept
• additional functionality may significantly increase the size of the

code
• increased probability of errors when maintaining multiple copies

• Preferred solution:
• The curves are conceptionally equivalent, let them inherit

properties from a generic parametrized curve.
• Make changes only when they are needed.

c©Michael Hanke 2018 13 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Derived Classes

A derived class is defined by

Derived class
class derived : label base, ... ;

• label is public, protected or private
• The derived class derived inherits members from its base
class(es) base.

• Members of the base classes can be overwritten as usual in the
derived class.

c©Michael Hanke 2018 14 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Rules For Visibility in Derived
Classes

visibility in base
label public protected private
public public protected private

protected protected protected private
private private private private

Usually, the label public is what you want.

c©Michael Hanke 2018 15 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Reimplementation of Bcurve

class Curve1 : public Curvebase {
public:

Curve1(double a, double b, double a0, double a1) :
Curvebase(a,b), a0_(a0), a1_(a1) {}

private:
double a0_, a1_;
double xp(double p) {return p;}
double yp(double p) {return a0_*std::sqrt(p)+a1_*p;}
double dxp(double p) {return 1.0;}
double dyp(double p) {

if (p == 0.0) return HUGE_VAL;
else return 0.5*a0_/std::sqrt(p)+a1_;

}
};

c©Michael Hanke 2018 16 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Notes

• In order to get direct access to the protected members of the
base class in the derived class, the explicit use of this is
necessary!

• Example: Query for member a in Curvebase (do not forget to
add the declaration in the class declaration)

Curve1::geta() {return this->a_; }

c©Michael Hanke 2018 17 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Remarks on Constructors

• In a derived class, a constructor of the base class can be directly
invoked

derived(...) : base(...) { ... }

If this has not been done, the default constructor of the base
class is called.

• The default constructor of the derived class invokes the default
constructor of the base class.

• Order of initialization:
• Base class constructor
• Initializations of the derived classes data members
• The statements of the function block {...}

• The complete process can become rather complex if the
inheritance includes multiple inheritance (more than one base
class) or inheritance over sequences of derivations!

c©Michael Hanke 2018 18 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Remarks on Destructors

• Destructors will not be inherited.
• Desctructors cannot be overwritten.
• Execution order of destructors:

• The statements of the function block {...}
• Base class destructors

c©Michael Hanke 2018 19 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Pointers and Derived Classes

• An instance of a derived class contains all information from the
base class.

• Therefore, a type cast for pointers is meaningful:
class base {};
class derived : public base {};
base *p, *r;
derived *q;
p = new base; // OK, creates an instance of base
q = new derived; // OK, creates an instance of derived
r = q; // OK, but only members of base are accessible (slicing)

c©Michael Hanke 2018 20 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Pointers and Derived Classes (cont)

class base {};
class deriv1 : public base {};
class deriv2 : public base {
public: void f() {}

};
int main() {
base *p = new deriv2;
deriv2 *r = new deriv2;
p->f(); // Error base::f() not defined
((deriv1*) p)->f(); // Error deriv1::f() not defined
((deriv2*) p)->f(); // OK, explicit type cast
r->f(); // OK, deriv2::f() defined

}

Hint: UML

c©Michael Hanke 2018 21 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Slicing: A Warning

class A {
private:
int A_ = 0;

public:
int getA() const { return A_; }
A(const int a) : A_(a) {}

};
class B : public A {
private:
int B_ = 0;

public:
int getB() const { return B_; }
B(const int a, const int b) : A(a), B_(b) {}

};

c©Michael Hanke 2018 22 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Slicing: A Warning (cont)

int main() {
B b1(11,12);
B b2(21,22);
A& a_ref = b2;
a_ref = b1;
std::cout << "A = " << b2.getA() << ", B = "

<< b2.getB() << std::endl;
return 0;

}

Output:

A = 11, B = 22

Oops! What is going on??
• This effect may lead to an undefined state of an object!

c©Michael Hanke 2018 23 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Dynamic Binding

• All what we have done so far had a nice property:
• At each point in the code it was clear at compile time which

version of an (overloaded) function to call.
• This property is called static binding. (Not to be confused with

statically linked programs!)

• This is not possible for our intended application. Consider an
excerpt of our Domain class:

private: Curvebase *sides[4];

• The aim is to assign pointers to derived classes (for example
Curve1, and others) to sides[i]. Since these objects will be
created dynamically during runtime, its class is not known at
compile time!

• What we will need is dynamic binding.

c©Michael Hanke 2018 24 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Dynamic Binding (cont)

• Each pointer has a static type.
• The dynamic type can vary:

class base {};
class derived : public base {};
base *p, *r;
p = new base; // Dynamic type base*
r = new derived; // Dynamic type derived*

• Functions which are intended to be capable of dynamic binding
are declared virtual:

virtual double Curvebase::xp(double p);

• A function declared virtual in a base class is virtual in derived
classes even if the keyword virtual is not explicitely given.

c©Michael Hanke 2018 25 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Dynamic Binding: Example

class base {
public:

void whoami() { cout << " base" << endl; }
};
class deriv1 : public base {
public:

void whoami() { cout << " deriv 1" << endl; }
};
class deriv2 : public base {
public:

void whoami() { cout << " deriv 2" << endl; }
};

c©Michael Hanke 2018 26 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Example (cont)

int main() {
base *p, *all[3];
deriv1 *q;
deriv2 *r;
p = new base;
q = new deriv1;
r = new deriv2;
all[0] = p;
all[1] = q;
all[2] = r;
p->whoami();
q->whoami();
r->whoami();
all[0]->whoami();
all[1]->whoami();
all[2]->whoami();

}

c©Michael Hanke 2018 27 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Example: Output

Demo:

> ./a.out
base
deriv 1
deriv 2
base
base
base

c©Michael Hanke 2018 28 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Modified Example

class base {
public:

virtual void whoami() { cout << " base" << endl; }
};
class deriv1 : public base {
public:

void whoami() { cout << " deriv 1" << endl; }
};
class deriv2 : public base {
public:

void whoami() { cout << " deriv 2" << endl; }
};

c©Michael Hanke 2018 29 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Modified Output

Demo:

> ./a.out
base
deriv 1
deriv 2
base
deriv 1
deriv 2

Note: Dynamic binding can only happen with pointer and reference
variables.

c©Michael Hanke 2018 30 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Curvebase revisited

class Curvebase {
public:
Curvebase(double a = 0.0, double b = 1.0) :

a_(a), b_(b);
double x(double s); // Coordinates in arc length
double y(double s);
virtual ~Curvebase();
// more members

protected:
double a_, b_;
virtual double xp(double p); // User parametrization
virtual double yp(double p);
virtual double dxp(double p); // derivatives
virtual double dyp(double q);
double integrate(double p);
// more members

};

c©Michael Hanke 2018 31 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Abstract Classes

• According to the language standard the Curvebase class as
declared above must provide implementations of the virtual
functions.

• This is, however, not what we want! These functions depend on
the kind of curves and should, therefore, only be defined in the
derived classes.

• In order to describe the interface which derived classes must
implement without really defining the function in question, pure
virtual functions are used in the base class:

virtual double xp(double p) = 0;

• A class with pure virtual functions is called abstract.
• An abstract class cannot be instantiated!

c©Michael Hanke 2018 32 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Hints

• The destructor of an abstract base class should always be virtual!
• The signature of virtual functions and the return type must be
identical in the base class and all derived classes. (In fact, the
return type may be slightly more general.)

• Debugging classes with dynamic binding can be extremly hard
(simple typos can have far-reaching consequences).

• The C++11 standard contains means for a better control
(final, override).

• The dynamic type of an object can be queried via
typeid(expression )

• The counterpart of the static cast is the dynamic_cast<type
*>(pointer).

c©Michael Hanke 2018 33 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Overwrite Control

• A function declare final cannot be overwritten by a function in
a derived class,

void integrate(double, double) const final;

• A function declared override shall overwrite a function of a
base class,

double xp(double) override;

c©Michael Hanke 2018 34 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

An Abstract Base Class For
Boundary Curves

class Curvebase {
public:
Curvebase(double a = 0.0, double b = 1.0) :

a_(a), b_(b);
double x(double s); // Coordinates in arc length
double y(double s);
virtual ~Curvebase();
// more members

protected:
double a_, b_;
bool rev; // indication of curve orientation
virtual double xp(double p) = 0;
virtual double yp(double p) = 0;
virtual double dxp(double p) = 0;
virtual double dyp(double q) = 0;
double integrate(double p); // Need an implementation

// in Curvebase!
// Can be overwritten.

// more members
};c©Michael Hanke 2018 35 (36)



Introduction

Michael
Hanke

Introduction

A Boundary
Class

Dynamic
Binding

Summary

Summary

• Derived classes and inheritance
• Dynamic binding
• Virtual functions and abstract classes

• What comes next:
• Move constructors: Domains

c©Michael Hanke 2018 36 (36)


	Introduction
	A Boundary Class
	Dynamic Binding
	Summary

