Numerical methods for matrix functions

SF2524 - Matrix Computations for Large-scale Systems
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Reading material
@ Lecture notes online “Numerical methods for matrix functions”
o (Further reading: Nicholas Higham - Functions of Matrices [link])

o (Further reading: Golub and Van Loan - Matrix computations)
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Agenda Block 4 Matrix functions
@ Lecture 13: Defintions

@ Lecture 13: General methods
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Reading material
@ Lecture notes online “Numerical methods for matrix functions”
o (Further reading: Nicholas Higham - Functions of Matrices [link])

o (Further reading: Golub and Van Loan - Matrix computations)

Agenda Block 4 Matrix functions
@ Lecture 13: Defintions
@ Lecture 13: General methods
o Lecture 14: Matrix exponential (underlying expm(A) in Matlab)
°

Lecture 14: Matrix square root, matrix sign function
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Reading material
@ Lecture notes online “Numerical methods for matrix functions”
o (Further reading: Nicholas Higham - Functions of Matrices [link])

o (Further reading: Golub and Van Loan - Matrix computations)

Agenda Block 4 Matrix functions
@ Lecture 13: Defintions
Lecture 13: General methods
Lecture 14: Matrix exponential (underlying expm(A) in Matlab)
Lecture 14: Matrix square root, matrix sign function
Lecture 15: Krylov methods for f(A)b

Lecture 15: Exponential integrators
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Functions of matrices
Matrix functions (or functions of matrices) will in this block refer to a
certain class of functions

f':(chn_>Cﬂ><n

that are consistent extensions of scalar functions. )
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Functions of matrices
Matrix functions (or functions of matrices) will in this block refer to a
certain class of functions

f‘:(chn _)Cnxn

that are consistent extensions of scalar functions. )

Simplest examples
o If f(t) =bg + bit+ - -+ byt™ it is natural to define

f(A) = bol + biA+ -+ + by A™.

° Iff(t)z‘g—ﬁ
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Functions of matrices
Matrix functions (or functions of matrices) will in this block refer to a
certain class of functions

f‘:Can _)Cnxn

that are consistent extensions of scalar functions.

Simplest examples
o If f(t) =bg + bit+ - -+ byt™ it is natural to define

f(A) = bol + biA+ -+ + by A™.

o If f(t) = G it is natural to define

f(A) = (af + A)(BI + AL = (BI + A)"L(al + A).
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Functions of matrices
Matrix functions (or functions of matrices) will in this block refer to a
certain class of functions

f‘:Can _)Cnxn

that are consistent extensions of scalar functions. )

Simplest examples
o If f(t) =bg + bit+ - -+ byt™ it is natural to define

f(A) = bol + biA+ -+ + by A™.

o If f(t) = G it is natural to define

f(A) = (al + A)(BI + A)7t = (BI + A)7Lal + A).

Not matrix functions: f(A) = det(A), f(A) = ||All, f(A) = AB + A?C
3/27




Definitions

Definition encountered in earlier courses (maybe)

Consider an analytic function f : C — C, with a Taylor expansion with
expansion point © =0

f(z) = £(0) + fll(?)z+ e
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Definitions

Definition encountered in earlier courses (maybe)

Consider an analytic function f : C — C, with a Taylor expansion with
expansion point © =0
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The matrix function f(A) is defined as
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Definitions

Definition encountered in earlier courses (maybe)

Consider an analytic function f : C — C, with a Taylor expansion with
expansion point © =0

f2) =) + Dzt

The matrix function f(A) is defined as

f(A) == i —f(i;I(O)A" = £(0)/ + @A e
il !

In this course we are more careful. Essentially equivalent definitions:
@ Taylor series: Definition 4.1.1
@ Jordan based: Definition 4.1.3
@ Cauchy integral: Definition 4.1.4

Numerical methods for matrix functions
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Applications

The most well-known non-trivial matrix function
Consider the linear autonomous ODE

y'(t) = Ay(t), y(0)=yo
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Applications
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Consider the linear autonomous ODE

y'(t) = Ay(t), y(0)=yo

The matrix exponential (expm(A) in Matlab) is the function that satisfies

y(t) = exp(tA)yo
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Applications

The most well-known non-trivial matrix function
Consider the linear autonomous ODE

y'(t) = Ay(t), y(0)=yo
The matrix exponential (expm(A) in Matlab) is the function that satisfies
y(t) = exp(tA)yo
More generally, the solution to
y'(t) = Ay(t) + f(t)
satisfies .
7(6) = exp(tA)o + [ exp(Ale = 5))F(s) o

For some problems much better than traditional time-stepping methods.

v
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Trigonometric matrix functions and square roots
Suppose y(t) € R” satisfies

y"(x) + Au(x) =0 y(0) = yo, ¥'(0) =
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Trigonometric matrix functions and square roots

Suppose y(t) € R” satisfies

y"(x) + Au(x) =0 y(0) = yo, ¥'(0) =

The solution is explicitly given by

y(t) = cos(V/At)yo + (VA) sin(VAt)yg
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Matrix logarithm in Markov chains (e.g. data science)
The transition probability matrix P(t) is related to the transition intensity
matrix @ with

P(t) = exp(Q¢)

where @ satisfies certain properties.
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Matrix logarithm in Markov chains (e.g. data science)

The transition probability matrix P(t) is related to the transition intensity
matrix @ with

P(t) = exp(Q¢)

where @ satisfies certain properties.
Inverse problem: Given P(1) is there Q such that the properties are
satisfied. Method: Compute

Q = log(P(1))

and check properties.
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Further applications in

@ Control theory: Solving the Riccati equation, model order reduction

Computational quantum chemistry
Study of stability of time-delay systems
Orthogonal procrustes problems
Geometric mean

Numerical methods for differential equations
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Further applications in

@ Control theory: Solving the Riccati equation, model order reduction

Computational quantum chemistry
Study of stability of time-delay systems
Orthogonal procrustes problems
Geometric mean

Numerical methods for differential equations

See youtube video from Gene Golub summer school:
https://www.youtube.com/watch?v=UXWMYrOLQAk
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Definitions of matrix functions
PDF lecture notes section 4.1
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Polynomials
If p(z) = ap + a1z + - - - apz", then p(A) = ap/ + a1A+ - - - ap AV J
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Polynomials
If p(z) = ap + a1z + - - - apz", then p(A) = ap/ + a1A+ - - - ap AV J

Generalization to a series, > ;< a;A’, which converges, e.g., if |Al| < 1.
Remember ||A']| < ||A])!
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Remember ||A’|| < || Al
Taylor series expansion of scalar function f(z) with expansion point p

Numerical methods for matrix functions 10/27



Polynomials
If p(z) = ag + a1z + - - apz", then p(A) = ap/ + a1A+ - - - ap AV

Generalization to a series, > o, a;A’, which converges, e.g., if ||A|| < 1.
Remember ||A’|| < || Al
Taylor series expansion of scalar function f(z) with expansion point p

Definition (Taylor definition)

Suppose the scalar function f is infinitely differentiable in € C. The
Taylor definition with expansion point i € C of the matrix function
associated with f(z) is given by

i ()(:U’ A—M/)i.

i=0
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When is the series (infinite sum)

> £(7) .
=3 Wy, o)
i=0 ’

finite?
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When is the series (infinite sum)

> £(i) .
) =3 W Ay 1)

il
i=0

finite?

Theorem (Convergence of Taylor definition)

Then, there exists a constant C > 0 independent of N such that

1F(A) - Zf ‘“)(A Y] < CoN 50 as N = oo,
=0
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When is the series (infinite sum)

()(u

(A—ul), (1)

Mg

i=0
finite?
Theorem (Convergence of Taylor definition)
Suppose f(z) is analytic in D(1, r) and suppose r > ||A — ul||. Let f(A)
be (1) and

A—ul
_lA-pil
r
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Then, there exists a constant C > 0 independent of N such that
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Consequence: f(A) finite if f entire function
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When is the series (infinite sum)

()(u

Mg

(A—ul), (1)
i=0

finite?
Theorem (Convergence of Taylor definition)
Suppose f(z) is analytic in D(1, r) and suppose r > ||A — ul||. Let f(A)
be (1) and
A—ul
_lA-pil
r

Then, there exists a constant C > 0 independent of N such that

1F(A) - Zf (”)(A Y] < CoN 50 as N = oo,
=0

v

Consequence: f(A) finite if f entire function * Proof on black board *
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Simple properties:
o f(2) = g(2) + h(z) = F(A) = g(A) + h(A)
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Simple properties:
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In particular, Af(A) = f(A)A

Numerical methods for matrix functions 12 /27



Simple properties:
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Simple properties:
o f(z) =g(z)+ h(z) = f(A) = g(A) + h(A)
o f(z) = g(2)h(z) = f(A) = g(A)h(A) = h(A)g(A)
In particular, Af(A) = f(A)A
o f(VIXV)= VI (X)V (%)

f(t1)
o)
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Simple properties:
o f(z) =g(z)+ h(z) = f(A) = g(A) + h(A)
o f(z) = g(2)h(z) = f(A) = g(A)h(A) = h(A)g(A)
In particular, Af(A) = f(A)A
o f(VIXV)= VI (X)V (%)

t1 f(t1)
o f( )=
i tn f(tn)
[t; x x| [f(t1) x X |
o f( ox )= X
th f(tn)
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Simple properties:
o f(z) =g(z)+ h(z) = f(A) = g(A) + h(A)
o f(z) = g(2)h(z) = f(A) = g(A)h(A) = h(A)g(A)
In particular, Af(A) = f(A)A
o f(VIXV)= VI (X)V (%)

t1 f(t1)
o f( )=
tn f(t”)
t17 X X f(tl) X X
o f( —ox|)= X
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A 0], [f(A) 0
° f( 0 B})[ 0 f(B)] ()

Numerical methods for matrix functions 12 /27




Simple properties:
o f(z) =g(z) + h(z) = f(A) = g(A) + h(A)
o f(z) = g(z)h(z) = f(A) = g(A)h(A) = h(A)g(A)
In particular, Af(A) = f(A)A
o F(VIXV)=VH(X)V (%)

t1 f(tl)
o f( )=
tn f(t”)
t17 X X f(tl) X X
o f( —ox|)= X
i tn i f(tn)
(A 0 f(A) 0
° f(lo B})[ 0 f(B)] ()

Note g(_A)g(B) # g(B)g(A) unless AB = BA
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Jordan form definition
Use (x) with Jordan decomposition A = VJV~1:

f(A) = fF(VIV Y = VvF(J)v!
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Jordan form definition
Use (x) with Jordan decomposition A = VJV~1:

f(A) = fF(VIV Y = VvF(J)v!
Use (%x):

v f(J)
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Jordan form definition
Use (x) with Jordan decomposition A = VJV~1:

f(A) = fF(VIV Y = VvF(J)v!

Use (%x):
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Example: f(J)

Example in Ju|ia: * example in lecture notes *

“n kL O

and p(z) = z*.
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Example: f(J)
Example in Julia:

A=

“n kL O

and p(z) = z*. For this case we have

p(N) PN 3P"(N)

p(N)=1 0 pA) P
0 0 p(N)

Numerical methods for matrix functions

* example in lecture notes *
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Example: f(J)
Example in Julia:

A=

“n kL O

and p(z) = z*. For this case we have

p(N) PN 3P"(N)

p(N)=1 0 pA) P
0 0 p(N)

* example in lecture notes *

Can be formalized (proof in PDF lecture notes, general case not a part of

the course)...

Numerical methods for matrix functions
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Definition (Jordan canonical form (JCF) definition)

(Y. (nj=1)(x:
) 242 . )

(N
1!
(i

—

-
~—

* Show specialization when eigenvalues distinct *
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Definition (Jordan canonical form (JCF) definition)
Suppose A € C™" and let X and Jq,...,J; be a JCF. The JCF-definition
of the matrix function f(A) is given by
f(A) := X diag(Fy,..., Fg)X 1, (2)
where
(Y. (nj=1)( .
) 242 . )
Fi=f(J) = o - | ecmxm. (3)
f'(\)
1
F(Ai)

* Show specialization when eigenvalues distinct *
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Cauchy integral definition

From complex analysis: Cauchy integral formula

f(x) = %]{%dz.

where I encircles x counter-clockwise.
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Cauchy integral definition

From complex analysis: Cauchy integral formula

f(x) = %]{%dz.

where I encircles x counter-clockwise. Replace x with A:
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Cauchy integral definition

From complex analysis: Cauchy integral formula
1 f(z
f(X) = — % L dZ.
2im Jrz—x
where I encircles x counter-clockwise. Replace x with A:

Definition (Cauchy integral definition)

The Cauchy integral definition of matrix functions is given by

1
2im

f(A) = — f(z)(zl A)ldz.

* example in lecture notes *
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Cauchy integral definition

From complex analysis: Cauchy integral formula

1 /@
2im Jrz—x

f(x)= dz.

where I encircles x counter-clockwise. Replace x with A:
Definition (Cauchy integral definition)

Suppose f is analytic inside and on a simple, closed, piecewise-smooth
curve I, which encloses the eigenvalues of A once counter-clockwise.
The Cauchy integral definition of matrix functions is given by

1

f(A) = — i f(z)(zl A)ldz.

* example in lecture notes *
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Equivalence of definitions
We have learned about
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Equivalence of definitions
We have learned about
@ Definition 1: Taylor definition
@ Definition 2: Jordan form definition
@ Definition 3: Cauchy integral definition
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Equivalence of definitions
We have learned about

@ Definition 1: Taylor definition

@ Definition 2: Jordan form definition

@ Definition 3: Cauchy integral definition
Slightly different different definition domains.
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Equivalence of definitions
We have learned about

@ Definition 1: Taylor definition

@ Definition 2: Jordan form definition

@ Definition 3: Cauchy integral definition
Slightly different different definition domains.

Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose A € C"*". Then, the matrix
function definitions are equivalent.
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Equivalence of definitions
We have learned about

@ Definition 1: Taylor definition

@ Definition 2: Jordan form definition

@ Definition 3: Cauchy integral definition
Slightly different different definition domains.

Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose A € C"*". Then, the matrix
function definitions are equivalent.

Quiz 1: Which definition(s) valid for

F(x) = v/x with A = B ﬂ?
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Equivalence of definitions
We have learned about

@ Definition 1: Taylor definition

@ Definition 2: Jordan form definition

@ Definition 3: Cauchy integral definition
Slightly different different definition domains.

Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose A € C"*". Then, the matrix
function definitions are equivalent.

Quiz 1: Which definition(s) valid for

= 1 pr— 7
f(x) = v/x with A o 4
Quiz 2: Which definition(s) valid for
: 3 1]
f(x) = v/x with A= 0 4?
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Of the above definitions the JCF-definition is more general, it requires only
the existence of a set of derivatives in the eigenvalues of the matrix.
However, polynomials are sometimes nice for intuition.

A matrix function is a polynomial (1)

A matrix function f(A) defined using a JCF is a polynomial in A. J

Higham, problem 1.3.

A matrix function is a polynomial (I1)

There exists an interpolating polynomial (Hermite) that interpolates f and
desired derivatives on the spectrum of A. This interpolation can be used
to define a matrix function, and is equivalent to the JCF-definition.

Higham, definition 1.4, and theorem 1.12.

Numerical methods for matrix functions 18 /27



General methods
PDF lecture notes section 4.2
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General methods for matrix functions:
e Today: Truncated Taylor series (4.2.1)
e Today: Eigenvalue-eigenvector approach (4.2.2)
e Today: Schur-Parlett method (4.2.3)
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General methods for matrix functions:
e Today: Truncated Taylor series (4.2.1)
e Today: Eigenvalue-eigenvector approach (4.2.2)
e Today: Schur-Parlett method (4.2.3)
@ Lecture 15: Krylov methods for f(A)b (4.4)
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Truncated Taylor series (naive approach)

First approach based on truncting Taylor series:

N

(0 .
FA) ~Fy= 0 o — ury

il
i=0
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Truncated Taylor series (naive approach)

First approach based on truncting Taylor series:

N (i) .
)~ Fu=3 W a iy

i=0

Properties
@ Can be very slow if Taylor series converges slowly

@ We need N — 1 matrix-matrix multiplications. Complexity

O(Nn?)

@ We need access to the derivatives
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Truncated Taylor series (naive approach)

First approach based on truncting Taylor series:

N (i) .
)~ Fu=3 W a iy

i=0

Properties
@ Can be very slow if Taylor series converges slowly
@ We need ~ 2v/N matrix-matrix multiplications. Complexity

O(V'Nn?)

@ We need access to the derivatives
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Truncated Taylor series (naive approach)

First approach based on truncting Taylor series:

N (i) .
FA) ~Fy= 0 o — ury

il
i=0

Properties
@ Can be very slow if Taylor series converges slowly
@ We need ~ 2v/N matrix-matrix multiplications. Complexity

O(V'Nn?)

@ We need access to the derivatives

The truncated Taylor series is mostly for theoretical purposes.

Numerical methods for matrix functions 21/27



Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

f(A1)
f(A) =V v-!
f(An)

where V = [v1, ..., v,] are the eigenvectors.
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Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

f(A1)
f(A) =V v
f(An)

where V = [v1, ..., v,] are the eigenvectors.

Main properties
@ Requires computation of eigenvalues and eigenvectors: Complexity
essentially O(n®)
@ Requires only the function value in the eigenvalues
@ Can be numerically unstable
o If Ais symmetric V-1 =VT.

Numerical methods for matrix functions 22/27



Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

f(A1)
f(A) =V v
f(An)

where V = [v1, ..., v,] are the eigenvectors.

Main properties
@ Requires computation of eigenvalues and eigenvectors: Complexity
essentially O(n®)
@ Requires only the function value in the eigenvalues
@ Can be numerically unstable
o If Ais symmetric V-1 =VT.

Conclusion: Can be used for numerical computations if reliability is not
important.
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Schur-Parlett method

We know how to compute a Schur factorization
A= QTQ"

where Q orthogonal and T upper triangular
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Schur-Parlett method

We know how to compute a Schur factorization
A=QTQ"
where Q orthogonal and T upper triangular

f(A)=f(QTQR") = Qf(T)Q™.
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Schur-Parlett method

We know how to compute a Schur factorization

A=QTQ"

where Q orthogonal and T upper triangular

f(A)=f(QTQR") = Qf(T)Q".
Schur-Parlett method:
@ Compute a Schur factorization Q, T

o Compute f(T) where T triangular
e Compute f(A) = Qf(T)Q*.
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Schur-Parlett method

We know how to compute a Schur factorization

A=QTQ"

where Q orthogonal and T upper triangular

f(A)=f(QTQR") = Qf(T)Q".
Schur-Parlett method:

@ Compute a Schur factorization Q, T
e Compute f(T) where T triangular
e Compute f(A) = Qf(T)Q™.

What is f(T) for a triangular matrix?
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f(T) where T triangular

Note:
e T and f(T) are triangular
e fij = f(t;), hence the diagonal of F is known
e f(T) commutes with T:

f(T)T =TF(T).

* On black board: two-by-two example. Generalization derivation *
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Theorem (Computation of one element of (T))

Suppose T € C"™" is an upper triangular matrix with distinct eigenvalues.
Let F = f(T). Then, for any i and any j > i,

where

S = tl_/ - Z tlkfkj lk tkj
k=i+1
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Theorem (Computation of one element of (T))

Suppose T € C"™" is an upper triangular matrix with distinct eigenvalues.
Let F = f(T). Then, for any i and any j > i,

S
5=
T
-|J il
where
S—t,_,( Etlkfkj_iktkj'
k=i+1
v
J
1
+ 4+ + + + 000 + + +
0 + + + + + 0O 0 + +
i—> 0 o R O i = 00 +
F 00 0 + + + O T 0 0 +
00 0 0 + + + 0 0 +
000 0 0 + + 0 0 +
00000 O + 0 0 +
000 0O0O0 0 + 0 0 +
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Repeat sub-column by sub-column.

* On blackboard *

Input: A triangular matrix T € C"*" with distinct eigenvalues
Output: The matrix function F = f(T)
fori=1,...,ndo
| fii=f(ti3)
end
forp=1,...,n-1do
fori=1,...,n-pdo
J=t+p
s = tij(fji = fii)
for k=i+1,... j-1 do
| s=s+tifj - fulyj
end
fij = s/(tjj — tir)
end
end

Algorithm 1: Simplified Schur-Parlett method
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Main properties Schur-Parlett (simplified)
@ Requires the computation of a Schur-decomposition (O(n®)) which is
often the dominating computational cost.
@ The only usage of f: f(X\;), i=1,...,n
@ Only works when eigenvalues distinct

@ Numerical cancellation can occur when eigenvalues close: Can
repaired with the full version of Schur-Parlett by using f(’)(z).
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