### Numerical methods for matrix functions

SF2524 - Matrix Computations for Large-scale Systems
Lecture 13

- Lecture notes online "Numerical methods for matrix functions"
- (Further reading: Nicholas Higham Functions of Matrices [link])
- (Further reading: Golub and Van Loan Matrix computations)

- Lecture notes online "Numerical methods for matrix functions"
- (Further reading: Nicholas Higham Functions of Matrices [link])
- (Further reading: Golub and Van Loan Matrix computations)

- Lecture 13: Defintions
- Lecture 13: General methods

- Lecture notes online "Numerical methods for matrix functions"
- (Further reading: Nicholas Higham Functions of Matrices [link])
- (Further reading: Golub and Van Loan Matrix computations)

- Lecture 13: Defintions
- Lecture 13: General methods
- Lecture 14: Matrix exponential (underlying expm(A) in Matlab)

- Lecture notes online "Numerical methods for matrix functions"
- (Further reading: Nicholas Higham Functions of Matrices [link])
- (Further reading: Golub and Van Loan Matrix computations)

- Lecture 13: Defintions
- Lecture 13: General methods
- Lecture 14: Matrix exponential (underlying expm(A) in Matlab)
- Lecture 14: Matrix square root, matrix sign function

- Lecture notes online "Numerical methods for matrix functions"
- (Further reading: Nicholas Higham Functions of Matrices [link])
- (Further reading: Golub and Van Loan Matrix computations)

- Lecture 13: Defintions
- Lecture 13: General methods
- Lecture 14: Matrix exponential (underlying expm(A) in Matlab)
- Lecture 14: Matrix square root, matrix sign function
- Lecture 15: Krylov methods for f(A)b
- Lecture 15: Exponential integrators

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$f: \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$$

that are consistent extensions of scalar functions.

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$f: \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$$

that are consistent extensions of scalar functions.

### Simplest examples

• If 
$$f(t) = b_0 + b_1 t + \cdots + b_m t^m$$

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$f: \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$$

that are consistent extensions of scalar functions.

### Simplest examples

• If  $f(t) = b_0 + b_1 t + \cdots + b_m t^m$  it is natural to define

$$f(A) = b_0 I + b_1 A + \cdots + b_m A^m.$$

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$f: \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$$

that are consistent extensions of scalar functions.

### Simplest examples

• If  $f(t) = b_0 + b_1 t + \cdots + b_m t^m$  it is natural to define

$$f(A) = b_0 I + b_1 A + \cdots + b_m A^m.$$

• If  $f(t) = \frac{\alpha + t}{\beta + t}$ 

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$f: \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$$

that are consistent extensions of scalar functions.

### Simplest examples

• If  $f(t) = b_0 + b_1 t + \cdots + b_m t^m$  it is natural to define

$$f(A) = b_0 I + b_1 A + \cdots + b_m A^m.$$

• If  $f(t) = \frac{\alpha + t}{\beta + t}$  it is natural to define

$$f(A) = (\alpha I + A)(\beta I + A)^{-1} = (\beta I + A)^{-1}(\alpha I + A).$$

Matrix functions (or functions of matrices) will in this block refer to a certain class of functions

$$f: \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$$

that are consistent extensions of scalar functions.

### Simplest examples

• If  $f(t) = b_0 + b_1 t + \cdots + b_m t^m$  it is natural to define

$$f(A) = b_0 I + b_1 A + \cdots + b_m A^m.$$

• If  $f(t) = \frac{\alpha + t}{\beta + t}$  it is natural to define

$$f(A) = (\alpha I + A)(\beta I + A)^{-1} = (\beta I + A)^{-1}(\alpha I + A).$$

Not matrix functions:  $f(A) = \det(A)$ , f(A) = ||A||,  $f(A) = AB + A^2C$ 

# Definition encountered in earlier courses (maybe)

Consider an analytic function  $f:\mathbb{C}\to\mathbb{C}$ , with a Taylor expansion with expansion point  $\mu=0$ 

$$f(z) = f(0) + \frac{f'(0)}{1!}z + \cdots$$

# Definition encountered in earlier courses (maybe)

Consider an analytic function  $f:\mathbb{C}\to\mathbb{C}$ , with a Taylor expansion with expansion point  $\mu=0$ 

$$f(z) = f(0) + \frac{f'(0)}{1!}z + \cdots$$

The matrix function f(A) is defined as

$$f(A) := \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} A^i = f(0)I + \frac{f'(0)}{1!} A + \cdots$$

# Definition encountered in earlier courses (maybe)

Consider an analytic function  $f:\mathbb{C}\to\mathbb{C}$ , with a Taylor expansion with expansion point  $\mu=0$ 

$$f(z) = f(0) + \frac{f'(0)}{1!}z + \cdots$$

The matrix function f(A) is defined as

$$f(A) := \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} A^i = f(0)I + \frac{f'(0)}{1!} A + \cdots$$

In this course we are more careful. Essentially equivalent definitions:

# Definition encountered in earlier courses (maybe)

Consider an analytic function  $f:\mathbb{C}\to\mathbb{C}$ , with a Taylor expansion with expansion point  $\mu=0$ 

$$f(z) = f(0) + \frac{f'(0)}{1!}z + \cdots$$

The matrix function f(A) is defined as

$$f(A) := \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} A^i = f(0)I + \frac{f'(0)}{1!} A + \cdots$$

In this course we are more careful. Essentially equivalent definitions:

- Taylor series: Definition 4.1.1
- Jordan based: Definition 4.1.3
- Cauchy integral: Definition 4.1.4

# **Applications**

#### The most well-known non-trivial matrix function

Consider the linear autonomous ODE

$$y'(t) = Ay(t), \quad y(0) = y_0$$

# **Applications**

#### The most well-known non-trivial matrix function

Consider the linear autonomous ODE

$$y'(t) = Ay(t), \quad y(0) = y_0$$

The matrix exponential (expm(A) in Matlab) is the function that satisfies

$$y(t) = \exp(tA)y_0$$

# **Applications**

#### The most well-known non-trivial matrix function

Consider the linear autonomous ODE

$$y'(t) = Ay(t), \quad y(0) = y_0$$

The matrix exponential (expm(A) in Matlab) is the function that satisfies

$$y(t) = \exp(tA)y_0$$

More generally, the solution to

$$y'(t) = Ay(t) + f(t)$$

satisfies

$$y(t) = \exp(tA)y_0 + \int_0^t \exp(A(t-s))f(s) ds$$

For some problems much better than traditional time-stepping methods.

## Trigonometric matrix functions and square roots

Suppose  $y(t) \in \mathbb{R}^n$  satisfies

$$y''(x) + Au(x) = 0$$
  $y(0) = y_0$ ,  $y'(0) = y'_0$ .

## Trigonometric matrix functions and square roots

Suppose  $y(t) \in \mathbb{R}^n$  satisfies

$$y''(x) + Au(x) = 0$$
  $y(0) = y_0$ ,  $y'(0) = y'_0$ .

The solution is explicitly given by

$$y(t) = \cos(\sqrt{A}t)y_0 + (\sqrt{A})^{-1}\sin(\sqrt{A}t)y_0'$$

# Matrix logarithm in Markov chains (e.g. data science)

The transition probability matrix P(t) is related to the transition intensity matrix Q with

$$P(t) = \exp(Qt)$$

where Q satisfies certain properties.

# Matrix logarithm in Markov chains (e.g. data science)

The transition probability matrix P(t) is related to the transition intensity matrix Q with

$$P(t) = \exp(Qt)$$

where Q satisfies certain properties.

**Inverse problem:** Given P(1) is there Q such that the properties are satisfied. Method: Compute

$$Q = \log(P(1))$$

and check properties.

## Further applications in

- Control theory: Solving the Riccati equation, model order reduction
- Computational quantum chemistry
- Study of stability of time-delay systems
- Orthogonal procrustes problems
- Geometric mean
- Numerical methods for differential equations

## Further applications in

- Control theory: Solving the Riccati equation, model order reduction
- Computational quantum chemistry
- Study of stability of time-delay systems
- Orthogonal procrustes problems
- Geometric mean
- Numerical methods for differential equations
- <u>.</u> . .

See youtube video from Gene Golub summer school:

https://www.youtube.com/watch?v=UXWMYrOLQAk

# Definitions of matrix functions PDF lecture notes section 4.1

If 
$$p(z) = a_0 + a_1 z + \cdots + a_p z^N$$
, then  $p(A) = a_0 I + a_1 A + \cdots + a_p A^N$ 

If 
$$p(z) = a_0 + a_1 z + \cdots + a_p z^N$$
, then  $p(A) = a_0 I + a_1 A + \cdots + a_p A^N$ 

Generalization to a series,  $\sum_{i=0}^{\infty} a_i A^i$ , which converges, e.g., if ||A|| < 1. Remember  $||A^i|| \le ||A||^i$ 

If 
$$p(z) = a_0 + a_1 z + \cdots + a_p z^N$$
, then  $p(A) = a_0 I + a_1 A + \cdots + a_p A^N$ 

Generalization to a series,  $\sum_{i=0}^{\infty} a_i A^i$ , which converges, e.g., if ||A|| < 1. Remember  $||A^i|| < ||A||^i$ 

Taylor series expansion of scalar function f(z) with expansion point  $\mu$ 

$$f(z) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (z - \mu)^{i}.$$

If 
$$p(z) = a_0 + a_1 z + \cdots + a_p z^N$$
, then  $p(A) = a_0 I + a_1 A + \cdots + a_p A^N$ 

Generalization to a series,  $\sum_{i=0}^{\infty} a_i A^i$ , which converges, e.g., if ||A|| < 1. Remember  $||A^i|| < ||A||^i$ 

Taylor series expansion of scalar function f(z) with expansion point  $\mu$ 

$$f(z) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (z - \mu)^{i}.$$

# Definition (Taylor definition)

Suppose the scalar function f is infinitely differentiable in  $\mu \in \mathbb{C}$ . The Taylor definition with expansion point  $\mu \in \mathbb{C}$  of the matrix function associated with f(z) is given by

$$f(A) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i}.$$

$$f(A) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i},$$
 (1)

finite?

$$f(A) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i}, \tag{1}$$

finite?

Theorem (Convergence of Taylor definition)

Then, there exists a constant C > 0 independent of N such that

$$||f(A) - \sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i}|| \le C\gamma^{N} \to 0 \text{ as } N \to \infty.$$

$$f(A) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i},$$
 (1)

finite?

# Theorem (Convergence of Taylor definition)

Suppose f(z) is analytic in  $\bar{D}(\mu, r)$  and suppose  $r > \|A - \mu I\|$ . Let f(A) be (1) and

$$\gamma := \frac{\|A - \mu I\|}{r} < 1.$$

Then, there exists a constant C > 0 independent of N such that

$$||f(A)-\sum_{i=0}^N\frac{f^{(i)}(\mu)}{i!}(A-\mu I)^i||\leq C\gamma^N\to 0 \ as \ N\to\infty.$$

$$f(A) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i},$$
 (1)

finite?

# Theorem (Convergence of Taylor definition)

Suppose f(z) is analytic in  $\bar{D}(\mu, r)$  and suppose  $r > \|A - \mu I\|$ . Let f(A) be (1) and

$$\gamma := \frac{\|A - \mu I\|}{r} < 1.$$

Then, there exists a constant C > 0 independent of N such that

$$||f(A)-\sum_{i=0}^N\frac{f^{(i)}(\mu)}{i!}(A-\mu I)^i||\leq C\gamma^N\to 0 \ as \ N\to\infty.$$

Consequence: f(A) finite if f entire function

$$f(A) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^{i},$$
 (1)

finite?

# Theorem (Convergence of Taylor definition)

Suppose f(z) is analytic in  $\bar{D}(\mu, r)$  and suppose  $r > \|A - \mu I\|$ . Let f(A) be (1) and

$$\gamma := \frac{\|A - \mu I\|}{r} < 1.$$

Then, there exists a constant C > 0 independent of N such that

$$||f(A) - \sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^i|| \leq C\gamma^N \to 0 \text{ as } N \to \infty.$$

Consequence: f(A) finite if f entire function

\* Proof on black board \*

#### Simple properties:

• 
$$f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$$

- $f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$
- $f(z) = g(z)h(z) \Rightarrow f(A) = g(A)h(A) = h(A)g(A)$ In particular, Af(A) = f(A)A

- $f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$
- $f(z) = g(z)h(z) \Rightarrow f(A) = g(A)h(A) = h(A)g(A)$ In particular, Af(A) = f(A)A
- $f(V^{-1}XV) = V^{-1}f(X)V$  (\*)

• 
$$f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$$

• 
$$f(z) = g(z)h(z) \Rightarrow f(A) = g(A)h(A) = h(A)g(A)$$
  
In particular,  $Af(A) = f(A)A$ 

• 
$$f(V^{-1}XV) = V^{-1}f(X)V$$
 (\*)

$$\bullet \ f(\begin{bmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{bmatrix}) = \begin{bmatrix} f(t_1) & & \\ & \ddots & \\ & & f(t_n) \end{bmatrix}$$

• 
$$f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$$

• 
$$f(z) = g(z)h(z) \Rightarrow f(A) = g(A)h(A) = h(A)g(A)$$
  
In particular,  $Af(A) = f(A)A$ 

• 
$$f(V^{-1}XV) = V^{-1}f(X)V$$
 (\*)

$$\bullet \ f\left(\begin{bmatrix} t_1 & & & \\ & \ddots & \\ & & t_n \end{bmatrix}\right) = \begin{bmatrix} f(t_1) & & & \\ & & \ddots & \\ & & f(t_n) \end{bmatrix}$$

$$\bullet \ f\left(\begin{bmatrix} t_1 & \times & \times \\ & \ddots & \times \\ & & t_n \end{bmatrix}\right) = \begin{bmatrix} f(t_1) & \times & \times \\ & & \ddots & \times \\ & & f(t_n) \end{bmatrix}$$

• 
$$f\left(\begin{bmatrix} t_1 & \times & \times \\ & \ddots & \times \\ & & t_n \end{bmatrix}\right) = \begin{bmatrix} f(t_1) & \times & \times \\ & \ddots & \times \\ & & f(t_n) \end{bmatrix}$$

• 
$$f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$$

• 
$$f(z) = g(z)h(z) \Rightarrow f(A) = g(A)h(A) = h(A)g(A)$$
  
In particular,  $Af(A) = f(A)A$ 

• 
$$f(V^{-1}XV) = V^{-1}f(X)V$$
 (\*)

$$\bullet \ f(\begin{bmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{bmatrix}) = \begin{bmatrix} f(t_1) & & \\ & \ddots & \\ & & f(t_n) \end{bmatrix}$$

$$\bullet \ f\left(\begin{bmatrix} t_1 & \times & \times \\ & \ddots & \times \\ & & t_n \end{bmatrix}\right) = \begin{bmatrix} f(t_1) & \times & \times \\ & \ddots & \times \\ & & f(t_n) \end{bmatrix}$$

• 
$$f(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix})\begin{bmatrix} f(A) & 0 \\ 0 & f(B) \end{bmatrix}$$
 (\*\*)

• 
$$f(z) = g(z) + h(z) \Rightarrow f(A) = g(A) + h(A)$$

• 
$$f(z) = g(z)h(z) \Rightarrow f(A) = g(A)h(A) = h(A)g(A)$$
  
In particular,  $Af(A) = f(A)A$ 

• 
$$f(V^{-1}XV) = V^{-1}f(X)V$$
 (\*)

• 
$$f(\begin{bmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{bmatrix}) = \begin{bmatrix} f(t_1) & & \\ & \ddots & \\ & & f(t_n) \end{bmatrix}$$

• 
$$f(\begin{bmatrix} t_1 & \times & \times \\ & \ddots & \times \\ & & t_n \end{bmatrix}) = \begin{bmatrix} f(t_1) & \times & \times \\ & \ddots & \times \\ & & f(t_n) \end{bmatrix}$$

• 
$$f(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix})\begin{bmatrix} f(A) & 0 \\ 0 & f(B) \end{bmatrix}$$
 (\*\*)

Note  $g(A)g(B) \neq g(B)g(A)$  unless AB = BA

#### Jordan form definition

Use  $(\star)$  with Jordan decomposition  $A = VJV^{-1}$ :

$$f(A) = f(VJV^{-1}) = Vf(J)V^{-1}$$

#### Jordan form definition

Use  $(\star)$  with Jordan decomposition  $A = VJV^{-1}$ :

$$f(A) = f(VJV^{-1}) = Vf(J)V^{-1}$$

Use (\*\*):

$$f(J) = f\left(\begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_q \end{bmatrix}\right) = \begin{bmatrix} f(J_1) & & \\ & \ddots & \\ & & f(J_q) \end{bmatrix}$$

#### Jordan form definition

Use  $(\star)$  with Jordan decomposition  $A = VJV^{-1}$ :

$$f(A) = f(VJV^{-1}) = Vf(J)V^{-1}$$

Use (\*\*):

$$f(J) = f\left(\begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_q \end{bmatrix}\right) = \begin{bmatrix} f(J_1) & & \\ & \ddots & \\ & & f(J_q) \end{bmatrix}$$

What is the matrix function of a Jordan block?

$$J_i = egin{bmatrix} \lambda & 1 & & & & \ & \ddots & \ddots & & \ & & \ddots & 1 & \ & & & \lambda & \end{bmatrix}$$

# Example: f(J)

Example in Julia:

$$A = \begin{bmatrix} s & 1 & 0 \\ & s & 1 \\ & & s \end{bmatrix}$$

and 
$$p(z) = z^4$$
.

# Example: f(J)

Example in Julia:

\* example in lecture notes \*

$$A = \begin{bmatrix} s & 1 & 0 \\ & s & 1 \\ & & s \end{bmatrix}$$

and  $p(z) = z^4$ . For this case we have

$$p(J) = \begin{bmatrix} p(\lambda) & p'(\lambda) & \frac{1}{2}p''(\lambda) \\ 0 & p(\lambda) & p'(\lambda) \\ 0 & 0 & p(\lambda) \end{bmatrix}.$$

# Example: f(J)

Example in Julia:

\* example in lecture notes \*

$$A = \begin{bmatrix} s & 1 & 0 \\ & s & 1 \\ & & s \end{bmatrix}$$

and  $p(z) = z^4$ . For this case we have

$$p(J) = \begin{bmatrix} p(\lambda) & p'(\lambda) & \frac{1}{2}p''(\lambda) \\ 0 & p(\lambda) & p'(\lambda) \\ 0 & 0 & p(\lambda) \end{bmatrix}.$$

Can be formalized (proof in PDF lecture notes, general case not a part of the course)...

## Definition (Jordan canonical form (JCF) definition)

$$F_{i} = f(J_{i}) := \begin{bmatrix} f(\lambda_{i}) & \frac{f'(\lambda_{i})}{1!} & \cdots & \frac{f^{(n_{i}-1)}(\lambda_{i})}{(n_{i}-1)!} \\ & \ddots & \ddots & \vdots \\ & & \ddots & \frac{f'(\lambda_{i})}{1!} \\ & & & f(\lambda_{i}) \end{bmatrix} \in \mathbb{C}^{n_{i} \times n_{i}}. \tag{3}$$

<sup>\*</sup> Show specialization when eigenvalues distinct \*

## Definition (Jordan canonical form (JCF) definition)

Suppose  $A \in \mathbb{C}^{n \times n}$  and let X and  $J_1, \dots, J_q$  be a JCF. The JCF-definition of the matrix function f(A) is given by

$$f(A) := X \operatorname{diag}(F_1, \dots, F_q) X^{-1},$$
 (2)

where

$$F_{i} = f(J_{i}) := \begin{bmatrix} f(\lambda_{i}) & \frac{f'(\lambda_{i})}{1!} & \cdots & \frac{f^{(n_{i}-1)}(\lambda_{i})}{(n_{i}-1)!} \\ & \ddots & \ddots & \vdots \\ & & \ddots & \frac{f'(\lambda_{i})}{1!} \\ & & & f(\lambda_{i}) \end{bmatrix} \in \mathbb{C}^{n_{i} \times n_{i}}.$$
(3)

<sup>\*</sup> Show specialization when eigenvalues distinct \*

From complex analysis: Cauchy integral formula

$$f(x) = \frac{1}{2i\pi} \oint_{\Gamma} \frac{f(z)}{z - x} dz.$$

where  $\Gamma$  encircles x counter-clockwise.

From complex analysis: Cauchy integral formula

$$f(x) = \frac{1}{2i\pi} \oint_{\Gamma} \frac{f(z)}{z - x} dz.$$

where  $\Gamma$  encircles x counter-clockwise. Replace x with A:

From complex analysis: Cauchy integral formula

$$f(x) = \frac{1}{2i\pi} \oint_{\Gamma} \frac{f(z)}{z - x} dz.$$

where  $\Gamma$  encircles x counter-clockwise. Replace x with A:

## Definition (Cauchy integral definition)

The Cauchy integral definition of matrix functions is given by

$$f(A) := \frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - A)^{-1} dz.$$

<sup>\*</sup> example in lecture notes \*

From complex analysis: Cauchy integral formula

$$f(x) = \frac{1}{2i\pi} \oint_{\Gamma} \frac{f(z)}{z - x} dz.$$

where  $\Gamma$  encircles x counter-clockwise. Replace x with A:

## Definition (Cauchy integral definition)

Suppose f is analytic inside and on a simple, closed, piecewise-smooth curve  $\Gamma$ , which encloses the eigenvalues of A once counter-clockwise. The Cauchy integral definition of matrix functions is given by

$$f(A) := \frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - A)^{-1} dz.$$

<sup>\*</sup> example in lecture notes \*

We have learned about

We have learned about

- Definition 1: Taylor definition
- Definition 2: Jordan form definition
- Definition 3: Cauchy integral definition

We have learned about

- Definition 1: Taylor definition
- Definition 2: Jordan form definition
- Definition 3: Cauchy integral definition

Slightly different different definition domains.

We have learned about

- Definition 1: Taylor definition
- Definition 2: Jordan form definition
- Definition 3: Cauchy integral definition

Slightly different different definition domains.

## Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose  $A \in \mathbb{C}^{n \times n}$ . Then, the matrix function definitions are equivalent.

We have learned about

- Definition 1: Taylor definition
- Definition 2: Jordan form definition
- Definition 3: Cauchy integral definition

Slightly different different definition domains.

## Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose  $A \in \mathbb{C}^{n \times n}$ . Then, the matrix function definitions are equivalent.

Quiz 1: Which definition(s) valid for

$$f(x) = \sqrt{x}$$
 with  $A = \begin{bmatrix} 0 & 1 \\ 0 & 4 \end{bmatrix}$ ?

We have learned about

- Definition 1: Taylor definition
- Definition 2: Jordan form definition
- Definition 3: Cauchy integral definition

Slightly different different definition domains.

## Theorem (Equivalence of the matrix function definitions)

Suppose f is an entire function and suppose  $A \in \mathbb{C}^{n \times n}$ . Then, the matrix function definitions are equivalent.

Quiz 1: Which definition(s) valid for

$$f(x) = \sqrt{x}$$
 with  $A = \begin{bmatrix} 0 & 1 \\ 0 & 4 \end{bmatrix}$ ?

Quiz 2: Which definition(s) valid for

$$f(x) = \sqrt{x}$$
 with  $A = \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$ ?

Of the above definitions the JCF-definition is more general, it requires only the existence of a set of derivatives in the eigenvalues of the matrix. However, polynomials are sometimes nice for intuition.

## A matrix function is a polynomial (I)

A matrix function f(A) defined using a JCF is a polynomial in A.

Higham, problem 1.3.

## A matrix function is a polynomial (II)

There exists an interpolating polynomial (Hermite) that interpolates f and desired derivatives on the spectrum of A. This interpolation can be used to define a matrix function, and is equivalent to the JCF-definition.

Higham, definition 1.4, and theorem 1.12.

# General methods PDF lecture notes section 4.2

#### General methods for matrix functions:

- Today: Truncated Taylor series (4.2.1)
- Today: Eigenvalue-eigenvector approach (4.2.2)
- Today: Schur-Parlett method (4.2.3)

#### General methods for matrix functions:

- Today: Truncated Taylor series (4.2.1)
- Today: Eigenvalue-eigenvector approach (4.2.2)
- Today: Schur-Parlett method (4.2.3)
- Lecture 15: Krylov methods for f(A)b (4.4)

First approach based on truncting Taylor series:

$$f(A) \approx F_N = \sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^i$$

First approach based on truncting Taylor series:

$$f(A) \approx F_N = \sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^i$$

## **Properties**

- Can be very slow if Taylor series converges slowly
- ullet We need N-1 matrix-matrix multiplications. Complexity

$$\mathcal{O}(Nn^3)$$

We need access to the derivatives

First approach based on truncting Taylor series:

$$f(A) \approx F_N = \sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^i$$

## **Properties**

- Can be very slow if Taylor series converges slowly
- We need  $\approx 2\sqrt{N}$  matrix-matrix multiplications. Complexity

$$\mathcal{O}(\sqrt{N}n^3)$$

We need access to the derivatives

First approach based on truncting Taylor series:

$$f(A) \approx F_N = \sum_{i=0}^{N} \frac{f^{(i)}(\mu)}{i!} (A - \mu I)^i$$

## **Properties**

- Can be very slow if Taylor series converges slowly
- We need  $\approx 2\sqrt{N}$  matrix-matrix multiplications. Complexity

$$\mathcal{O}(\sqrt{N}n^3)$$

We need access to the derivatives

The truncated Taylor series is mostly for theoretical purposes.

## Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

$$f(A) = V \begin{bmatrix} f(\lambda_1) & & & \\ & \ddots & & \\ & & f(\lambda_n) \end{bmatrix} V^{-1}$$

where  $V = [v_1, \dots, v_n]$  are the eigenvectors.

## Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

$$f(A) = V \begin{bmatrix} f(\lambda_1) & & & \\ & \ddots & & \\ & & f(\lambda_n) \end{bmatrix} V^{-1}$$

where  $V = [v_1, \dots, v_n]$  are the eigenvectors.

## Main properties

- Requires computation of eigenvalues and eigenvectors: Complexity essentially  $\mathcal{O}(n^3)$
- Requires only the function value in the eigenvalues
- Can be numerically unstable
- If A is symmetric  $V^{-1} = V^T$ .

## Eigenvalue-eigenvector approach

If we have distinct eigenvalues or symmetric matrix:

$$f(A) = V \begin{bmatrix} f(\lambda_1) & & & \\ & \ddots & & \\ & & f(\lambda_n) \end{bmatrix} V^{-1}$$

where  $V = [v_1, \dots, v_n]$  are the eigenvectors.

## Main properties

- Requires computation of eigenvalues and eigenvectors: Complexity essentially  $\mathcal{O}(n^3)$
- Requires only the function value in the eigenvalues
- Can be numerically unstable
- If A is symmetric  $V^{-1} = V^T$ .

Conclusion: Can be used for numerical computations if reliability is not important.

We know how to compute a Schur factorization

$$A = QTQ^*$$

where Q orthogonal and T upper triangular

We know how to compute a Schur factorization

$$A = QTQ^*$$

where Q orthogonal and T upper triangular

$$f(A) = f(QTQ^*) = Qf(T)Q^*.$$

We know how to compute a Schur factorization

$$A = QTQ^*$$

where Q orthogonal and T upper triangular

$$f(A) = f(QTQ^*) = Qf(T)Q^*.$$

Schur-Parlett method:

- Compute a Schur factorization Q, T
- Compute f(T) where T triangular
- Compute  $f(A) = Qf(T)Q^*$ .

We know how to compute a Schur factorization

$$A = QTQ^*$$

where Q orthogonal and T upper triangular

$$f(A) = f(QTQ^*) = Qf(T)Q^*.$$

Schur-Parlett method:

- Compute a Schur factorization Q, T
- Compute f(T) where T triangular
- Compute  $f(A) = Qf(T)Q^*$ .

What is f(T) for a triangular matrix?

# f(T) where T triangular

#### Note:

- T and f(T) are triangular
- $f_{ii} = f(t_{ii})$ , hence the diagonal of F is known
- f(T) commutes with T:

$$f(T)T = Tf(T)$$
.

<sup>\*</sup> On black board: two-by-two example. Generalization derivation \*

## Theorem (Computation of one element of f(T))

Suppose  $T \in \mathbb{C}^{n \times n}$  is an upper triangular matrix with distinct eigenvalues. Let F = f(T). Then, for any i and any j > i,

$$f_{ij} = \frac{s}{t_{jj} - t_{ii}}$$

where

$$s = t_{ij}(f_{jj} - f_{ii}) + \sum_{k=i+1}^{j-1} t_{ik}f_{kj} - f_{ik}t_{kj}.$$

## Theorem (Computation of one element of f(T))

Suppose  $T \in \mathbb{C}^{n \times n}$  is an upper triangular matrix with distinct eigenvalues. Let F = f(T). Then, for any i and any j > i,

$$f_{ij} = \frac{s}{t_{jj} - t_{ii}}$$

where

$$s = t_{ij}(f_{jj} - f_{ii}) + \sum_{k=i+1}^{j-1} t_{ik}f_{kj} - f_{ik}t_{kj}.$$



#### Repeat sub-column by sub-column.

\* On blackboard \* Input: A triangular matrix  $T \in \mathbb{C}^{n \times n}$  with distinct eigenvalues Output: The matrix function F = f(T)for  $i = 1, \ldots, n$  do  $f_{ii} = f(t_{i,i})$ end **for** p = 1, ..., n-1 **do for** i = 1, ..., n - p **do** j = i + p $s = t_{ij}(f_{jj} - f_{ii})$ for k=i+1,...,j-1 do  $s = s + t_{ik}f_{ki} - f_{ik}t_{ki}$ end  $f_{ii} = s/(t_{ii} - t_{ii})$ end end

Algorithm 1: Simplified Schur-Parlett method

## Main properties Schur-Parlett (simplified)

- Requires the computation of a Schur-decomposition  $(\mathcal{O}(n^3))$  which is often the dominating computational cost.
- The only usage of f:  $f(\lambda_i)$ , i = 1, ..., n
- Only works when eigenvalues distinct
- Numerical cancellation can occur when eigenvalues close: Can repaired with the full version of Schur-Parlett by using  $f^{(i)}(z)$ .