VEKTORANALYS HT 2021
 CELTE / CENMI

ED1110

GAUSS' THEOREM and STOKES' THEOREM

Kursvecka 3
Kapitel 8-9 (Vektoranalys, 1:e uppl, Frassinetti/Scheffel)

This week

Gauss' theorem:

- Divergence
- definition
- physical meaning
- The Gauss' theorem

Stokes' theorem:

- Curl
- definition
- physical meaning
- Stokes' theorem
- The Green's formula in the plane
- Culf-free fields and scalar potentials
- Solenoidal fields and vector potentials

Connections with previous and next topics

Gauss' theorem:

- vector fields
- It can be used to calculate the flux (in some specific cases)
- Applications: in "Electromagnetic Theory" to calculate the flux of electric field (i.e. with the Gauss' law).

Stokes' theorem:

- Vector fields
- It can be used to calculate line integrals (in some specific cases).
- Important implication for the conservative fields and the potential
- Applications in "Electromagnetic Theory" to calculate the magnetic field (Ampere's law).

TARGET PROBLEM : the $1^{\text {st }}$ and $2^{\text {nd }}$ equations of Maxwell

ELECTRIC FIELD \bar{E}

MAGNETIC FIELD \bar{B}

Magnetic monopoles do not exist in nature.

- How can we express this information for \bar{E} and \bar{B} using the mathematical formalism?

TARGET PROBLEM: the $1^{\text {st }}$ equation of Maxwell

Let's consider some ELECTRIC CHARGES and two closed surfaces, S_{1} and S_{2}

S_{1} does not contain any charge. It has no sources and no sinks: no field lines destroyed and no field lines created inside S1

$$
\iint_{S_{1}} \bar{E} \cdot d \bar{S}=0
$$

S_{2} contains a negative charge (a sink).
The field lines are destroyed inside S2

$$
\begin{aligned}
& \iint_{S_{2}} \bar{E} \cdot d \bar{S}<0 \\
& \int_{S} \bar{E} \cdot d \bar{S}=\frac{Q}{\varepsilon_{0}} \quad \text { Gauss'law }
\end{aligned}
$$

We want to find: (1) the differential form of the Gauss' law.
(i.e. to express the Guass's law without using integrals)
(2) the corresponding expressions for the magnetic field

- the divergence of a vector field $\bar{A}, \operatorname{div} \bar{A}$
- the Gauss's theorem $\iint_{S} \bar{A} \cdot d \bar{S}=\iiint_{V} d i v \bar{A} d V$

THE DIVERGENCE (DIVERGENSEN)

In a Cartesian coordinate system, the divergence of a vector field \bar{A} is:
DEFINITION $\quad \operatorname{div} \bar{A} \equiv \frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE:

- Assume that \bar{A} is the velocity field of a gas.
- If heated, the gas expands creating
a velocity field that diverges from the heating position.
Then, the divergence of \bar{A} at the heating point is positive

THE DIVERGENCE (DIVERGENSEN)

In a Cartesian coordinate system, the divergence of a vector field \bar{A} is:

DEFINITION

$$
\begin{equation*}
\operatorname{div} \bar{A} \equiv \frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \tag{1}
\end{equation*}
$$

It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE:

- Assume that \bar{A} is the velocity field of a gas.
- If heated, the gas expands creating a velocity field that diverges from the heating position. Then, the divergence of \bar{A} at the heating point is positive
- If cooled, the gas contracts creating a velocity field that converges to the cooling position. The divergence of the field is negative
- At the heating position we have a source of the velocity field
- At the cooling position we have a sink of the velocity field

The divergence is a measure of the strength of sources and sinks.

(This is only "intuitive". From a formal point of view, this statement will be clear using the Gauss' theorem)

THE GAUSS' THEOREM

$$
\begin{equation*}
\iint_{S} \bar{A} \cdot d \bar{S}=\iiint_{V} d i v \bar{A} d V \tag{2}
\end{equation*}
$$

where \underline{S} is a closed surface that forms the boundary of the volume V and \bar{A} is a continuously differentiable vector field defined on V .

$$
\begin{aligned}
& d x d y=d S_{2} \hat{n}_{2} \cdot \hat{e}_{z}=\quad d \bar{S}_{2} \cdot \hat{e}_{z} \\
& d x d y=-d S_{1} \hat{n}_{1} \cdot \hat{e}_{z}=-d \bar{S}_{1} \cdot \hat{e}_{z}
\end{aligned}
$$

THE GAUSS' THEOREM

PROOF

$$
\begin{aligned}
\iiint_{V} d i v \bar{A} d V= & \iiint_{V}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right) d x d y d z= \\
& \iiint_{V} \frac{\partial A_{x}}{\partial x} d x d y d z+\iiint_{V} \frac{\partial A_{y}}{\partial y} d x d y d z+\iiint_{V} \frac{\partial A_{z}}{\partial z} d x d y d z
\end{aligned}
$$

Let's calculate the last term:

$$
\iiint_{V} \frac{\partial A_{z}}{\partial z} d x d y d z=\iint_{S_{p}} d x d y \int_{f_{1}(x, y)}^{f_{2}(x, y)} \frac{\partial A_{z}}{\partial z} d z=\iint_{S_{p}}\left[A_{z}\left(x, y, f_{2}(x, y)\right)-A_{z}\left(x, y, f_{1}(x, y)\right)\right] d x d y=
$$

$d x d y$ is the projection on S_{p} of the small element surfaces on $d S_{1}$ and $d S_{2}$.
Therefore: $\quad d x d y=-\hat{e}_{z} \cdot \hat{n}_{1} d S_{1}=\hat{e}_{z} \cdot \hat{n}_{2} d S_{2}$

$$
=\iint_{S_{2}} A_{z}\left(x, y, f_{2}(x, y)\right) \hat{e}_{z} \cdot \hat{n}_{2} d S_{2}+\iint_{S_{1}} A_{z}\left(x, y, f_{1}(x, y)\right) \hat{e}_{z} \cdot \hat{n}_{1} d S_{1}=\iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} d S
$$

Which means: $\quad \iiint_{V} \frac{\partial A_{z}}{\partial z} d V=\iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} d S$

THE GAUSS' THEOREM

PROOF

In the same way we get:

$$
\begin{align*}
& \iiint_{V} \frac{\partial A_{x}}{\partial x} d V=\iint_{S} A_{x} \hat{e}_{x} \cdot \hat{n} d S \tag{4}\\
& \iiint_{V} \frac{\partial A_{y}}{\partial y} d V=\iint_{S} A_{y} \hat{e}_{y} \cdot \hat{n} d S \tag{5}
\end{align*}
$$

Adding together equations (3), (4) and (5) we finally obtain:

$$
\begin{aligned}
\iiint_{V} d i v \bar{A} d V= & \iiint_{V} \frac{\partial A_{x}}{\partial x} d x d y d z+\iiint_{V} \frac{\partial A_{y}}{\partial y} d x d y d z+\iiint_{V} \frac{\partial A_{z}}{\partial z} d x d y d z= \\
& \iint_{S} A_{x} \hat{e}_{x} \cdot \hat{n} d S+\iint_{S} A_{y} \hat{e}_{y} \cdot \hat{n} d S+\iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} d S=\iint_{S} \bar{A} \cdot d \bar{S}
\end{aligned}
$$

Rearrange in logic order the steps to prove the Gauss' theorem

- Add all the three terms together in order to obtain the flux of $\overline{\boldsymbol{A}}$.
- Write down the volume integral of $\operatorname{div} \bar{A}$
- Consider the projection of the surface element on the $x y$ plane, it will be $d x d y$. The projection will identify a infinitesimal surface element ($d S_{2}$) on the lower surface.
- Consider a closed surface.
- Split the volume integral into three terms. Then:
(a) consider only the term which depends on the z-derivative of $A_{z^{\prime}}$
(b) remove the z-derivative by solving the integral in $d z$, (what will remain is just the integral in $d x d y$)
(c) express $d x d y$ in order to obtain $d S_{1}$ and $d S_{2}$,
(d) re-arrange the integrals in $d S_{1}$ and $d S_{2}$ in order to have obtain a flux integral of $\left(0,0, A_{z}\right)$.
- Repeat the same for the terms which depend on the x-derivative of A_{x} and on the y derivative of A_{y}.
- Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element $d S_{1}$ on the upper surface.
- Write the expression that relates $d x d y$ to $d S_{1}$ and $d S_{2}$.

Rearrange in logic order the steps to prove the Gauss' theorem

8 - Add all the three terms together in order to obtain the flux of \bar{A}.
5 - Write down the volume integral of $\operatorname{div} \bar{A}$
3 - Consider the projection of the surface element on the $x y$ plane, it will be $d x d y$. The projection will identify a infinitesimal surface element ($d S_{2}$) on the lower surface.

1 - Consider a closed surface.
6 - Split the volume integral into three terms. Then:
6(a) consider only the term which depends on the z-derivative of A_{z},
6(b) remove the z-derivative by solving the integral in $d z$, (what will remain is just the integral in $d x d y$)
6(c) express $d x d y$ in order to obtain $d S_{1}$ and $d S_{2}$,
6(d) re-arrange the integrals in $d S_{1}$ and $d S_{2}$ in order to have obtain a flux integral of $\left(0,0, A_{z}\right)$.
7 - Repeat the same for the terms which depend on the \boldsymbol{x}-derivative of $\boldsymbol{A}_{\boldsymbol{x}}$ and on the \boldsymbol{y} derivative of A_{y}.
2 - Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element $d S_{1}$ on the upper surface.

4 - Write the expression that relates $d x d y$ to $d S_{1}$ and $d S_{2}$.

THE GAUSS' THEOREM

PROOF

What if we consider a more complicated volume?

We divide the volume V in smaller and "simpler" volumes

$$
\begin{gathered}
V=V_{1}+V_{2}+\ldots=\sum_{i} V_{i} \\
\iiint_{V} d i v A d V=\sum_{i} \iiint_{V_{i}} d i v A d V= \\
\sum_{i} \iint_{S_{i}} A \cdot d S=\iint_{S} A \cdot d S
\end{gathered}
$$

PHYSICAL MEANING

Suppose that $\bar{v}(\bar{r})$ is the velocity field of a gas

Let's apply the Gauss' theorem to a volume V of the gas

This term is the gas volume per second $\left[\mathrm{m}^{3} / \mathrm{s}\right]$ that flows outwards (or inwards) through a closed surface S

If there are no sinks and no sources:
the amount of gas that flows inwards through a closed surface S is equal to the amount of gas that flows outwards.

This implies that the flow $\iint_{S} \bar{v} \cdot d \bar{S}$ is zero.
Therefore, $\operatorname{div}(\bar{v})=0$

TARGET PROBLEM

Magnetic monopoles do not exist in nature.

How can this statement be mathematically expressed?

Magnetic monopoles do not exists \Rightarrow the flux of \mathbf{B} is zero

Let's apply the Gauss' theorem to the magnetic field:

$$
\text { Gauss } \rightleftarrows \iint_{S} \bar{B} \cdot d \bar{S}=\iiint_{V} d i v \bar{B} d V
$$

$$
\left.\iint_{S} \bar{B} \cdot d \bar{S}=0\right\}
$$

$$
\operatorname{div} \bar{B}=0
$$

One of the four Maxwell's
equations
where S is a closed surface and Q the total charge inside S.
Tip: Q is related to the charge density ρ_{c} via $Q=\int_{V} \rho_{c} d V$

WHICH STATEMENT IS WRONG?

1- The divergence of a vector field is a scalar

2- The divergence is related to the flux
3- The Gauss' theorem translates a surface integral into a volume integral

4- The Gauss' theorem can be applied also to an open surface

VEKTORANALYS

CURL (ROTATIONEN)

and
STOKES' THEOREM

THE CURRENT DENSITY

One of the main properties of electromagnetism is that a current density \bar{j} produces a magnetic field \bar{B}. The current density and the magnetic field are related via the $4^{\text {th }}$ Maxwell's equation:

$$
\operatorname{rot} \bar{B}=\mu_{0} \bar{j}
$$

THE CURRENT DENSITY

One of the main properties of electromagnetism is that a current density \bar{j} produces a magnetic field \bar{B}. The current density and the magnetic field are related via the $4^{\text {th }}$ Maxwell's equation:

$$
r o t \bar{B}=\mu_{0} \bar{j}
$$

Consider a conductor with an electric current I.
Assume that the section of the conductor perpendicular to I has area S . - If the electric current is uniform, then the current density \bar{j} is:

$$
|\bar{j}|=\frac{I}{S}
$$

TARGET PROBLEM

$$
\left\{\begin{array}{l}
\operatorname{rot} \bar{B}=\mu_{0} \bar{j} \quad \text { (4th Maxwell's equation in stationary conditions) } \\
I=\iint_{S} \bar{j} \cdot d \bar{S}
\end{array}\right.
$$

- Calculate the magnetic field generated by the current I
- Calculate the magnetic field inside a solenoid

We need:
(1) the definition of "curl" (or rotor) of a vector field: $\operatorname{rot} \bar{A}$
(2) the Stokes' theorem

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} r o t \bar{A} \cdot d \bar{S}
$$

THE CURL (ROTATIONEN) $\operatorname{rot} \bar{A}$

DEFINITION (in a Cartesian coordinate system)

$$
\operatorname{rot} \bar{A}=\left|\begin{array}{ccc}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}, \quad \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}, \quad \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
$$

rot stands for "rotation"
In fact, the curl is a measure of how much the direction of a vector field changes in space, i.e. how much the field "rotates".

In every point of the space, $\operatorname{rot} A$ is a vector whose length and direction describe the rotation of the field \bar{A}.

The direction is the axis of rotation of \bar{A}
The magnitude is the magnitude of rotation of \bar{A}

THE CURL $\operatorname{rot} \bar{A}$

PHYSICAL MEANING

Consider the rotation of a rigid body around the z-axis.
The position vector of a point P on located at the distance ρ from the origin is:

$$
\bar{r}=(x, y, 0) \text { with }\left\{\begin{array}{l}
x=\rho \cos \varphi \\
y=\rho \sin \varphi
\end{array}\right.
$$

If P rotates with constant angular velocity ω, the angle φ is: $\varphi(t)=\omega t$.

$$
\left\{\begin{array}{l}
x(t)=\rho \cos (\omega t) \\
y(t)=\rho \sin (\omega t)
\end{array}\right.
$$

The velocity of the point P is:

$$
\left.\begin{array}{l}
v_{x}(t)=\frac{d x(t)}{d t}=-\rho \omega \sin \omega t=-\omega y(t) \\
v_{y}(t)=\frac{d y(t)}{d t}=\rho \omega \cos \omega t=\omega x(t)
\end{array}\right\} \Rightarrow \begin{gathered}
\\
\bar{v}=(-\omega y, \omega x, 0) \\
\bar{\omega}=\omega \hat{e}_{z}
\end{gathered}
$$

THE CURL $\operatorname{rot} \bar{A}$

EXAMPLE

$$
\bar{v}(x, y, z)=(-\omega y, \omega x, 0)
$$

Exercise: calculate the curl of \mathcal{v}

Direction: the direction is the axis of rotation, i.e. perpendicular to the plane of the figure
The sign (negative, in this case) is determined by the right-hand rule
Magnitude: the amount of rotation
In this example, it is constant and independent of the position, i.e. the amount of rotation is the same at any point.

THE CURL $\operatorname{rot} \bar{A}$

PHYSICAL MEANING

Consider the rotation of a rigid body around the z-axis.
The position vector of a point P on located at the distance ρ from the origin is:

$$
\bar{r}=(x, y, 0) \text { with }\left\{\begin{array}{l}
x=\rho \cos \varphi \\
y=\rho \sin \varphi
\end{array}\right.
$$

If P rotates with constant angular velocity ω, the angle φ is: $\varphi(t)=\omega t$.

$$
\left\{\begin{array}{l}
x(t)=\rho \cos (\omega t) \\
y(t)=\rho \sin (\omega t)
\end{array}\right.
$$

The velocity of the point P is:

$$
\left.\begin{array}{l}
v_{x}(t)=\frac{d x(t)}{d t}=-\rho \omega \sin \omega t=-\omega y(t) \\
v_{y}(t)=\frac{d y(t)}{d t}=\rho \omega \cos \omega t=\omega x(t)
\end{array}\right\} \Rightarrow \begin{gathered}
\\
\bar{v}=(-\omega y, \omega x, 0) \\
\bar{\omega}=\omega \hat{e}_{z}
\end{gathered}
$$

Therefore $\operatorname{rot} \bar{v}=(0,0,2 \omega) \quad \Rightarrow \quad \bar{\omega}=\frac{1}{2} \operatorname{rot} \bar{v}$

THE STOKES' THEOREM

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} r o t \bar{A} \cdot d \bar{S}
$$

where \bar{A} is a vector field, L is a closed curve and

S is a surface whose boundary is defined by L.
L must be positively oriented relatively to S. Both L and S must be "stykvis glatta". \bar{A} must be continuously differentiable on S .

THE STOKES' THEOREM

PROOF

Five steps:

1. We divide S in "many" "smaller" (infinitesimal) surfaces:

$$
S=\sum_{i} S^{i}
$$

2. We project S^{i} on: the xy-plane S_{z}^{i} the yz-plane S_{x}^{i} the xz-plane S_{y}^{i}

3. We prove the Stokes' theorem on S_{z}^{i}, (the only difficult part)
4. We add the results for the projections together and we obtain the Stokes' theorem on S^{i}
5. We add the results for S^{i} together and we obtain the Stokes' theorem on S

THE STOKES' THEOREM

PROOF

Let's consider the plane surface S_{z}^{i} located in the $x y$-plane (i.e. $z=$ constant $=z_{0}$) with boundary defined by the curve L_{z}^{i}

Let's calculate $\oint_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}$

Term $3=0 \quad(z=$ constant $!\Rightarrow d z=0)$

Term 1

$$
\begin{aligned}
& \oint_{L_{z}^{\prime}} A_{x}\left(x, y, z_{0}\right) d x=\oint_{L_{1}+L_{2}} A_{x}\left(x, y, z_{0}\right) d x= \\
& \quad \int_{L_{1}} A_{x}\left(x, y, z_{0}\right) d x+\int_{L_{2}} A_{x}\left(x, y, z_{0}\right) d x= \\
& \quad \int_{a}^{b} A_{x}\left(x, f(x), z_{0}\right) d x+\int_{b}^{a} A_{x}\left(x, g(x), z_{0}\right) d x=
\end{aligned}
$$

THE STOKES' THEOREM

PROOF

$$
\begin{aligned}
= & \int_{a}^{b} A_{x}\left(x, f(x), z_{0}\right) d x-\int_{a}^{b} A_{x}\left(x, g(x), z_{0}\right) d x=\int_{a}^{b}\left[A_{x}\left(x, f(x), z_{0}\right)-A_{x}\left(x, g(x), z_{0}\right)\right] d x= \\
& \int_{a}^{b} \int_{g(x)}^{f(x)} \frac{\partial A_{x}\left(x, y, z_{0}\right)}{\partial y} d x d y=-\int_{a}^{b} \int_{f(x)}^{g(x)} \frac{\partial A_{x}}{\partial y} d x d y=-\iint_{S_{z}^{t}} \frac{\partial A_{x}}{\partial y} d x d y
\end{aligned}
$$

Therefore we get:
Term 1

$$
\oint_{L_{z}^{\prime}} A_{x}\left(x, y, z_{0}\right) d x=-\iint_{S_{z}^{\prime}} \frac{\partial A_{x}}{\partial y} d x d y
$$

In a similar way:
Term 2

$$
\oint_{L_{z}^{\prime}} A_{y}\left(x, y, z_{0}\right) d x=\iint_{S_{z}^{\prime}} \frac{\partial A_{y}}{\partial x} d x d y
$$

It is the z-component of $\operatorname{rot} \bar{A}$!!
Adding Term 1, Term 2 and Term 3:

THE STOKES' THEOREM

So can rewrite it as:

$$
\begin{gathered}
\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}^{i}}(\operatorname{rot} \bar{A})_{z} d x d y=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S} \\
\overbrace{d x d y=\hat{e}_{z} \cdot \hat{n} d S=\hat{e}_{z} \cdot d \bar{S}}
\end{gathered}
$$

In a similar way we have:
$\oint_{L_{y}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{y} \hat{e}_{y} \cdot d \bar{S}$
$\oint_{L_{x}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{x} \hat{e}_{x} \cdot d \bar{S}$

Now let's add everything together:

$$
\oint_{L_{x}^{i}} \bar{A} \cdot d \bar{r}+\oint_{L_{y}^{i}} \bar{A} \cdot d \bar{r}+\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\oint_{L^{i}} \bar{A} \cdot d \bar{r}
$$

THE STOKES' THEOREM

So can rewrite it as:

$$
\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}^{i}}(\operatorname{rot} \bar{A})_{z} d x d y=\iint_{\int_{S^{i}}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}
$$

In a similar way we have:
$\oint_{L_{y}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{y} \hat{e}_{y} \cdot d \bar{S}$
$\oint_{L_{x}^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{x} \hat{e}_{x} \cdot d \bar{S}$

Now let's add everything together:

$$
\begin{aligned}
& \oint_{L_{x}^{i}} \bar{A} \cdot d \bar{r}+\oint_{L_{y}^{i}} \bar{A} \cdot d \bar{r}+\oint_{L_{z}^{i}} \bar{A} \cdot d \bar{r}=\oint_{L^{i}} \bar{A} \cdot d \bar{r} \\
& \iint_{S^{i}}(\operatorname{rot} \bar{A})_{x} \hat{e}_{x} \cdot d \bar{S}+\iint_{S^{i}}(\operatorname{rot} \bar{A})_{y} \hat{e}_{y} \cdot d \bar{S}+\iint_{S^{i}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}=\iint_{S^{i}} r o t \bar{A} \cdot d \bar{S}
\end{aligned}
$$

THE STOKES' THEOREM

PROOF

$$
\oint_{L^{L^{\prime}}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}} r o t \bar{A} \cdot d \bar{S}
$$

But we are interested in the whole S . So we add these small contributions altogether:

$$
\begin{aligned}
& \underbrace{\text { II }}_{\sum_{S^{i}} \iint_{\sum_{L^{i}}} \operatorname{rot} \bar{A} \cdot d \bar{S}}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S} \\
& \overbrace{\sum_{L} \int_{S} \bar{A}}=\int_{L} \bar{A} \cdot d \bar{r}
\end{aligned}
$$

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}
$$

Rearrange in logic order the steps to prove the Stokes' theorem

- Prove the Stokes' theorem on S_{z}^{i} :
(a) - Write the line integral of the vector field along the boundary of S_{z}^{i} and split the integral into three terms.
(b) - Consider only the integral in $d x$ and prove that $\int_{L_{z}^{\prime}} A_{x}\left(x, y, z_{0}\right) d x=-\iint_{S^{\prime}} \frac{\partial A_{x}}{\partial y} d x d y$
(c) -Repeat the same for the integral in $d y$ and $d z$
(d) -Add the three integrals in $d x, d y$ and $d z$ to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S_{i}}(\operatorname{rot} \bar{A})_{z} d x d y$
(e) -Rewrite $d x d y$ to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S^{\prime}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}$
- Prove the Stokes' theorem on S : add together all the expressions obtained for S^{i}
- Consider a closed path and a surface whose boundary is defined by the closed path.
- Prove the Stokes' theorem on S^{i} :
(a) -Repeat the same procedure for S_{x}^{i} and $S^{i}{ }_{y}$
(b) - add together the expressions for the integrals

$$
\text { in } S_{x}^{i} \text { to } S_{y}^{i} \text { and } S_{z}^{i} \text { obtaining: } \int_{L^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}} \operatorname{rot} \bar{A} \cdot d \bar{S}
$$

- Divide the surface in small areas S^{i} and consider the projection of S^{i} on the $x y, y z, x z$ planes

Rearrange in logic order the steps to prove the Stokes' theorem

3 - Prove the Stokes' theorem on S_{z}^{i} :
3.(a) - Write the line integral of the vector field along the boundary of S_{z}^{i} and split the integral into three terms.
3.(b) - Consider only the integral in $d x$ and prove that $\int_{L_{z}^{\prime}} A_{x}\left(x, y, z_{0}\right) d x=-\iint_{S_{z}^{\prime}} \frac{\partial A_{x}}{\partial y} d x d y$
3.(c) -Repeat the same for the integral in $d y$ and $d z$
3.(d) -Add the three integrals in $d x, d y$ and $d z$ to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}}(r o t \bar{A})_{z} d x d y$
3.(e) -Rewrite $d x d y$ to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}}(\operatorname{rot} \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}$

5 - Prove the Stokes' theorem on S : add together all the expressions obtained for S^{i}
1 - Consider a closed path and a surface whose boundary is defined by the closed path.
4 - Prove the Stokes' theorem on S^{i} :
4.(a) -Repeat the same procedure for S_{x}^{i} and S_{y}^{i}
4.(b) - add together the expressions for the integrals

$$
\text { in } S_{x}^{i} \text { to } S_{y}^{i} \text { and } S_{z}^{i} \text { obtaining: } \int_{L^{i}} \bar{A} \cdot d \bar{r}=\iint_{S^{i}} \operatorname{rot} \bar{A} \cdot d \bar{S}
$$

2 - Divide the surface in small areas S^{i} and consider the projection of S^{i} on the $x y, y z, x z$ planes

TARGET PROBLEM

$$
\left\{\begin{array}{l}
r o t \bar{B}=\mu_{0} \bar{j} \quad \text { (4th Maxells sequatoon in staitonayy conditions) } \\
I=\iint_{S} \bar{j} \cdot d \bar{S}
\end{array}\right.
$$

Using the Stokes' theorem we can find an expression that relates directly \bar{B} with I :

(in stationary condition)

Using the Ampere's law:

$$
\left.\begin{array}{l}
\int_{L} \bar{B} \cdot d \bar{r}=\mu_{0} N I \\
\int_{L} \bar{B} \cdot d \bar{r}=|\bar{B}| l_{0}+0 l_{0}+0 l_{1}+0 l_{1}=|\bar{B}| l_{0}
\end{array}\right\} \Rightarrow|\bar{B}|=\frac{\mu_{0} N I}{l_{0}}
$$

THE GREEN FORMULA IN THE PLANE

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{L}(P d x+Q d y)
$$

PROOF

We can start from Stokes' theorem

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}
$$

$$
\begin{gathered}
\left.\oint_{L} \bar{A} \cdot d \bar{r}=\oint\left(A_{x} d x+A_{y} d y+A_{z} d z\right)=\oint\left(A_{x} d x+A_{y} d y\right)\right) \\
\begin{array}{c}
\text { But we are in a plane, } \\
\text { so we can assume } A=\left(A_{x}, A_{y}, 0\right)
\end{array} \\
\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}=\iint_{S}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \underbrace{\hat{e}_{z} \cdot \hat{e}_{z}}_{=1} d x d y
\end{gathered}
$$

CURL FREE FIELD AND SCALAR POTENTIAL

 (virvelfria fält och skalär potential)DEFINITION: A vector field \bar{A} is "curl free" if $\operatorname{rot} \bar{A}=0$
If \bar{A} is continuously derivable and defined in a simply connected domain, then:
THEOREM ${ }_{\text {gis intereatroost }}$

$$
\operatorname{rot} \bar{A}=0 \Leftrightarrow \bar{A} \text { has a scalar potential } \phi, \bar{A}=\operatorname{grad} \phi
$$

PROOF

(1) $\operatorname{rot} \bar{A}=0$

$$
\oint_{L} \bar{A} \cdot d \bar{r}=\iint_{S} \operatorname{rot} \bar{A} \cdot d \bar{S}=0
$$

So, if the curl is zero, also the circulation is zero \Rightarrow then the field is conservative and has a scalar potential. See theorems 6.3 and 6.4 in the textbook or the slides of week 2.
(2) $\bar{A}=\operatorname{grad} \phi$

$$
\begin{aligned}
& A=\operatorname{grad} \phi \\
& \operatorname{rot} \bar{A}=\operatorname{rot} \operatorname{grad} \phi=\operatorname{rot}\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=\left|\begin{array}{lll}
\hat{e}_{\hat{e}_{2}} & \hat{e}_{y} & \hat{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right|=\left(\frac{\partial}{\partial y} \frac{\partial \phi}{\partial z}-\frac{\partial}{\partial z} \frac{\partial \phi}{\partial y}, \ldots, \ldots\right)=(0,0,0)
\end{aligned}
$$

SOLENOIDAL FIELD AND VECTOR POTENTIAL

DEFINITION: A vector field \bar{B} is called solenoidal if $\operatorname{div} \bar{B}=0$
DEFINITION: \bar{A} is a vector potential of the vector field \bar{B} if $\bar{B}=\operatorname{rot} \bar{A}$
THEOREM 9 Q:A in mete oobs
\bar{B} has a vector potential \bar{A} if and only if \bar{B} has divergence zero:

$$
\bar{B}=\operatorname{rot} \bar{A} \Leftrightarrow \operatorname{div} \bar{B}=0
$$

PROOF
(1) \bar{B} has a vector potential $\Rightarrow \bar{B}=\operatorname{rot} \bar{A} \quad \Rightarrow \quad \operatorname{div} \bar{B}=\operatorname{div}(\operatorname{rot} \bar{A})=0$
(2) $d i v \bar{B}=0$

Let's try to find a solution \bar{A} to the equation $\bar{B}=\operatorname{rot} \bar{A}$
We start looking for a particular solution A^{*} of this kind:

$$
\bar{A}^{*}=\left(A_{x}^{*}(x, y, z), A_{y}^{*}(x, y, z), 0\right)
$$

PROOF

Assuming $\bar{B}=r o t \bar{A}$ we obtain:

$$
\begin{array}{lll}
-\frac{\partial A_{y}^{*}}{\partial z}=B_{x} & \Rightarrow & A_{y}^{*}(x, y, z)=-\int_{z_{0}}^{z} B_{x}(x, y, z) d z+F(x, y) \\
\frac{\partial A_{x}^{*}}{\partial z}=B_{y} & \Rightarrow & A_{x}^{*}(x, y, z)=\int_{z_{0}}^{z} B_{y}(x, y, z) d z+G(x, y) \\
\frac{\partial A_{y}^{*}}{\partial x}-\frac{\partial A_{x}^{*}}{\partial y}=B_{z} & \Rightarrow & -\int_{z_{0}}^{z} \frac{\partial B_{x}}{\partial x} d z+\frac{\partial F}{\partial x}-\int_{z_{0}}^{z} \frac{\partial B_{y}}{\partial y} d z-\frac{\partial G}{\partial y}=B_{z} \\
\downarrow
\end{array}
$$

But $d i v \bar{B}=0 \Rightarrow \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}=-\frac{\partial B_{z}}{\partial z} \longrightarrow \underbrace{\int_{z_{0}}^{z} \frac{\partial B_{z}}{\partial z} d z+\frac{\partial F}{\partial x}-\frac{\partial G}{\partial y}=B_{z} \Rightarrow \frac{\partial F}{\partial x}-\frac{\partial G}{\partial y}=B_{z}\left(x, y, z_{0}\right), ~\left(\frac{1}{2}\right)}_{=B_{z}(x, y, z)-B_{z}\left(x, y, z_{0}\right)}$
A solution to this equation is: $\left\{\begin{array}{l}F(x, y)=0 \\ G(x, y)=-\int_{y_{0}}^{y} B_{z}\left(x, y, z_{0}\right) d y\end{array}\right.$

$$
\bar{A}^{*}=\left(\int_{z_{0}}^{z} B_{y}(x, y, z) d z-\int_{y_{0}}^{y} B_{z}\left(x, y, z_{0}\right) d y, \quad-\int_{z_{0}}^{z} B_{x}(x, y, z) d z, \quad 0\right)
$$

The general solution can be found using $\quad \bar{B}=\operatorname{rot} \bar{A} \quad$:

$$
\operatorname{rot}\left(\bar{A}-\bar{A}^{*}\right)=\bar{B}-\bar{B}=0 \quad \Rightarrow \quad \bar{A}-\bar{A}^{*}=\operatorname{grad} \psi \quad \Rightarrow \quad \bar{A}=\bar{A}^{*}+\operatorname{grad} \psi
$$

WHICH STATEMENT IS WRONG?

1- The curl of a vector field is a scalar

2- The curl is related to the line integral of a field along a closed curve

3- Stokes' theorem translates a line integral into a surface integral

4- The Stokes' theorem can be applied only to a closed curve

