DD2480
Software Engineering
Fundamentals

Lecture 3 Part 1: Continuous integration

Outline

* What is continuous integration?

* Travis Continuous Integration Service
 Webhooks mechanism

What is continuous integration?

Definition:
e Continuous Integration (Cl) is a software development practice where
members of a team integrate their work frequently, usually each

person integrates at least daily - leading to multiple integrations per
day.

e Fach integration is verified by an automated build (including test) to
detect integration errors as quickly as possible.

 Main motivation for Cl: reduce integration problems and speed up a
development of cohesive software.

Problem of integration

e Integration Hell -- time in production when members on a delivery
team integrate their individual code.

 |n traditional software development environments, hours or days of fixing the
code so that it can finally integrate

Integration Hell

Problem of integration

 Integration Hell -- time in production when members on a delivery team
integrate their individual code.

* In traditional software development environments, hours or days of fixing the code
so that it can finally integrate

e Cl: treat integration as a non-event.

* Any individual developt))er's work is only a few hours away from a shared
project state and can be integrated back into that state in minutes.

e Any integration errors are found rapidly and can be fixed rapidly.

 The term 'Continuous Integration' originated with Kent Beck's Extreme
Programming development process (one of its original practices)

Cl: workflow. Stepl: Checking out

* Begin by taking a copy of the current integrated source onto local
development machine.

e by checking out a working copy from the mainline.

e A source code control system (e.g., GitHub) keeps all of a project's
source code in a repository.

* The current state of the system called the 'mainline’.

e At any time a developer can make a controlled copy of the mainline
onto their own machine, i.e., 'check out'.

* The copy on the developer's machine is called a 'working copy'.

Cl: workflow. Step2: Modifying the working
copy and creating the local builc

* Working copy can be manipulated in different ways depending on the
task:

e altering the production code or adding or changing automated tests
(often using a version of XUnit testing frameworks)

* Once done: carry out an automated build on own development
machine.

* This takes the source code in the working copy, compiles and links it
into an executable, and runs the automated tests.

e Only if it all builds and tests without errors, the overall build is
considered to be good.

Cl: workflow. Step3: Committing to the
repository

If a good build on the working copy is obtained

e Plan committing the changes into the repository.
* Meanwhile other people made changes to the mainline.

e First update own working copy with their changes and rebuild.

e Others changes clash with own changes result in failure either in the compilation or
in the tests.

 Own responsibility to fix and repeat until a working copy that is properly
synchronized with the mainline is built

* Once done, the developer can finally commit changes into the mainline,
which then updates the repository.

Cl workflow: Step 4: build on integration
machine

After commit to the mainline

Build again on an integration machine based on the mainline code.
Only when this build succeeds the changes are done.

The integration build can be executed manually by the developer or done automatically
by the Cl server

A clash occurs between two developers: caught when the second developer to commit
builds their updated working copy.

e The integration build fails.

The error is detected rapidly and should be quickly fixed to get the build working
properly again

In Cl a failed integration build should not stay failed for long.
A good team should have many correct builds a day.

The overall goal of Cl

* Always have a stable piece of software that works properly and
contains only a few bugs.

* Everybody develops off that shared stable base and never gets too far
away from that base

* Achieved by the main practices of Ci

Practices of Cl: Maintain a Single Source
Repository

e Software projects have many files that need to be orchestrated
together to build a product.
e Keeping track of all of them is a major effort

* Source Code Management Tools - configuration management, version
control systems, repositories etc

 Main rule: everything should be in the repository.

* including: test scripts, properties files, database schema, install scripts, third
party libraries etc.

Practices of Cl: Maintain a Single Source
Repository

* The basic rule of thumb:

* One should be able to walk up to the project with a virgin machine, do a
checkout, and be able to fully build the system.

e Only a minimal amount of things should be on the virgin machine — e.g. operating
system, Java development environment, or base database system
e Branches: “Nothing in excess except moderation”

e \ersion control systems allow us to create multiple branches, i.e., to handle
different streams of development.

* |t's frequently overused. Keep the use of branches to a minimum and
always maintain a clear mainline:

e Reasonable branches are bug fixes of prior production releases and temporary
experiments

Practices of Cl;: Automate the Build

* Build: getting the sources turned into a running system
* |Involves compilation, moving files around, loading schemas into the

databases etc
e Automated environments for builds are common

e Unix make
e Java Ant, Gradle, Maven
e the .NET community -- Nant and MSBuild.

* Make sure you can build and launch your system using these scripts
using a single command.

Practices of Cl: Automate the Build

e A big build often takes long time
 Irritating if only a small change is made.

e A good build tool analyzes what needs to be changed as part of the
process.

* The common way to do this is to check the dates of the source and object
files and only compile if the source date is later.

e Dependencies are tricky: in case of dependencies between the objects they should
also be rebuilt.

e Compilers may or may not handle this

e What actually needs to be built: a system with or without test code, or with
different sets of tests.

e A script should allow you to build alternative targets for different cases.

Practices of Cl: Make Your Build Self-Testing

e A program may run, but do not do the right thing — correctness?

e Include automated tests in the build process.
e Testing isn't perfect but it can catch a lot of bugs

e Extreme Programming (XP) and Test Driven Development (TDD) popularize
self-testing code

e Self-testing code has a suite of automated tests that can check a large part
of the code base for bugs.

e The tests are self-checking and kicked off from a simple command
e The result of running the test suite should indicate if any test failed.

. llcqur a build to be self-testing, the failure of a test should cause the build to
ail.

Practices of Cl: Make Your Build Self-Testing

 TDD has popularized the XUnit family of open-source
» Tests don't prove the absence of bugs.
* With a self-testing build you might not get perfect tests.

 But imperfect tests, run frequently, are better than perfect tests
never written and run

e “Broken window syndrome”

Broken window theory

Practices of Cl: Everyone Commits To the
Mainline (at least) Every Day

* Integration is primarily about communication.

e For the developer to commit to the mainline: they can correctly build their
code.

* Long time spent without commit — more potential conflicts
e Conflicts that stay undetected for weeks can be very hard to resolve.

* With frequent commits: diff-debugging to help to resolve the conflict.

e Rule of thumb: every developer should commit to the repository
every day.

Practices of Cl: Every Commit Should Build the
Mainline on an Integration Machine

e Using daily commits, a team gets frequent tested builds.
 The mainline stays in a healthy state.

e Problems in practice:
 discipline: people not doing an update and build before they commit.
e environmental differences between developers' machines.

e Ensure that regular builds happen on an integration machine and only if
this integration build succeeds should the commit be considered to be
done.

 How: using a manual build or a continuous integration server.

 Monitor the progress of started integration build: only if build succeeded,
you are done with your commit.

The role of Cl server

* |t acts as a monitor to the repository.

e Every time a commit against the repository finishes, the server
automatically checks out the sources onto the integration machine,
initiates a build, and notifies the committer of the result of the build.

* The committer isn't done until she gets the notification - usually an
email.

Practices of Cl: Fix Broken Builds Immediately

* If the mainline build fails, it needs to be fixed right away.
* The team should always be developing on a known stable base.

e Often the fastest way to fix the build is to revert the latest commit
from the mainline.

 Backward recovery: taking the system back to the last-known good
build.

e Unless the cause for the breakage is immediately obvious, just revert the
mainline and debug the problem on a development workstation.

Practices of Cl: Keep the Build Fast

* Cl should provide rapid feedback but a build can take a long time.

e XP guideline: a ten minute build
 Most of our modern projects achieve this.

* Worth investing efforts: frequent commits add up to a lot of time.

Practices of Cl: Deployment pipeline

Deployment pipeline (also known as build pipeline or staged build) multiple builds done
in sequence.

The commit build is the build that's needed when someone commits to the mainline.
e Should be done quickly. Has shortcuts and reduced ability to detect bugs.

A two stage deployment pipeline:

The first stage -- compilation and run tests that are more localized unit tests with the
database completely stubbed out.

* Fast tests but does not find bugs involving larger scale interactions, e.g., real database

The second stage build runs a different suite of tests that do hit the real database and
involve more end-to-end behavior.

e Might take a couple of hours to run.

The second-stage build runs when it can, picking up the executable from the latest good
commit build for further testing.

Ensure that any later-stage failure leads to new tests in the commit build that would have
caught the bug

e Strengthen the commit tests

Practices of Cl: Make it Easy for Anyone to Get
the Latest Executable and Ensure Visibility

 Any team member should be able to get the latest executable and be
able to run it: for demonstrations, exploratory testing, etc.

e Remember: work for your customer and build the right software.
Typically hard to say what is wanted in advance: easier to comment
on what needs to be changed.

* Everyone knows where to find the latest executable.
* Visibility: communicate is the state of the mainline build.

Benefits of Continuous Integration

e Reduced risk.

e Deferred integration: hard to predict how long it will take to do, and what is the
progress.

e Bugs in deployed software: lost customers

e Cl doesn't get rid of bugs, but it does make them dramatically easier to find
and remove.

e Self-testing code.
* If you introduce a bug and detect it quickly it's far easier to get rid of.
* |It's fresh in your memory

e Bugs are cumulative. The more bugs you have, the harder it is to remove
each one

Travis Cl

e https://travis-ci.org/

e Easy to use build server for projects hosted on GitHub

* Projects can be tested and deployed.
e Pull requests (PRs) can also be built automatically with Travis ClI.

https://travis-ci.org/

Setting up

e Go to https://travis-ci.org/ and press the Sign Up or Sign in with
GitHub button.

Tr'a\,fis C| Blog stetus Help

Test and Deploy with Conﬁdence

¢ your GitHub projects with Travis Cl and you'll be testing your code in minutes

* Next: a redirection to GitHub to authorize Travis Cl as application.

https://travis-ci.org/

Authorizing Travis as an application

Authorize application @‘

by would like permission to
access your account

Review permissions

Travis Cl
& Personal user data v
Email addresses (read-only) No des::r\p'u)n
Visit application's web
‘: Repository webhooks and servi v
Read and write access
o e (@ Learn more about OAuth
O Commi v
Read coess
= Deployme v
= Mana

- * After Travis Cl is authorized it is
— listed as an application in Settings.

Organization access

oo e @ 1 1€@N TFAVIC Cl Will check which

data.

repositories are available.

Adding a repository

Travis ClI @ Blog Status Help

Accounts b

Name See the Travis accounts you belong to

Repositories

Sign Out

Token: &

We're only showing your public repositories. You can find your private projects on travis-ci.com.

Organizations

tra
s
Is an organization missing? Flick the repository Add travis.yml file to Trigger your first build

Review and add your authorized organizations. switch on your repository with a git push

Activating a repository

e A repository can be activated by pressing the switch button.

NameName/projectl

NameName/project2

NameName/project3

NameName/projectDD2480

Configuration

e Add .travis.yml file to your repository
* Minimum: specify the used programming language
e For Java, Travis supports Maven and Gradle as build system

A minimal .travis.yml file for a Maven or Gradle project simply
specifies the language:

language java

Configuration example

language: java
use Java &8
jdk:

- oraclejdk8

see https://blog.travis-ci.com/2014-12-17-faster-builds-
with-container-based-infrastructure

sudo: false
//////////# cache the build tool's caches

cache:
V|rtuaI|sat|9n directories: Caches lets Travis Cl store directories between builds,
evn. for build - $HOME/ .m2

_ $HOME/.gradle which is useful for storing dependencies that take longer to compile or download.

When a Gradle wrapper is available Travis Cl will build your project by using gradlew bui ld
command

Upload all Gradle wrapper files, including the gradle-wrapper.jar

Triggering a build

e How a build is triggered can be configured in the settings section.

e You can enforce e.g., that
e a.travis.ymlis present to start a build
e a build should be triggered at any time a push occurs or even if pull request comes

General Settings

m Build only if .travis.yml is present m Build pushes

Limit concurrent jobs m Build pull requests

e Here pushing a new commit will trigger a new build.

Other build configuration options

* In the build configuration you can also define other things, e.g.,
e Commands and scripts to be run before and after each build

before_script:
’. - git config --global user.name [myname]

e Notifications in terms of emails or chats alerts

Showing a status icon

* The build status determined by Travis Cl is often shown in public.

* Click on the build status icon and choose from several options for
embedding the status icon.

SimonScholz / RxXSWT

Change-Id: I7c4bd643556698fc3de87d691624e9190fadabdl

&) Simon authored and commiti

Webhooks: general idea

 Webhooks are automated messages sent from apps when something
happens.
e They have a message (payload)
e are senttoa unique URL (app's address).

* When something happens, apps can push the data to each other and
not waste their time checking and waiting.

e Jeff Lindsay: webhooks are "user-defined callbacks made with HTTP"

 Webhooks are data and executable commands sent from one app to
another over HTTP

Webhooks in GitHub

 Webhooks allow you to build or set up GitHub Apps which subscribe
to certain events on GitHub.com

* When one of those events is triggered, a HTTP POST payload sent to
the webhook's configured URL.

e Can be used to update an external issue tracker, trigger Cl builds,
update a backup mirror etc.

 Webhooks can be installed on a specific repository.

 Webhook will be triggered each time one or more subscribed events
occurs.

Webhooks: events

* You can configure a webhook, to choose which events you want to
receive payloads for.
e Subscribe to the useful for you specific events to limit the number of HTTP
requests to your server.
e By default, webhooks are only subscribed to the push event

* You can change the list of subscribed events through the APl or Ul
anytime

e E.g., if you subscribe to the issue event you receive detailed
payloads every time an issue is opened, closed, labeled, etc.

Webhooks: payload format

e Each event type has a specific payload format with the relevant event
information.
e Push event has a more detailed webhook payload.

 Webhook payloads include the user who performed the event
sender ,organisation and repository which the event occurred on

e For a GitHub App's webhook may include the installation which an
event relates to

e |dea of REST API

	�DD2480 �Software Engineering Fundamentals
	Outline
	What is continuous integration?
	Problem of integration
	Problem of integration
	CI: workflow. Step1: Checking out
	CI: workflow. Step2: Modifying the working copy and creating the local build
	CI: workflow. Step3: Committing to the repository
	CI workflow: Step 4: build on integration machine
	The overall goal of CI
	Practices of CI: Maintain a Single Source Repository
	Practices of CI: Maintain a Single Source Repository
	Practices of CI: Automate the Build
	Practices of CI: Automate the Build
	Practices of CI: Make Your Build Self-Testing
	Practices of CI: Make Your Build Self-Testing
	Broken window theory
	Practices of CI: Everyone Commits To the Mainline (at least) Every Day
	Practices of CI: Every Commit Should Build the Mainline on an Integration Machine
	The role of CI server
	Practices of CI: Fix Broken Builds Immediately
	Practices of CI: Keep the Build Fast�
	Practices of CI: Deployment pipeline
	Practices of CI: Make it Easy for Anyone to Get the Latest Executable and Ensure Visibility
	Benefits of Continuous Integration
	Travis CI
	Setting up
	Authorizing Travis as an application
	Adding a repository
	Activating a repository
	Configuration�
	Configuration example
	Triggering a build
	Other build configuration options
	Showing a status icon
	Webhooks: general idea
	Webhooks in GitHub
	Webhooks: events
	Webhooks: payload format

