
DD2480
Software Engineering

Fundamentals
Lecture 3 Part 1: Continuous integration

Outline

• What is continuous integration?
• Travis Continuous Integration Service

• Webhooks mechanism

What is continuous integration?

Definition:
• Continuous Integration (CI) is a software development practice where

members of a team integrate their work frequently, usually each
person integrates at least daily - leading to multiple integrations per
day.

• Each integration is verified by an automated build (including test) to
detect integration errors as quickly as possible.

• Main motivation for CI: reduce integration problems and speed up a
development of cohesive software.

Problem of integration

• Integration Hell -- time in production when members on a delivery
team integrate their individual code.

• In traditional software development environments, hours or days of fixing the
code so that it can finally integrate

Problem of integration

• Integration Hell -- time in production when members on a delivery team
integrate their individual code.

• In traditional software development environments, hours or days of fixing the code
so that it can finally integrate

• CI: treat integration as a non-event.

• Any individual developer's work is only a few hours away from a shared
project state and can be integrated back into that state in minutes.

• Any integration errors are found rapidly and can be fixed rapidly.

• The term 'Continuous Integration' originated with Kent Beck's Extreme
Programming development process (one of its original practices)

CI: workflow. Step1: Checking out

• Begin by taking a copy of the current integrated source onto local
development machine.

• by checking out a working copy from the mainline.

• A source code control system (e.g., GitHub) keeps all of a project's
source code in a repository.

• The current state of the system called the 'mainline'.
• At any time a developer can make a controlled copy of the mainline

onto their own machine, i.e., 'check out'.
• The copy on the developer's machine is called a 'working copy'.

CI: workflow. Step2: Modifying the working
copy and creating the local build
• Working copy can be manipulated in different ways depending on the

task:
• altering the production code or adding or changing automated tests

(often using a version of XUnit testing frameworks)
• Once done: carry out an automated build on own development

machine.
• This takes the source code in the working copy, compiles and links it

into an executable, and runs the automated tests.
• Only if it all builds and tests without errors, the overall build is

considered to be good.

CI: workflow. Step3: Committing to the
repository
If a good build on the working copy is obtained
• Plan committing the changes into the repository.

• Meanwhile other people made changes to the mainline.
• First update own working copy with their changes and rebuild.

• Others changes clash with own changes result in failure either in the compilation or
in the tests.

• Own responsibility to fix and repeat until a working copy that is properly
synchronized with the mainline is built

• Once done, the developer can finally commit changes into the mainline,
which then updates the repository.

CI workflow: Step 4: build on integration
machine
After commit to the mainline
• Build again on an integration machine based on the mainline code.
• Only when this build succeeds the changes are done.
• The integration build can be executed manually by the developer or done automatically

by the CI server

• A clash occurs between two developers: caught when the second developer to commit
builds their updated working copy.

• The integration build fails.
• The error is detected rapidly and should be quickly fixed to get the build working

properly again
• In CI a failed integration build should not stay failed for long.
• A good team should have many correct builds a day.

The overall goal of CI

• Always have a stable piece of software that works properly and
contains only a few bugs.

• Everybody develops off that shared stable base and never gets too far
away from that base

• Achieved by the main practices of CI

Practices of CI: Maintain a Single Source
Repository
• Software projects have many files that need to be orchestrated

together to build a product.
• Keeping track of all of them is a major effort

• Source Code Management Tools - configuration management, version
control systems, repositories etc

• Main rule: everything should be in the repository.
• including: test scripts, properties files, database schema, install scripts, third

party libraries etc.

Practices of CI: Maintain a Single Source
Repository
• The basic rule of thumb:
• One should be able to walk up to the project with a virgin machine, do a

checkout, and be able to fully build the system.
• Only a minimal amount of things should be on the virgin machine – e.g. operating

system, Java development environment, or base database system
• Branches: “Nothing in excess except moderation”
• Version control systems allow us to create multiple branches, i.e., to handle

different streams of development.
• It's frequently overused. Keep the use of branches to a minimum and

always maintain a clear mainline:
• Reasonable branches are bug fixes of prior production releases and temporary

experiments

Practices of CI: Automate the Build

• Build: getting the sources turned into a running system
• Involves compilation, moving files around, loading schemas into the

databases etc

• Automated environments for builds are common
• Unix make
• Java Ant, Gradle, Maven
• the .NET community -- Nant and MSBuild.

• Make sure you can build and launch your system using these scripts
using a single command.

Practices of CI: Automate the Build

• A big build often takes long time
• Irritating if only a small change is made.

• A good build tool analyzes what needs to be changed as part of the
process.

• The common way to do this is to check the dates of the source and object
files and only compile if the source date is later.

• Dependencies are tricky: in case of dependencies between the objects they should
also be rebuilt.

• Compilers may or may not handle this
• What actually needs to be built: a system with or without test code, or with

different sets of tests.
• A script should allow you to build alternative targets for different cases.

Practices of CI: Make Your Build Self-Testing

• A program may run, but do not do the right thing – correctness?
• Include automated tests in the build process.

• Testing isn't perfect but it can catch a lot of bugs

• Extreme Programming (XP) and Test Driven Development (TDD) popularize
self-testing code

• Self-testing code has a suite of automated tests that can check a large part
of the code base for bugs.

• The tests are self-checking and kicked off from a simple command
• The result of running the test suite should indicate if any test failed.

• For a build to be self-testing, the failure of a test should cause the build to
fail.

Practices of CI: Make Your Build Self-Testing

• TDD has popularized the XUnit family of open-source
• Tests don't prove the absence of bugs.
• With a self-testing build you might not get perfect tests.
• But imperfect tests, run frequently, are better than perfect tests

never written and run
• “Broken window syndrome”

Broken window theory

Practices of CI: Everyone Commits To the
Mainline (at least) Every Day
• Integration is primarily about communication.

• For the developer to commit to the mainline: they can correctly build their
code.

• Long time spent without commit – more potential conflicts
• Conflicts that stay undetected for weeks can be very hard to resolve.

• With frequent commits: diff-debugging to help to resolve the conflict.
• Rule of thumb: every developer should commit to the repository

every day.

Practices of CI: Every Commit Should Build the
Mainline on an Integration Machine
• Using daily commits, a team gets frequent tested builds.

• The mainline stays in a healthy state.
• Problems in practice:

• discipline: people not doing an update and build before they commit.
• environmental differences between developers' machines.

• Ensure that regular builds happen on an integration machine and only if
this integration build succeeds should the commit be considered to be
done.

• How: using a manual build or a continuous integration server.
• Monitor the progress of started integration build: only if build succeeded,

you are done with your commit.

The role of CI server

• It acts as a monitor to the repository.
• Every time a commit against the repository finishes, the server

automatically checks out the sources onto the integration machine,
initiates a build, and notifies the committer of the result of the build.

• The committer isn't done until she gets the notification - usually an
email.

Practices of CI: Fix Broken Builds Immediately

• If the mainline build fails, it needs to be fixed right away.
• The team should always be developing on a known stable base.
• Often the fastest way to fix the build is to revert the latest commit

from the mainline.
• Backward recovery: taking the system back to the last-known good

build.
• Unless the cause for the breakage is immediately obvious, just revert the

mainline and debug the problem on a development workstation.

Practices of CI: Keep the Build Fast

• CI should provide rapid feedback but a build can take a long time.
• XP guideline: a ten minute build

• Most of our modern projects achieve this.

• Worth investing efforts: frequent commits add up to a lot of time.

Practices of CI: Deployment pipeline
• Deployment pipeline (also known as build pipeline or staged build) multiple builds done

in sequence.
• The commit build is the build that's needed when someone commits to the mainline.

• Should be done quickly. Has shortcuts and reduced ability to detect bugs.

• A two stage deployment pipeline:
• The first stage -- compilation and run tests that are more localized unit tests with the

database completely stubbed out.
• Fast tests but does not find bugs involving larger scale interactions, e.g., real database

• The second stage build runs a different suite of tests that do hit the real database and
involve more end-to-end behavior.

• Might take a couple of hours to run.
• The second-stage build runs when it can, picking up the executable from the latest good

commit build for further testing.
• Ensure that any later-stage failure leads to new tests in the commit build that would have

caught the bug
• Strengthen the commit tests

Practices of CI: Make it Easy for Anyone to Get
the Latest Executable and Ensure Visibility
• Any team member should be able to get the latest executable and be

able to run it: for demonstrations, exploratory testing, etc.
• Remember: work for your customer and build the right software.

Typically hard to say what is wanted in advance: easier to comment
on what needs to be changed.

• Everyone knows where to find the latest executable.
• Visibility: communicate is the state of the mainline build.

Benefits of Continuous Integration

• Reduced risk.
• Deferred integration: hard to predict how long it will take to do, and what is the

progress.
• Bugs in deployed software: lost customers
• CI doesn't get rid of bugs, but it does make them dramatically easier to find

and remove.
• Self-testing code.

• If you introduce a bug and detect it quickly it's far easier to get rid of.
• It's fresh in your memory

• Bugs are cumulative. The more bugs you have, the harder it is to remove
each one

Travis CI

• https://travis-ci.org/
• Easy to use build server for projects hosted on GitHub
• Projects can be tested and deployed.
• Pull requests (PRs) can also be built automatically with Travis CI.

https://travis-ci.org/

Setting up

• Go to https://travis-ci.org/ and press the Sign Up or Sign in with
GitHub button.

• Next: a redirection to GitHub to authorize Travis CI as application.

https://travis-ci.org/

Authorizing Travis as an application

• After Travis CI is authorized it is
listed as an application in Settings.

• Then Travic CI will check which
repositories are available.

Adding a repository

Name
Repositories

Activating a repository

• A repository can be activated by pressing the switch button.

NameName/project1

NameName/project2

NameName/project3

NameName/projectDD2480

Configuration

• Add .travis.yml file to your repository
• Minimum: specify the used programming language
• For Java, Travis supports Maven and Gradle as build system
• A minimal .travis.yml file for a Maven or Gradle project simply

specifies the language:
language java

Configuration example

When a Gradle wrapper is available Travis CI will build your project by using gradlew build
command
Upload all Gradle wrapper files, including the gradle-wrapper.jar

Virtualisation
evn. for build

Caches lets Travis CI store directories between builds,
which is useful for storing dependencies that take longer to compile or download.

Triggering a build

• How a build is triggered can be configured in the settings section.
• You can enforce e.g., that

• a .travis.yml is present to start a build
• a build should be triggered at any time a push occurs or even if pull request comes

• Here pushing a new commit will trigger a new build.

Other build configuration options

• In the build configuration you can also define other things, e.g.,
• Commands and scripts to be run before and after each build

• Notifications in terms of emails or chats alerts

1
2

before_script:
- git config --global user.name [myname]

1
2
3

notifications:
email: false
irc: "chat.freenode.net#travis"

Showing a status icon

• The build status determined by Travis CI is often shown in public.
• Click on the build status icon and choose from several options for

embedding the status icon.

Webhooks: general idea

• Webhooks are automated messages sent from apps when something
happens.

• They have a message (payload)
• are sent to a unique URL (app's address).

• When something happens, apps can push the data to each other and
not waste their time checking and waiting.

• Jeff Lindsay: webhooks are "user-defined callbacks made with HTTP"
• Webhooks are data and executable commands sent from one app to

another over HTTP

Webhooks in GitHub

• Webhooks allow you to build or set up GitHub Apps which subscribe
to certain events on GitHub.com

• When one of those events is triggered, a HTTP POST payload sent to
the webhook's configured URL.

• Can be used to update an external issue tracker, trigger CI builds,
update a backup mirror etc.

• Webhooks can be installed on a specific repository.
• Webhook will be triggered each time one or more subscribed events

occurs.

Webhooks: events

• You can configure a webhook, to choose which events you want to
receive payloads for.

• Subscribe to the useful for you specific events to limit the number of HTTP
requests to your server.

• By default, webhooks are only subscribed to the push event
• You can change the list of subscribed events through the API or UI

anytime
• E.g., if you subscribe to the issue event you receive detailed

payloads every time an issue is opened, closed, labeled, etc.

Webhooks: payload format

• Each event type has a specific payload format with the relevant event
information.

• Push event has a more detailed webhook payload.

• Webhook payloads include the user who performed the event
sender,organisation and repository which the event occurred on

• For a GitHub App's webhook may include the installation which an
event relates to

• Idea of REST API

	�DD2480 �Software Engineering Fundamentals
	Outline
	What is continuous integration?
	Problem of integration
	Problem of integration
	CI: workflow. Step1: Checking out
	CI: workflow. Step2: Modifying the working copy and creating the local build
	CI: workflow. Step3: Committing to the repository
	CI workflow: Step 4: build on integration machine
	The overall goal of CI
	Practices of CI: Maintain a Single Source Repository
	Practices of CI: Maintain a Single Source Repository
	Practices of CI: Automate the Build
	Practices of CI: Automate the Build
	Practices of CI: Make Your Build Self-Testing
	Practices of CI: Make Your Build Self-Testing
	Broken window theory
	Practices of CI: Everyone Commits To the Mainline (at least) Every Day
	Practices of CI: Every Commit Should Build the Mainline on an Integration Machine
	The role of CI server
	Practices of CI: Fix Broken Builds Immediately
	Practices of CI: Keep the Build Fast�
	Practices of CI: Deployment pipeline
	Practices of CI: Make it Easy for Anyone to Get the Latest Executable and Ensure Visibility
	Benefits of Continuous Integration
	Travis CI
	Setting up
	Authorizing Travis as an application
	Adding a repository
	Activating a repository
	Configuration�
	Configuration example
	Triggering a build
	Other build configuration options
	Showing a status icon
	Webhooks: general idea
	Webhooks in GitHub
	Webhooks: events
	Webhooks: payload format

