
DD2480

Software Engineering Fundamentals

Programutvecklingsteknikens grunder

7,5 credits

Lecture 1

Outline of Lecture 1

• Part 1: About the course
• Part 2: What is software engineering?
• Part 3: Overview of Assignment 1

Teaching team
• Lecturers

Cyrille Artho (Course responsible) Elena Troubitsyna

• Teaching assistants
Mikhail Shcherbakov He Ye Zhang Long Jan van den Brand Md Sakib Khab Nizam

Guest lecturers

• Philipp Haller (KTH)
• Stefan Nilsson (KTH)
• To be confirmed

• Laurent Ploix (Spotify)
• Ivar Jakobson -- a major contributor to UML, Objectory, Rational

Unified Process (RUP), aspect-oriented software development and
Essence.

Important URLs

•Course description:
https://www.kth.se/student/kurser/kurs/DD2480?l=en

•Canvas page:
https://kth.instructure.com/courses/4387/

• KTH Github repo:
https://gits-15.sys.kth.se/TCS/DD2480

https://www.kth.se/student/kurser/kurs/DD2480?l=en
https://kth.instructure.com/courses/4387/

Important: Registration
• REGISTER for DD2480 in LADOK and CANVAS

• Groups for working on assignments are formed based on registration
• No registration => No group => No passed assignments

• You must be enrolled as a student by January 25th at the latest.
• Note: You are enrolled as a student and not just registered as an observer

("antagna").
• Remind your friends to register too!

Course format

• Lectures are digital: each lecture has a zoom link announced.
• Active learning approach

Course content

• Requirements engineering.
• Revision control, continuous integration, the life cycle for software.
• Design patterns, components.
• Testing and debugging.
• Software maintenance, configuration management, refactoring.
• Quality assurance: Estimation and measurement of performance and

code complexity, scalability.

Intended learning outcomes

After completion of the course, you should be able to:
• apply revision control to a software project,
• systematically test and debug a program,
• combine different types of software testing technologies in a project,
• understand and use patterns for the design and implementation of

software,
• deploy quality assurance techniques and judge their results.

Course at a glance

• Eight lectures (incl. guest lectures), 4 assignments.

• 1st assignment 1 worklabs+1 grading lab
• 2nd assignment 2 worklabs+1 grading lab
• 3rd assignment 2 worklabs+1 grading lab
• 4th assignment 2 worklabs+1 grading lab
• Changes are still possible after grading lab
• Meet your group as soon as it is formed

Lectures

• Lecture 1: Overview of the course, what is software engineering
• Lecture 2: Open source software, GitHub
• Lecture 3: Continuous integration; working as a team
• Lecture 4: Refactoring, debugging, software packages
• Lecture 5: Software complexity and test coverage
• Lecture 6: API: what and how
• Lecture 7: Testing
• Lecture 8: Requirements engineering. SEMAT- software

engineering methods and theory

Course material

• No single text book
• For each lecture: the links to the relevant reading material

and/or video
• All the links are available in Canvas

Assignments

• Assignment #1: DECIDE -- Implement a program using modern
development techniques

• Assignment #2: Continuous Integration
• Assignment #3: Test coverage
• Assignment #4: Refactoring

• Done in groups

Group membership

• Groups are created randomly
• It simulates real-life conditions: in a company, software engineers can't

choose their co-workers.
• Additionally, we want to ensure that everyone is assigned to a group, exchange

students are mixed with local students and groups have diverse skill sets.
• Fairness in assessment: for each assignment, there should be a "statement

of contributions“

• Groups will be published in Canvas (People -> Groups) before the first lab
• Contact each other immediately
• Contacting your groupmates and coordination inside the group is your

own responsibility

Grading of Assignments

• Grading criteria for each individual assignment (see Assignments in Canvas)
• Grade per group (unless exceptions)

• The grades will be given and reported in Canvas directly.
• Assignments are mini-projects which are graded:

- F: Fail (so bad that the course is failed). For example, if nothing is done.
- Fx: Fail with a chance of trying again later during the course.
- P: Pass.
- P+: Pass with distinction.

• To get P+ the assignment should be submitted in time

Course grade

• Course grade is based on the grades of four assignments
• Each part has to be passed (so a P+ cannot compensate for Fx or F)
• Final grade formula

4xP+ = A
1xP + 3xP+ = B
2xP + 2xP+ = C
3xP + 1xP+ = D
4xP = E
Failure in any lab = F (failure)

Grading scheduling
• Grading scheduling is done by filling the group name in the appropriate shared

spreadsheet, it must be done at least 24 hours in advance
• All group members must attend the grading session in order to have a better

discussion
• Rescheduling is only possible if asked by email at dd2480@kth.se 24 hours in

advance
• Generally rescheduled grading can be arranged within ±2 days compared to the

original date
• If the grading is after the original deadline, the assignement reports still

have to be submitted by the original deadline.
• Rescheduling only works for good reasons, like time conflicts with other courses,

medical reasons, etc
• Rescheduling due to sick leave is only accepted with an official document, and

must be announced by email at dd2480@kth.se as soon as possible

mailto:dd2480@kth.se
mailto:dd2480@kth.se

Communication

• Main communication channel is Canvas
• For grading sessions related matters: dd2480@kth.se

mailto:dd2480@kth.se

Programming languages

• You will need to deliver a real software written in a real programming
language

• Preferred language is Java
• Other mainstream languages are also supported
• If you are consider using less common languages please discuss it

with course examiner – Cyrille Artho – first.

Important: Registration
• REGISTER for DD2480 in LADOK and CANVAS

• Groups for working on assignments are formed based on registration
• No registration => No group => No passed assignments

• You must be enrolled as a student
• Note: You are enrolled as a student and not just registered as an observer

("antagna").
• Remind your friends to register too!

Special needs
“If you have a disability, you may receive support from Funka, KTH’s
coordinator for students with disabilities,
see https://www.kth.se/en/student/studentliv/funktionsnedsattning .
Please inform the course coordinator if you have special needs and show
your certificate from Funka.

- Support measures under code R (i.e. adjustments related to space, time,
and physical circumstances) are generally granted by the examiner.

- Support measures under code P (pedagogical measures) may be granted
or rejected by the examiner, after you have applied for this in accordance
with KTH rules. Normally, support measures under code P will be granted”.

https://www.kth.se/en/student/studentliv/funktionsnedsattning

Questions about course planning?

Part 2: What is software engineering?

Software… is everywhere
• “…if you bought a premium-class automobile recently, it probably contains close

to 100 million lines of software code…”
• The global software engineering market is expected to grow approximately at

USD 37.4 Billion by 2022

What is software?

What is software?

• Code
• Documentation, user manuals
• Designs, specifications
• Test cases
• Plans and schedules
• Models, proofs

What is software engineering?

Software Engineering: various definitions
• “Multi-person construction of multi-version software.”

[Parnas 1974]

• IEEE’s 2010 definition: software engineering is “the
application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance
of software; that is, the application of engineering to
software”. [IEEE 2010]

Sources:
[Parnas 1974] D.L. Parnas.Software engineering or methods for the multi-person construction of multi-version
programs - IBM Germany Scientific Symposium Series, 1974 - Springer
[IEEE 2010] ISO/IEC/IEEE 24765:2010 Systems and Software Engineering—Vocabulary.

Software Engineering: definitions

• “A discipline whose aim is the production of fault-free software,
delivered on-time and within budget, that satisfies the user’s needs.
Furthermore, the software must be easy to modify when the user’s
needs change.” [Schach. Object-Oriented and Classical Software
Engineering]

Programming versus software engineering

• Is there a difference?

Programming versus software engineering

Programming versus software engineering

Programming Software engineering

Small project Large to huge project

You Teams

Build what you want Build what they want

One product Family of products

Few sequential changes Many parallel changes

Short-lived Long-lived

Cheap Costly

Small consequences Large consequences

Science, Engineering, Management, Human
Factors
• Science: empirical studies; theories characterizing aggregate system behavior

(e.g. reliability)
• Management: organizing teams, directing activities, correcting problems
• Human factors: user task understanding and modeling; ergonomics in user

interface design
• Engineering: tradeoffs, pattern solutions to typical problems

• Tradeoffs and representative qualities
• Pick any two:

• Good, fast, cheap
• Scalability, functionality, performance

Software Engineering Principles

• Rigor and Formality
• Separation of Concerns
• Modularity and Decomposition
• Abstraction
• Anticipation of Change
• Generality
• Incrementality
• Reliability

Software development process -
Waterfall Model

Requirements

Design

Implementation

Integration

Validation

Deployment

Waterfall Model

• The waterfall model is the classic lifecycle
model – it is widely known, understood
and (still often) used.

• In some respect, waterfall is the ”common
sense” approach.

• Introduced by Royce 1970.

Advantages of waterfall model

• Easy to understand and implement
• Still widely used and known
• Reinforces good habits: define-before-design, design-

before-code
• Identifies deliverables and milestones
• Document driven and uses known documentation

standards
• Works well on mature products and weak teams.

Disadvantages of waterfall model

• Idealised – unrealistic idea of ”fixed” requirements
• Doesn’t adhere to iterative nature of exploratory software

development
• Precise requirements from customers are rare
• Postpones writing actual software – late problem discovery
• Hard to cope with the unforeseen risks and manage risks
• Difficult and expensive to make changes to documents
• Might be too expensive for small teams and projects

The idea of iterative development

• The main idea is to develop software in an
experimental way continuously asking for the
customer’s feedback

• Iterative – spiral – model defined by Boehm in 1988

• Motivated by the need of iterative risk analysis and
risk management.

Software development process -
Iterative development at glance

Pros and cons of iterative development
• Each cycle follows a waterfall model

Determining objectives -> Specifying constraints -> Generating
alternatives -> Identifying risks -> Resolving risks -> Developing next-
level product -> Planning next cycle

Pros:
• Reflects the explorative nature of software development
• Can cope with not fully defined requirements
• Provides flexibility
Cons
• Needs good technical expertise in risk analysis
• More difficult to understand for management

Agile development

Agile manifesto (2001)
XP = Extreme Programming
emphasises:
Individuals and interactions

Over processes and tools
Working software

Over documentation
Customer collaboration

Over contract negotiation
Responding to change

Over following a plan

Agile principles

• Continuous delivery of software
• Continuous collaboration with

customer
• Continuous update according to

changes
• Value participants and their

interaction
• Simplicity in code, satisfy the spec

Software development process --
Agile development

Variety of practices
• Programming in pairs
• Test driven development
• SCRUM, KANBAN
• Feature-driven development
• Dynamic Systems Development Method
• Continuous planning, change , delivery
• Shared coding standards and ownership

of code

Software development process
(DevOps)

Factors affecting the quality of a software
system
• Complexity:

• The system is so complex that no single programmer can understand it
anymore

• The introduction of one bug fix causes another bug

• Change:
• The “Entropy” of a software system increases with each change: Each

implemented change erodes the structure of the system which makes the
next change even more expensive (“Second Law of Software Dynamics”).

• As time goes on, the cost to implement a change will be too high, and the
system will then be unable to support its intended task. This is true of all
systems, independent of their application domain or technological base.

Subdisciplines of software engineering (1/2)
• Software requirements (Requirements engineering)

• The elicitation, analysis, specification, and validation of requirements for software.

• Software design
• The process of defining the architecture, components, interfaces, and other characteristics of

a system or component.

• Software construction
• The detailed creation of working, meaningful software through a combination

of programming (aka coding), verification, unit testing, integration testing, and debugging.

• Software testing
• An empirical, technical investigation conducted to provide stakeholders with information

about the quality of the product or service under test.

Subdisciplines of software engineering (2/2)
• Software maintenance

• The totality of activities required to provide cost-effective support to software.

• Software configuration management
• The identification of the configuration of a system at distinct points in time for the purpose of systematically

controlling changes to the configuration, and maintaining the integrity and traceability of the configuration
throughout the system life cycle. Software versioning

• Software engineering management
• The application of management activities—planning, coordinating, measuring, monitoring, controlling, and

reporting—to ensure that the development and maintenance of software is systematic, disciplined, and
quantified.

• Software development process
• The definition, implementation, assessment, measurement, management, change, and improvement of the

software life cycle process itself.
• Software engineering models and methods impose structure on software engineering with the goal of making

that activity systematic, repeatable, and ultimately more success-oriented

• Mathematical foundations
• …

Scientist vs Engineer
• Computer Scientist

• Proves theorems about algorithms, designs languages, defines
knowledge representation schemes

• Has infinite time…

• Engineer
• Develops a solution for an application-specific problem for a

client
• Uses computers & languages, tools, techniques and methods

• Software Engineer
• Works in multiple application domains
• Has less than 3 months...
… while changes occurs in requirements and available technology

Part3. Assignment #1. “DECIDE”

• Goal: write a function called DECIDE()
• A part of a hypothetical anti-ballistic missile system

• Generates Boolean signal to launch or not an interceptor based on
input radar tracking info

• Info is available at the instant the function is called
• 15 Launch Interceptor Conditions (LIC)
• Function determines which LICs are true for the input (up to 100 of

planar data points representing radar echoes)
• Decision to launch made only if all relevant combinations of LICs met

Main concepts: LIC
• 15 LICs are defined in the requirements document.
• Each LIC represents a certain characteristic of radar tracking data

Examples:
LIC 0:
There exists at least one set of two consecutive data points that are a distance
greater than the length, LENGTH1, apart where (0 ≤ LENGTH1)
LIC 1:
There exists at least one set of three consecutive data points that cannot all be
contained within or on a circle of radius RADIUS1, where (0 ≤ RADIUS1)
…LIC 14 …

• Check the glossary of the terms

Main concepts: data points

• NUMPOINTS – number of planar data points
• POINTS – array containing the coordinates (X,Y) of data points
• Dynamic input parameters (available when DECIDE() is activated)
• LICs are evaluated over the data points (radar data)

Main concepts: CMV

• The Conditions Met Vector (CMV)
• Intermediate result
• Set according to the results of LIC calculations
• The global array element CMV[i] should be set to true if and only if

the ith LIC is met.

Main concepts: LCM

• Logical Connector Matrix (LCM) defines which individual LICs must be
considered jointly (static input parameter)

• 15x15 symmetric matrix with elements ANDD, ORR, NOTUSED

Main concepts: FUV

• The Final Unlocking Vector (FUV)
• Intermediate result
• Generated from the Preliminary Unlocking Matrix.
• PUV indicates whether the corresponding LIC should be considered

as a factor in signaling interceptor launch.
• FUV[i] should be set to true if PUV[i] (ith column of PUM) is false

(indicating that the associated LIC should not hold back launch)
• or if all elements in PUM row i are true.

Main concepts: LAUNCH

• LAUNCH Final launch / no launch decision encoded as ”YES”, ”NO” on
the standard output.

• The final result
• is based on the FUV.

• “YES” if all elements in the FUV are true,
i.e., if and only if FUV[i] is true for all i, 0 ≤ i ≤ 14.

Working on the assignment

• Goal is to implement the DECIDE program according to the modern
development techniques.

• Grading focuses more on the software engineering part of the
assignment rather than on the program itself

• You must use a development platform (Github, Bitbucket or KTH
Github).

• Only the content published on the development platform is used for
grading.

• 1) the code 2) the issues 3) the pull requests 4) the continuous integration
data (eg Travis) if available.

Final notes

• LICs are good units to split the work
• Ensure even distribution of work (simple and complex LICs)
• Organise your groups as soon as possible

• Grading criteria for the assignment in Canvas

• Observe the code of conduct

• Good luck!

	Slide Number 1
	Outline of Lecture 1
	Teaching team
	Guest lecturers
	Important URLs
	Slide Number 6
	Course format
	Course content
	Intended learning outcomes
	Course at a glance
	Lectures
	Course material
	Assignments
	Group membership
	Grading of Assignments
	Course grade
	Grading scheduling
	Communication
	Programming languages
	Slide Number 20
	Special needs
	Questions about course planning?
	Slide Number 23
	Slide Number 24
	What is software?
	What is software?
	What is software engineering?
	Software Engineering: various definitions
	Software Engineering: definitions
	Slide Number 30
	Programming versus software engineering
	Programming versus software engineering
	Science, Engineering, Management, Human Factors
	Software Engineering Principles
	Slide Number 35
	Slide Number 36
	Advantages of waterfall model
	Disadvantages of waterfall model
	The idea of iterative development
	Slide Number 40
	Pros and cons of iterative development
	Agile development
	Slide Number 43
	Slide Number 44
	Factors affecting the quality of a software system
	Subdisciplines of software engineering (1/2)
	Subdisciplines of software engineering (2/2)
	Scientist vs Engineer
	Part3. Assignment #1. “DECIDE”
	Main concepts: LIC
	Main concepts: data points
	Main concepts: CMV
	Main concepts: LCM
	Main concepts: FUV
	Main concepts: LAUNCH
	Working on the assignment
	Final notes

