Partial exam 5 for Discrete Mathematics SF1610, for CINTE1, TCOMK, vt 2021 Date: 21 may 2021
Instructors: Angélica Torres, amtb@kth.se ; Armin Halilovic armin@kth.se Examinator: Armin Halilovic,
Writing time: 13:15-14:15 (+15 min for uploading. The uploading time opens at 13:45 and closes at 14:30)
Extra writing time (funka): 13:15-14:45 (+15 min for uploading: The uploading time (Extra time) opens at 13:45 and closes at 15:00)

Use pen and paper to solve the exercises below. Scan or take a picture of the solutions, and upload the file (preferably PDF) on CANVAS/Assignments/KS5. Please upload a separate file for each exercise (Do not compress the files).

To approve the exam, you must obtain at least 5 out of 9 points. Complete solutions are required for every exercise. (Answers without a complete justification are awarded $\mathbf{0}$ points).

Write your name and personal number in every page. Declare that you have solved the exam by yourself: Write on the first submitted page "I guarantee that I have done the exam myself' and sign.

The parameters $p$ and $q$ in the information below, are the last two digits of your personal number (For example, if your personal number is 7513312248 , then $p=4$ and $q=8$ ).
Replace $p$ and $q$ with these numbers and solve the exercises.

1. (3p)
a) How many edges does the complete bipartite graph $K_{m, n}$ have, where $m=p+2$ and $n=12-p$ ?
b) A graph (simple graph or multigraph) G has $(p+4)$ nodes with degree 2 , 4 nodes with degree 3 and 5 nodes with degree 4 . How many edges does $G$ have?
c) A connected planar graph H (without loops) has $p+10$ nodes and $p+15$ edges. Determine the number of facets in H .
2. (3p) Let $n=4+(q \bmod 3)$. Let G be the complete bipartite graph $K_{2, n}$
a) Draw the graph G.
b) Draw G, if possible, as a planar graph, so that the edges do not intersect.
c) Determine if G has an eulerian trail and justify the answer. (0 points for correct answer without justification.)
3) (3p) Let $G$ be a planar connected graph without loops, and with at least one cycle. Assume further that each cycle in G has at least $15-q$ edges. Prove the inequality $(13-q) e \leq(15-q) v-30+2 q$.

## Good luck!

