Advanced Course

Distributed Systems

Consistent Snapshotting

Paris Carbone

COURSE TOPICS

» Intro to Distributed Systems

» Basic Abstractions and Failure Detectors

» Reliable and Causal Order Broadcast

» Shared Memory

» Consensus (Single-Value / Sequence / Byzantine)
» Dynamic Reconfiguration

» Time Abstractions and Interval Clocks

» Consistent Snapshotting

DISTRIBUTED SNAPSHOTS

» Distributed algorithms that capture the

global state of a distributed system.

(e er) elr) -]
M 1= - =)

C Network)
k Distributed System J

SNAPSHOT USAGES

1. Stable Property Detection

SNAP

a% 80) analyze Deadlocked execution

| > o Computation Terminated
MMM « No tokens in transit
g ,

“A stable property is one that persists: once a stable

property becomes true it remains true thereafter”

- Chandy, Lamport 88

KTH-2021

SNAPSHOT USAGES

2. Failure Recovery and Reconfiguration

-

G[P1

=

[P2
5

[

~

\

Network

Y,

Restart system

s [

2] 7]

=

ﬂvl

SNAP from snapshot
900 | >
M .
Restart system
with new
configuration

Network

=)

A0 P2
=2

&

Network

§ veviwscie

¥ och konsT
"% s

KTH-2021

PROCESS MODEL

» Processes are connected by Input (I,)/
Output channels (O,)

» For each message m in Ip:
2 S,p _ process(m, Sp, Oy)

» Updates local state Sp - S,p

» Adds output messages in O,

PROCESS GRAPH

s KTH-2021

§ verowsa

¥ och konsT
%

CONSISTENT SNAPSHOTTING

» Observation: Impossible to get a direct snapshot S ooy eeing Gt

and
LESLIE LAMPORT

without “freezing” all processes and channels

‘T paper presents an lgorihi by which o proce in 8 drtsutad sy determinas ¢ lobal
state of the can be cast in terms
of the pmhlem of amcunx slobal states. For e, he lJohaI e amecion algorithm helps to
solve problems: perty is one that. persists:
omce & sable eperty becimbe (e 5 emaias tru ttseaio. Baampln of il praporin 70

} Goal: Acquire a Consistent Snapshot instead e i Lt G it St S e

can also be used

Categories and Subject Descrptors: C:24 [Computr-Communicstion Networksl: Distrbuted
1{Operating

Systems]: Process M
exclusion; scheduling; synchronization; D.4.5 [Operating Systems]: Reliability—backup procedures;
checkpoint/restart fault-tolerance; verification.

General Terms: Algorithms

Additional Key Words and Phrases: Global States, Distributed deadlock detection, distributed
systems, message communication systems

1. INTRODUCTION

This paper presents algorithms by which a process in a distributed system can
determine a global state of the system during a computation. Processes in a

} ConSiStent Sn apSh Ot : Reﬂe Cts a “Valid” CO nﬁ g uratlo n Can e s oot and U mosaen . e and eives 1 e

nothing else. To determine a global system state, a process p must enlist the

‘This work was supported in part by the Air Force Office of Scientific Research under Grant AFOSR
81:0205 and in part by the National Science Foundation undor Grant MCS 81.04459,

Authors’ addresses: K. M. Chandy, Department . University of Texas at Austi
Austin, TX 78712; L. Lamport, Stanford [y lmmuu Menlo Park, CA 94025.

of the running system (states and in-transit messages

‘permissior
& 1535 ACM 0781-2071/85/0200-0063 80075

ACM Transactions on Computer Systems, Val. 3, No. 1, February 1085, Pages 63-75.

» Valid Configuration ~ “consistent cut" —

>ID2203

Verenskar
% O KONST :f«“

KTH-2021

DISTRIBUTED CUTS

» A snapshot implements a cut C of an execution (prefix) and

returns the system’s corresponding states/configuration.

Snapshot of C

{s1,53,53}

{m'}

>ID2203

KTH-2021

CONSISTENT CUTS

» We are interested in consistent cuts - those that preserve causality

() (e ™ :

P2 P2
.
(P ps ps
C, C:
Inconsistent : Message m’ was C: is Consistent

received but never sent in C1

v KTH-2021

CONSISTENT SNAPSHOTTING SPECIFICATION

Sp: state of p

Events My mosssg
Request: (snapshot)

Indication: (record | p, [Sp,Mp])

Properties:
S1: Termination, S2: Validity

CONSISTENT SNAPSHOTTING SPECIFICATION

S1: Termination: Eventually every process
records its state.

S2: Validity: All recorded states correspond to
a consistent cut of the execution.

THE CHANDY LAMPORT ALGORITHM

Assumptions:
e FIFO Reliable Channels
e Single Initiating Process pi

e Strong Connectivity: There is a (channel) path from pito
every other process in the system (always satisfied in
strongly connected process graphs)

THE CHANDY LAMPORT ALGORITHM

Design Goal:

* Obstruction-freedom: The global-state-detection algorithm
Is to be superimposed on the underlying computation: it
must run concurrently with, but not alter, this underlying
computation. - Lamport, Chandy

Idea Intuition:

- Disseminate a special message © to mark events before
and after the consistent cut. P

THE ALGORITHM

Chandy-Lamport Consistent Snapshots

B W N e

Implements: csnap, Requires: fiforc (I, Q)
: (I, @p) « configured_channels;

Sp — D

: Recorded « 0;
85— 0 My 0

> volatile local state
> channels under logging
> state in snapshot

: Upon (rcvd, m) on cqp ¢ Recorded, m # ©

| sp « process(m,s,,0yp);

: Upon (rcvd, m) on cqp € Recorded, m # ©

M, « M, U{m};
| sp « process(m,s,,0y) ;

: Upon (revd, ©) oncqp € I,

if sy, = empty then
L startRecording();
Recorded = Recorded —{cqp};
if Recorded =) then
L csnap — (recordlself, s;, My);

: Upon (snapshot) on csnap

startRecording();
if Recorded = () then
| csnap — (recordlself, s, 0);

: Fun startRecording()

Sp ¢ Sp;
foreach out € O, do
| out— (send,®);

| Recorded + L,

> regular process logic

> record in-transit message

> record local state

>ID2203

KTH-2021

EXAMPLE EXECUTION

Snapshot

Bl bcfore marker
B after marker

>ID2203
oy

S KTH-2021

EXAMPLE EXECUTION

marker

O

‘I“'---...."l.
.

Snapshot

Bl bcfore marker
B after marker

o KTH-2021

EXAMPLE EXECUTION

Snapshot

Bl bcfore marker
B after marker

o KTH-2021

EXAMPLE EXECUTION

Snapshot

s1, s2

Bl bcfore marker >

B after marker

>ID2203

& verews

o KTH-2021

EXAMPLE EXECUTION

Snapshot

s1, s2, s3

DAIDA

Bl bcfore marker
DA

B after marker

>ID2203

& ver
nnnnn
%

KTH-2021

Bl bcfore marker
B after marker

20

EXAMPLE EXECUTION

Snapshot
s1, s2, s3

DAIDA
A

>ID2203

KTH-2021

EXAMPLE EXECUTION

Snapshot

s1, s2, s3

DAIDA

Bl bcfore marker
DA

B after marker

>ID2203

§ veviwscie

¥ och konsT
"%

il KTH-2021

PROOF SKETCH
e Validity

e Marker sent between pi and pj separates pre- and post-
snapshot events (through FIFO channel delivery)

e Validity applies to the transitive closure of reachable
processes (through induction)

e Termination is satisfied if initiator can reach all tasks.

3, ocH
%

OO

KTH-2021

GENERALIZATION

e Termination is still satisfied if the protocol is initiated by a set of
processes that can reach all tasks. (No modifications)

>ID2203

KTH-2021

Epoch Snapshotting

DATA PROCESSING SNAPSHOTS

e Snapshotting protocols can be used to make production-grade data
processing systems reliable.

e Examples: Google Dataflow, Flink, Tensorflow, Spark, IBM Streams,
Storm, Apex etc.

e Use Case: The Apache Flink data processing system

§ veviwscie

3, 0cH KoNsT
¢ s

KTH-2021

STREAM PROCESS GRAPHS

o o

Deterministic Input Streams

Output Streams

tasks channels
~
System:{]:[7 41,}

System Execution : ... — {II,, M} — {II_, M'} — ...

—c KTH-2021

STREAM PROCESS GRAPHS

o o

Deterministic Input Streams

Output Streams

tasks channels

System : {]:[7 4:} Task Actions
System Execution : .. .{H*, M}{H;, M/}. ..

—cl KTH-2021

STREAM PROCESS GRAPHS

N —"—o-oo—o—"—
—000—000 L A
Deterministic Input Streams Output Streams
tasks channels
~N
System : I I] 4 '\, System Configurations (states, messages in-transit)

System Execution : . .. —>[{H*, MB — ﬁH;, M’B — ...

—cla KTH-2021

FAULT TOLERANCE

FAULT TOLERANCE

31

FAULT TOLERANCE

A Mk

\ recover DA
W

- Has m been fully processed?
- Have mk and m; been delivered?

X3

77

KTH-2021

32

RELIABLE STREAM PROCESSING

« Previous approaches* typically adopt a fail recovery model to amend individual

task execution and reproduce computations that were possibly lost
« Complex Workarounds (e.g., duplicate elimination, input logging, acks)
. Strong Assumptions (idempotent operations, key vs task level causal order)

« External State Management (transactional external commits per action)

*MillWheel: Fault- tolerant stream processing at internet scale,” in VLDB, 2013. >ID2203
Integrating scale out and fault tolerance in stream processing using operator state management. in SIGMOD 2013 @
Fault-tolerance and high availability in data stream management systems. in Encyclopedia of Database Systems 2009
Fault-tolerance in the Borealis distributed stream processing system, in SIGMOD 2005

KTH-2021

FAULT TOLERANCE IS NOT ENOUGH

- Are output and states always correct?
 Can we reconfigure the system without losing computation?
« Can applications migrate without loss?

- Is external state access isolation possible?

We need a system-wide coarse-grained commit mechanism.

33

KTH-2021

34

EPOCH-BASED STREAM EXECUTION
THE INTUITION

deterministic
input streams

stream
processing —>
system success: commit system configuration
failure: abort and start from previous epoch
esystem
configuration i

(states) after
completing an
epoch

divide computation
into epochs

TERLANNERES LARRRERS V0L L Y

>ID2203

KTH-2021

35

EPOCH-BASED STREAM EXECUTION

Logged Input

Committed

System
States

Storage

>ID2203

P

b
o
KTH-2021

SYNCHRONOUS EPOCH COMMITS

{ Coordinator] [Tasks]J 3 computation
- = N e idl
. Prepare ep1 €P1 =
e

H
ep prepared | —eo-0-o-

Commitepy

Stable
Storage

®
©
N
©
q
®
o
o
q
®
o
1
|
]
(1

______________ -
_______________ =
£/ I e EE L e U e KTH-2021

37

SYNCHRONOUS EPOCH COMMIT

o Suitable for short-lived, stateless task execution

e Problem: Unnecessary high latency in long-running task execution

e Cause: Blocking synchronisation (idle time) - coordination & epoch scheduling.

>ID2203

KTH-2021

38

ASYNCHRONOUS EPOCH COMMITS

[Coordi

nator] [Tasks <

W;

Prepare ep2

ep1 prepared
ep2 pre ared

How? Using Snapshots

KTH-2021

39

EPOCH SNAPSHOTTING
e Assumptions:
e DAG of tasks

« Epoch change events triggered on each source task ({ep1),{ep2),...)

- Issued by master or generated periodically

« We want to snapshot stream process graphs after the complete

computation of an epoch.

40

P1

D2

P3

P4

VALIDITY IS NOT ENOUGH

chandy-lamport snapshot

KTH-2021

P1

D2

P3

P4

41

EPOCH CUTS

= —-}w

Epoch Cuts
A epoch-complete consistent cut

that includes events that

1. precede epoch change

2. are produced by events in cut

\

3. do not causally succeed
epoch change

KTH-2021

EPOCH SNAPSHOTTING PROPERTIES

Termination (liveness):
A full system configuration is eventually captured per epoch

Validity (safety):
Obtain a valid system configuration (consistent cut)

Epoch-Completeness (safety):
Obtain an epoch-complete system configuration

THE ALGORITHM

epoch change markers

‘/ epoch alignment
A D)

ofece ¢ o @ c

W

E

Snapshot
Store

epoch-complete
’] 3 snapshot

>ID2203

KTH-2021

THE EPOCH SNAPSHOTTING ALGORITHM

Epoch-Based Snapshots (Sources)

Epoch-Based Snapshots (Regular Tasks)

Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (I,,0,)
Algorithm:

1: O, « configured_channels;

2: Sp <,

3: /* Source Task Logic
4: Upon (rcvd, m)
| (sp) « process(sp, m,0y);

v

Upon (ep|n)
esnap — (record|self,n,s;);
foreach out € O, do
L out — (send, ®n);

O 00 N O

44 Carbone, Haridi, Ewen et al 2015

Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (I,, Op)
Algorithm:

: (Ip,0p) « configured_channels;
: Enabled « I ;
: Sp — J;

: /* Common Task Logic
: Upon (rcvd, m) on c € Enabled

| sp process(sp,m,0p);

: Upon (rcvd, ©n) on ¢ € Enabled

esnap — (record|self,n,s,);
Enabled « Enabled/{c};
if Enabled = () then
foreach out € O, do
| out — (send, On);

Enabled « I, ;

KTH-2021

45

PROBLEMS WITH CYCLES

indefinite
loop traffic (when does an epoch end?)

KTH-2021

PROBLEMS WITH CYCLES

phantom channel

......
~
~

loop head
source

loop

3.Expand

loop head
source

1. Detect Cycles (Tarjan Algorithm)
2. Ildentify Backedges (highest dominance)

Wi KTH-2021

47

PROBLEMS WITH CYCLES

Loop Sources receive epoch change events (like regular sources).

Loop Head Loop Tail

CPTTTTTTTTTITTIPPTIPPIIPE, ~FRRRS P

CPTTE T TPPPPPTRPPIPRRR SR, P

Snapshot Variant on loop heads

Log in-transit records per loop until
marker arrives back.

(~Chandy-Lamport)

KTH-2021

The 2-Phase Commit Protocol 12203
repare (epoch change) FTd to Fnd
Pre-Commit (snapshot) Snapshot Coordinator =gl el
@Prepared/Aborted in Flink
Commit
%Mark Committed Output Logs
€p3 €p3 epP2 €P1
: 7/a\" -—00-0—0-000—
X oK External
—-——---o—oo WOI@] state -—»-—0—0—0—
Backend
—00-0-0—0-0- N\ *—o-o oo
Input Logs (J pre-committed | —
(already committed) : committed
pen ding
snapshot R
H .

> ~ N N
External .
File System :é {Hepg] [H 6192] Hep 1]

48

49

BEYOND 1D2203

¢ Our Distributed Systems Research Group

o https://dcatkth.github.io/

e The Continuous Deep Analytics Team

e https://cda-group.github.io/

o Contact us for MSc topics and internships (RISE, KTH) in
o Distributed Algorithms
o Distributed Data Management (Graphs, ML, Relational)

o Data Storage Optimisation for Data Analytics

>ID2203

KTH-2021

https://dcatkth.github.io/
https://cda-group.github.io/

