Failure Detectors

Seif Haridi
haridi@kth.se

S. Haridi, KTHx 1D2203.1x

Modeling Timing Assumptions

e Tedious to model eventual synchrony (partial synchrony)

e Timing assumptions mostly needed to detect failures
» Heartbeats, timeouts, etc...

o Use failure detectors to encapsulate timing assumptions
» Black box giving suspicions regarding process failures
» Accuracy of suspicions depends on model strength

S. Haridi, KTHx 1D2203.1x

& Implementation of Failure Detectors

Typical Implementation

» Periodically exchange heartbeat messages
» Timeout based on worst case message round trip
 If timeout, then suspect process

» If received message from suspected node, revise
suspicion and increase time-out

S. Haridi, KTHx 1D2203.1x

Completeness and Accuracy

e Two important types of requirements

* 1. Completeness requirements

Requirements regarding actually crashed nodes
= When do they have to be detected?

o 2. Accuracy requirements

Requirements regarding actually alive nodes
= When are they allowed to be suspected?

S. Haridi, KTHx 1D2203.1x

Completeness and Accuracy

e In asynchronous system
 |s it possible to achieve completeness?
Yes, suspect all processes

 |s it possible to achieve accuracy?
Yes, refrain from suspecting any process!

 |s it possible to achieve both?
e NO!

e Failure detectors are feasible only in synchronous and partially
synchronous systems

S. Haridi, KTHx 1D2203.1x

Requirements: Completeness

e Strong Completeness

» Every crashed process is eventually detected by all correct
processes

* There exists a time after which all crashed processes
are detected by all correct processes

* We only study failure detectors with this property

e |s it realistic? [d]

S. Haridi, KTHx 1D2203.1x 6

Requirements: Completeness

e Weak Completeness

» Every crashed process is eventually detected by
some correct process

 There exists a time after which all crashed
nodes are detected by some correct nodes
Possibly detected by different correct nodes

S. Haridi, KTHx 1D2203.1x

Requirements: Accuracy

e Strong Accuracy
* No correct process is ever suspected

e For all process p and q,

* p does not suspect q, unless g has crashed
e Is it realistic? [d]

* Strong assumption, requires synchrony

* |.e. no premature timeouts

S. Haridi, KTHx 1D2203.1x

Requirements: Accuracy

» Weak Accuracy

* There exists a correct process which
is never suspected by any process

e There exists a correct node P
* All nodes will never suspect P

 Still strong assumption

* One node is always “well-
connected”

S. Haridi, KTHx 1D2203.1x

Requirements: Accuracy

e Eventual Strong Accuracy
» After some finite time the FD provides strong accuracy

e Eventual Weak Accuracy
» After some finite time the detector provides weak accuracy

e After some time, the requirements are fulfilled
* Prior to that, any behavior is possible!

e Quite weak assumptions [d]
* When can eventual weak accuracy be achieved?

S. Haridi, KTHx 1D2203.1x

10

Failure Detectors Classes

Four Main Established Detectors

e Four detectors with strong completeness

Perfect Detector (P))

Strong Accuracy . Synchronous Systems
Strong Detector (S)

Weak Accuracy

N
Eventually Perfect Detector (OP) .
Eventual Strong Accuracy Partially Synchronous

Eventually Strong Detector (0S) Systems
Eventual Weak Accuracy J

S. Haridi, KTHx 1D2203.1x

12

Four Less Interesting Detectors

e Four detectors with weak completeness
Detector Q)

Strong Accuracy \ Synchronous Systems
Weak Detector (W)

Weak Accuracy

Eventually Detector Q (0Q)

Eventual Strong Accuracy \ Partia[[y Synchronous
Eventually Weak Detector (OW) Systems

Eventual Weak Accuracy J

S. Haridi, KTHx 1D2203.1x 13

Prefect Failure
Detector P

Interface of Perfect Failure Detector

 Module:
« Name: PerfectFailureDetector, instance P
 Events: Crash pi
« Indication (out): (P, Crash | p,
Notifies that process p; has crashed P
e Properties:

* PFD1 (strong completeness)
« PFD2 (strong accuracy)

S. Haridi, KTHx 1D2203.1x

15

Properties of P

e Properties:
PFD1 (strong completeness)

Eventually every process that crashes is permanently
detected by every correct process

(liveness)
PFD2 (strong accuracy)

If a node p is detected by any node, then p has crashed

(safety)
e Safety or Liveness?

S. Haridi, KTHx 1D2203.1x 15

Implementing P in Synchrony

e Assume synchronous system
* Max transmission delay between 0 and otime units

e Each process every ytime units

. Y
» Send <heartbeat> to all processes p. j
e Each process waits y+otime units P; T
- If did not get <heartbeat> from p. — Y
max delay

Detect <crash | p;>

S. Haridi, KTHx 1D2203.1x

17

Correctness of P
e PFD1 (strong completeness)

A crashed process doesn’t I S

send <heartbeat> » >

Eventually every process will -\ _

notice the absence of P, ¥ ——

<heartbeat> — 5
max delay

S. Haridi, KTHx 1D2203.1x 18

Correctness of P

e PFD2 (strong accuracy)
Assuming local computation is negligible

Y

Maximum time between 2 heartbeats)

v+8 time units |
If alive, all process will receive hb in]
time P; : .

: \ Y Q)
No inaccuracy Y
max delay

S. Haridi, KTHx 1D2203.1x 19

Eventually Prefect Failure
Detector OP

S. Haridi, KTHx 1D2203.1x

by

£ o,
EKTHY

% VETENSKAP %
o9 OCH KONST
) 9

TS

20

Interface of OP

e Module:
« Name: EventuallyPerfectFailureDetector, instance OP

e Events:
- Indication: (0P, suspect | p.)

Notifies that process p, is suspected to have crashed
» Indication: (0P, restore | p,
Notifies that process p, is not suspected anymore

e Properties:
« PFD1 (strong completeness)

suspect pi

restore pi

T

T

OP

« PFDZ2 (eventual strong accuracy). Eventually, no correct process is suspected

by any correct process

S. Haridi, KTHx 1D2203.1x

21

Implementing OP

Assume partially synchronous system
« Eventually some bounds exists

Each process every ytime units
» Send <heartbeat> to all processes

Each process waits T time units
- If did not get <heartbeat> from p,

Indicate <suspect | p,> if p, is not in suspected set
Put p, in suspected set

- If get HB from p,, and p; is in suspected
Indicate <restore | p,> and remove p, from suspected

Increase timeout T
S. Haridi, KTHx ID2203.1x

22

Correctness of OP

EPFD1 (strong completeness)
Same as before

EPFD2 (eventual strong accuracy)

Each time p is inaccurately suspected by a correct g
« Timeout T is increased at q

Eventually system becomes synchronous, and T becomes
larger than the unknown bound & (T>y+9)

= g will receive HB on time, and never suspect p again

S. Haridi, KTHx 1D2203.1x

23

Leader Election

S. Haridi, KTHx 1D2203.1x

] Leader Election versus Failure Detection

o Failure detection captures failure behavior
» Detect failed processes

o Leader election (LE) also captures failure behavior
» Detect correct processes (a single and same for all)

 Formally, leader election is a FD
» Always suspects all processes except one (leader)
» Ensures some properties regarding that process

S. Haridi, KTHx 1D2203.1x

25

&1 || eader Election vs. Failure Detection

We will define two leader election abstraction and
algorithms

» Leader election (LE) which “matches” P

» Eventual leader election (Q) which “matches” OP

S. Haridi, KTHx 1D2203.1x 24

Matching LE and P

e P’s properties
» P always eventually detects failures (strong completeness)
« P never suspects correct nodes (strong accuracy)

e Completeness of LE

- Informally: eventually ditch failed leaders

- Formally: eventually every correct process trusts some correct node
e Accuracy of LE

« Informally: never ditch a correct leader

- Formally: No two correct processes trust different correct nodes

Is this really accuracy? [d]

Yes! Assume two processes trust different correct processes

One of them must eventually switch, i.e. leaving a correct node

27
S. Haridi, KTHx ID2203.1x

LE desirable properties

e LE always eventually detects failures
» Eventually every correct process trusts some correct node

e LE is always accurate
* No two correct processes trust different correct processes

e But the above two permit the following

elect p; elect p, electp, . electp;,
P4 ° ° ° : °
elect p, elect p,
P, o § o
elect p;
P3 o P

o But P, is “inaccurately” leaving a correct leader

S. Haridi, KTHx 1D2203.1x 28
6/17/16

LE desirable properties

e To avoid “inaccuracy” we add
e Local Accuracy:
If a process is elected leader by p;, all previously

elected leaders by p; have crashed

Not allowed, as p,
IS cor|rect

elect p, elect p, electp, :electp,
@ @ @ @

oF :
elect p, elect p,
® : °

P2

elect p,
—X

P3
S. Haridi, KTHx 1D2203.1x

29

Interface of Leader Election

e Module:

Name: LeaderElection (le)

e Events:

Indication: (leLeader | p;)
Indicate that leader is node p;

e Properties:

LE1 (eventual completeness). Eventually every correct process
trusts some correct process

LE2 (agreement). No two correct processes trust different
correct processes

LE3 (local accuracy). If a process is elected leader by p,, all
previously elected leaders by p; have crashed
S. Haridi, KTHx 1D2203.1x 30

Implementing LE

e Globally rank all processes
- E.g. rank ordering rank(p,)>rank(p,)>rank(p;)> ...

e maxrank(S)

* The process p € S, with the largest rank

S. Haridi, KTHx 1D2203.1x

31

Implementing LE

LeaderElection, instance le

Uses:

» PerfectFailureDetector, instance P
upon event (le, Init) do

» suspected := @

» leader := L

upon event (P, Crash |p) do

» suspected := suspected u {p}

upon leader # maxrank(IT \ suspected) do
» leader := maxrank(IT \ suspected)

- trigger (le, Leader | leader)
S. Haridi, KTHx 1D2203.1x

32

Eventual Leader Election Q

S. Haridi, KTHx 1D2203.1x 33

Matching Q2 and ¢OP

o OP weakens P by only providing eventual accuracy
» Weaken LE to QDby only guaranteeing eventual agreement

LE Propertles
LE1 (eventual completeness). Eventually

every correct node trusts some correct
eventual node

\

— LE2 (agreement). No two correct nodes
trust different correct nodes

- cal accuracy) If an iss@lected
leader ected leaders
, crashed

S. Haridi, KTHx 1D2203.1x 34

Interface of Eventual Leader Election
e Module:

« Name: EventualLeaderElection (Q)
e Events:
- Indication (out): (Q2, Trust | p,
Notify that p; is trusted to be leader

e Properties:

- ELD1 (eventual completeness). Eventually every correct node
trusts some correct node

« ELD2 (eventual agreement). Eventually no two correct nodes
trust different correct node

S. Haridi, KTHx 1D2203.1x

35

Eventual Leader Detection Q

e In crash-stop process abstraction
« () is obtained directly from OP

» Each process trusts the process with highest rank
among all processes not suspected by OP

» Eventually, exactly one correct process will be
trusted by all correct processes

S. Haridi, KTHx 1D2203.1x

36

Implementing (Q

e EventualLeaderElection, instance Q
o Uses: EventuallyPerfectFailureDetector, instance OP
e upon event ((Q, Init) do
suspected := @; leader := L
e upon event (0P, Suspect |p) do
suspected := suspected u {p}

e upon event (OP, Restore | p) do
suspected := suspected \ {p}
e upon leader # maxrank(IT \ suspected) do

leader := maxrank(IT \ suspected)
trigger (Q, Trust | leader)

S. Haridi, KTHx 1D2203.1x

37

() for Crash Recovery

e Can we elect a recovered process? [d]
Not if it keeps crash-recovering infinitely often!
o Basic idea

Count number of times you’ve crashed (epoch)
Distribute your epoch periodically to all nodes
Elect leader with lowest (epoch, rank(node))

e Implementation

Similar to OP and Qfor crash-stop

Piggyback epoch with heartbeats

Store epoch, upon recovery load epoch and increment
S. Haridi, KTHx 1D2203.1x 38

Reductions

S. Haridi, KTHx 1D2203.1x 39

Reductions

e We say X<Y if
« X can be solved given a solution of Y

« Read X is reducible to Y

» Informally, problem X is easier or as hard as Y

S. Haridi, KTHx 1D2203.1x

40

Preorders, partial orders...

e Arelation < is a preorder on a set A if for any x,y,z in A
» X <X (reflexivity)
« X<y and y=<z implies x<z (transitivity)
e Difference between preorder and partial order
» Partial order is a preorder with anti-symmetry
x<y and y<x implies x = y
e For preorder two different objects x and y can be symmetric
» |t is possible that x<y and y<x for two different x and y, (X #Y)

S. Haridi, KTHx 1D2203.1x 41

Reducibility < is a preorder

e < is a preorder
» Reflexivity. X<X
X can be solved given a solution to X
» Transitivity. X<Y and Y<Z implies X<Z
Since Y<Z, use implementation of Z to implement Y.
use that implementation of Y to implement X.
Hence we implemented X from Z’s implementation

e < is not anti-symmetric, thus not a partial order
« Two different X and Y can be equivalent
Distinct problems X and Y can be solved from the other’s solution

S. Haridi, KTHx 1D2203.1x 42

Shortcut definitions

e We write X=Y if
« X<Y and Y=<X
» Problem X is equivalent to Y

 We write X<Y if
» X<Y and not X=Y
» or equivalently, X<Y and not Y<X

* Problem X is strictly weaker than Y, or
» Problem Y is strictly stronger than X

S. Haridi, KTHx 1D2203.1x

43

Example

e |t is true that OP<P

» Given P, we can implement 0P
We just return P’s suspicions.
P always satisfies OP’s properties

e In fact, OP<P in the asynchronous model
» Because not P<0P is true

e Reductions common in computability theory
« If X<Y, and if we know X is impossible to solve
Then Y is impossible to solve too

» If OP<P, and some problem Z can be solved with OP

Then Z can also be solved with P
S. Haridi, KTHx ID2203.1x

44

Weakest FD for a problem?

e Often P is used to solve problem X

» But P is not very practical (needs synchrony)

» Is X a “practically” solvable problem?
Can we implement X with OP?

Sometimes a weaker FD than P will not solve X
= Proven using reductions

S. Haridi, KTHx 1D2203.1x 45

Weakest FD for a problem

e Common proof to show P is weakest FD for X
* Prove that P<X

* |.e. P can be solved given X
o |f P<X then 0P<X
» Because we know OP<P and P=X, i.e. O0P<P=X

If we can solve X with OP, then
we can solve P with OP, which is a contradiction

S. Haridi, KTHx 1D2203.1x 46

How are the detectors P
FKTHE
related G 2

"%%x%'s’%

Trivial Reductions

e Strongly complete
« OP<P

P is always strongly accurate, thus also
eventually strongly accurate

e QS<S

S is always weakly accurate, thus also
eventually weakly accurate

« S<P

P is always strongly accurate, thus also
always weakly accurate

e (OS<OP

OP is always eventually strongly accurate,
thus also always eventually weakly accurate

S. Haridi, KTHx 1D2203.1x

48

@) Trivial Reductions (2)

 Weakly complete
- 0Q<Q

Q is always stron%ly accurate, thus also
eventually strongly accurate

o OWx<W

W is always weakly accurate, thus also
eventually weakly accurate

e Wx<Q
Q is always strongly accurate, thus also
always weakly accurate

e OW=<0Q
0Q is always eventually strongly

accurate, thus also always eventually
weakly accurate

S. Haridi, KTHx 1D2203.1x

Y

OQ\/W

OW

49

Weak completeness trivially reducible to strong

Strong completeness reducible to weak

2 i.e. can get strong completeness from weak

P<Q, S<W, 0P<0Q, 0S=<0W,

4 They're equivalent!
P=Q, S=W, 0P=0Q, 0S=0W

Completeness “Irrelevant”

Accuracy
Eventual Eventual
Strong Weak
Completeness Strong Weak
Strong P S oP oS
Weak Q w 0Q oW

S. Haridi, KTHx 1D2203.1x

50

Proving Irrelevance of Completeness

 Weak completeness ensures
» every crash is eventually detected by some correct node
e Simple idea
* Every process q broadcast suspicions Susp periodically
e upon event receive <S,qg>

also works like a
heartbeat

e Every crash is eventually detected by all correct p
» Can this violate some accuracy properties?

Susp := (Susp U S) — {qd}

S. Haridi, KTHx 1D2203.1x 51

\ Maintaining Accuracy

e Strong and Weak Accuracy aren’t violated

e Strong accuracy
No one is ever inaccurate
Our reduction never spreads inaccurate suspicions

 Weak accuracy

Everyone is accurate about at least one process p
No one will spread inaccurate information about p

S. Haridi, KTHx 1D2203.1x 52

Maintaining Eventual Accuracy

e Eventual Strong and Eventual Weak Accuracy
aren’t violated

e Proof is almost same as previous page
Eventually all faulty processes crash

Inaccurate suspicions undone
Will get heartbeat from correct nodes and revise (-{q3})

S. Haridi, KTHx 1D2203.1x 53

S. Haridi, KTHx 1D2203.1x

equivalent
reducible to

v

54

Omega also a FD

e Can we implement 0S with Q? [d]
» |.e. is it true that 05<Q

» Suspect all nodes except the leader given by Q

Eventual Completeness
= All nodes are suspected except the leader (which is correct)

Eventual Weak Accuracy
= Eventually, one correct node (leader) is not suspected by anyone

» Thus, 05<Q

S. Haridi, KTHx 1D2203.1x 55

QQ equivalent to 0S (and OW)

e We showed 05<Q, it turns out we also have Q<0S
o |l.e. Q=0S

 The famous CHT (Chandra, Hadzilocas, Toueg) result

» If consensus implementable with detector D
Then Omega can be implemented using D

o |.e. if Consensus<D, then Q<D
Since 0S can be used to solve consensus, we have Q<D
« Implies OW is weakest detector to solve consensus

S. Haridi, KTHx 1D2203.1x 56

S. Haridi, KTHx 1D2203.1x

equivalent
reducible to

v

57

by

oS T g
FKTHR
Combining Abstractions gt

S. Haridi, KTHx 1D2203.1x 58

Combining Abstractions

Fail-stop (synchronous)

» Crash-stop process model
» Perfect links + Perfect failure detector (P)

Fail-silent (asynchronous)
» Crash-stop process model

o Perfect links

Fail-noisy (partiallY synchronous)
» Crash-stop process mode

« Perfect links + Eventually Perfect failure detector (OP)

Fail-recovery
» Crash-recovery process model
« Stubborn links + ...

S. Haridi, KTHx 1D2203.1x

59

The rest of course

e Assume crash-stop system with a perfect
failure detector (fail-stop)

Give algorithms

e Try to make a weaker assumption
Revisit the algorithms

S. Haridi, KTHx 1D2203.1x

60

