
ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

DD2460 Lecture 6.
More examples of specifications and refinement

Elena Troubitsyna

Lecture outline

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Examples of using relations and functions in specifications of

- access control

- seat registration

Example of refinement in Event-B

Example: printer access for students
The system tracks the permissions that students of a system have with regard to the printers
attached to the system.

• A system should support adding a permission for a student in order to get an access to a
particular printer and removing a permission.

• A system should support removing a student’s access to all printers at once.

• A system should support giving the combined permissions of any two students to both of them.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Printer access
• Permissions are naturally expressed as a relation between students and printers, so the
machine makes use of a variable whose type is relation.

• Since the machine will have to keep track of changing permissions, it will make use of a variable
access whose type is a relation between STUDENTS and PRINTERS.

• As permissions are added or removed, the variable will be updated to reflect the information.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Printer access: context

CONTEXT PrinterAccess_c0
SETS STUDENTS

PRINTERS
AXIOMS

axm1: finite(STUDENTS)
axm2: finite(PRINTERS)
axm3: STUDENTS≠ ∅
axm4: PRINTERS≠ ∅

END

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Printer access: machine
MACHINE PrinterAccess_m0
SEES PrinterAccess_c0
VARIABLES access
INVARIANTS

inv1: access ∈ STUDENTS ⟷ PRINTERS
EVENTS

INITIALISATION ≜
begin

act1: access := ∅
end

…

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Model events
ADD ≜

any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS

then
act1: access:=access ∪ {𝑠𝑠𝑠𝑠 ↦ 𝑝𝑝𝑝𝑝}

end
BLOCK ≜

any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS
grd3: 𝑠𝑠𝑠𝑠 ↦ 𝑝𝑝𝑝𝑝 ∈ access

then
act1: access:=access \{𝑠𝑠𝑠𝑠 ↦ 𝑝𝑝𝑝𝑝}

end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Model events
BAN ≜

any st
where

grd1: st ∈ STUDENTS
then

act1: access:= 𝑠𝑠𝑠𝑠 access /use of domain subtraction
end

UNIFY ≜
any st1 st2
where

grd1: st1 ∈ STUDENTS
grd2: st2 ∈ STUDENTS

then
act1: access:= access ∪ (𝑠𝑠𝑠𝑠𝑠 × access 𝑠𝑠𝑠𝑠2) ∪ 𝑠𝑠𝑠𝑠2 × access 𝑠𝑠𝑠𝑠𝑠

end
END

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Relational image

Printer access rules
• Assume that we want to restrict the number of printers that a student can have access to.

For example, a student can use no more than 3 printers.

We have to reflect this new functionality into our model.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Model events: modification of ADD event

ADD ≜
any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS
grd3: ??? // we have to specify new condition here

then
act1: access:=access ∪ {𝑠𝑠𝑠𝑠 ↦ 𝑝𝑝𝑝𝑝}

end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Model events: modification of ADD event

// We restrict a domain of access relation by a set containing one element student st, i.e.,
st access. As a result of this operation we get a set of pairs, whose the first element is st.

Then by card operator we count a number of such pairs. Thus, we get a number of printers
that this particular student st has access to.

ADD ≜
any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS
grd3: card(st access) < 3 // new guard

then
act1: access:=access ∪ {𝑠𝑠𝑠𝑠 ↦ 𝑝𝑝𝑝𝑝}

end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Use of domain
restriction

Model events: modification of UNIFY
event
Similarly, we have to modify the event UNIFY.

However, the new guard here will be rather complex:

• Informally: we have to check, if, after the Unify operation, two students still will have
access to no more than 3 printers.

This means that the following property should be defined as a model invariant (and,
consequently preserved during events execution):

∀ 𝑠𝑠𝑠𝑠. 𝑠𝑠𝑠𝑠 ∈ 𝒅𝒅𝒅𝒅𝒅𝒅 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ⟹ 𝒂𝒂𝒂𝒂𝒄𝒄𝒅𝒅 𝑠𝑠𝑠𝑠 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ≤ 3

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

More examples
• Every person is either a student or a lecturer. But no person can be a student and a lecturer at
the same time.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⊆ 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆, 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆 ⊆ 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆

𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆 ∪ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆

𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆 ∩ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∅

• Only lecturer can teach course

𝑒𝑒.𝑔𝑔., 𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 ∈ 𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 ⟷ 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆

More examples
• Every course is given by at most one lecturer

𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 ∈ 𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 ⟶ 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆 // total function

• A lecturer has to teach at least one course and at most three courses

𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 ∈ 𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 ⟶ 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆 ∧ 𝒄𝒄𝒂𝒂𝒓𝒓(𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝) = 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆

∧ (∀ 𝑙𝑙. 𝒂𝒂𝒂𝒂𝒄𝒄𝒅𝒅 𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 𝑙𝑙 ≤ 3))

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Comment on Initialisation event

inv1 invariant should be preserved upon INITIALISATION event.
BUT Rodin prover will fail to prove that since upon substitution 𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 by ∅, it will have to
prove that ∅ ∈ COURSES ⟶ LECTURERS. But it is wrong!

MACHINE CoursesRegistration_m0
SEES CoursesRegistration_m0
VARIABLES access
INVARIANTS

inv1: 𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 ∈ COURSES ⟶ LECTURERS
….

EVENTS
INITIALISATION ≜

begin
act1: 𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 := ∅ // wrong! Since 𝐿𝐿𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑒𝑒𝐿𝐿𝑒𝑒𝐶𝐶𝑠𝑠𝐶𝐶𝑝𝑝𝑒𝑒𝑝𝑝 defined as a total function

end

Simple example: seat booking system
The system allows a person to make a seat booking. Specifically:

• A system should support booking a seat by only one person;
• A system should support cancelling of a booking.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Modelling seat booking system in Event-B
• In the static part of our Event-B model – context - we will introduce required sets: SEATS and
PERSONS as well as required axioms.

• In the dynamic part of the model – machine – we will define (specify) operations by events
BOOK and CANCEL, correspondingly.

• We introduce a variable booked_seats whose type is a partial function on the sets SEATS and
PERSONS.

• booked_seats keeps track on booked seats and persons make their booking.

• Since booking of a seat can be done or cancelled, the variable booked_seats will be updated by
the events BOOK or CANCEL to reflect this.

Seat booking system
We define a context BookingSeats_c0 as follows

CONTEXT
BookingSeats_c0

SETS
PERSONS
SEATS

AXIOMS
axm1: finite(SEATS)
axm2: finite(PERSONS)
axm3: SEATS≠ ∅
axm4: PERSONS≠ ∅

END

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Machine BookingSeats_m0
MACHINE BookingSeats_m0
SEES BookingSeats_c0
VARIABLES

booked_seat
INVARIANTS

inv1: booked_seat ∈ SEATS PERSONS
// this variable is defined as a partial function (every seat can be
occupied by only one person, but not every seat from the set SEATS
is booked yet)
EVENTS
INITIALISATION ≜

then
act1: booked_seat := ∅ // empty set

end
BOOK ≜ //booking a seat

any person seat
where

grd1: person ∈ PERSONS // take any person

grd2: seat ∈ SEATS // we take any seat …
grd3: seat ∉ dom(booked_seat) // ... that is free

then
act1: booked_seat := booked_seat ∪ {seat ↦ person}

end

CANCEL ≜ // cancelation of booking
any person seat
where

grd1: seat ↦ person ∈ booked_seat // any pair
from booked_seat

then
act1: booked_seat := booked_seat \ {seat ↦ person}
// delete this pair from booked_seat

end
END

Model development with Event-B
• Event-B allows models to be developed gradually via mechanisms such as context extension and
machine refinement.

• These techniques enable users to develop target systems from their abstract specifications, and
subsequently introduce more implementation details.

• More importantly, properties that are proved at the abstract level are maintained through
refinement, and hence are also guaranteed to be satisfied by later refinements.

• As a result, correctness proofs of systems are broken down and distributed amongst different
levels of abstraction, which is easier to manage.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

A course management system:
Requirements

• A club has some fixed members; amongst them are instructors and participants.

• A member can be both an instructor and a participant.

REQ1 Instructors are members of the club.

REQ2 Participants are members of the club.

A course management system (cont.)
• There are predefined courses that can be offered by a club.

• Each course is associated with exactly one fixed instructor.

REQ3 There are predefined courses.

REQ4 Each course is assigned to one fixed instructor.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

A course management system (cont.)
A course is either opened or closed and is managed by the system.

REQ5 A course is either opened or closed.

REQ6 The system allows a closed course to be opened.

REQ7 The system allows an opened course to be closed.

A course management system (cont.)
The number of opened courses is limited.

Only when a course is opened, can participants register for the course. An important constraint
for registration is that an instructor cannot attend his own courses.

REQ8 The number of opened courses cannot exceed a given limit.

REQ9 Participants can only register for an opened course.

REQ10 Instructors cannot attend their own courses.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

A course management system:
development with Event-B

• Next, we will develop a formal model based on the above requirements document:
 we will refer to the above requirements in order to justify how they are formalised in the Event-B

model.

• In the initial model, we focus on opening and closing of courses by the system.

• We start our modelling with defining a context Courses_c0.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

A course management system: Context

CONTEXT Courses_c0
SETS COURSES // a carrier set COURCES denoting the set of courses that can be

offered by the club (REQ3)
CONSTANTS m // REQ8: the maximum number of courses that the club can open
AXIOMS

axm0_1: finite(COURSES)
axm0_2: m ∈ ℕ
axm0_3: m > 0
axm0_4: card(COURSES) ≥ m // number of all possible courses is no less than m

END

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

A course management system: Machine
• We develop machine Courses_m0 of the initial model, focusing on courses opening and closing.
 This machine sees context Courses_c0 developed before.

• We model the set of opened courses by a variable courses

MACHINE Courses_m0
SEES Courses_c0
VARIABLES courses // The machine state is represented by the variable, courses,

denoting the open courses
INVARIANTS

inv0_1: courses ⊆ COURCES // open courses is a subset of all available courses
inv0_2: card(courses) ≤ m

EVENTS
INITIALISATION≜

then
act1: courses:= ∅ // Initially, all courses are closed

(so, the set of opened courses is set to the empty set);
end

…

A course management system: Machine
• We model the opening and closing of courses using two events OPENCOURSE and CLOSECOURSE:

OPENCOURSE ≜ // REQ6: The system allows a closed course to be opened.
any crs
where

grd1: card(courses) < m // the current number of opened courses has not yet reached the limit
grd2: crs ∉ courses // a course crs is not opened yet

then
act1: courses := courses ∪ {crs} // add crs course to the set courses

end
CLOSECOURSE ≜ // REQ7: The system allows an opened course to be closed.

any crs
where

grd1: crs ∈ courses // the course crs has been opened before
then

act1: courses := courses ∖ {crs} // remove crs from the set courses
end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Course Management System: refinement
We extend context Courses_c0 by the context Members_c1

CONTEXT Members_c1 EXTENDS Courses_c0
SETS MEMBERS // a carrier set MEMBERS represents the set of club members

CONSTANTS PARTICIPANTS // constant PARTICIPANTS denotes the set of participants
INSTRUCTORS // constant INSTRUCTORS denotes the set of instructors
courseInstructor // constant models a relationship between courses and instructors

AXIOMS
axm1_1: finite(MEMBERS)
axm1_2: PARTICIPANTS ⊆ MEMBERS // participants must be members of the club
axm1_3: INSTRUCTORS ⊆ MEMBERS // instructors must be members of the club
axm1_4: courseInstructor ∈ COURSES → INSTRUCTORS // a total function from COURSES to

INSTRUCTORS (thus we formalise REQ4)
END

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Machine Refinement
• Machine refinement is a mechanism for introducing details about the dynamic properties of a
model
 When speaking about machine N refining another machine M, we refer to M as the abstract machine

and to N as the concrete machine.

• Two kinds of refinement: superposition refinement and data refinement
• In superposition refinement, the abstract variables of M are retained in the concrete machine N, with

possibly some additional concrete variables.
• In data refinement, the abstract variables v are replaced by concrete variables w and, subsequently, the

connections between M and N are represented by the relationship between v and w.
• Often, Event- B refinement is a mixture of both superposition and data refinement: some of the abstract

variables are retained, while others are replaced by new concrete variables.

Superposition Refinement
• In superposition refinement, variables v of the abstract machine M are kept in the refinement,
i.e. as part of the state of N.

• N can have some additional variables w.

• The concrete invariants J(v,w) specify the relationship between the old and new variables.

• Each abstract event e is refined by a concrete event f

• Assume that the abstract event e and the concrete event f are as follows:

e = any x where G(x, v) then Q(x, v) end

f = any x where H(x,v,w) then R(x,v,w) end

• f refines e if the guard of f is stronger than that of e (guard strengthening), concrete invariants J
are maintained by f, and abstract action Q simulates the concrete action R (simulation).

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Superposition Refinement
• In the course of refinement, new events are often introduced into a model.

• Lets go back to our Course Management System…

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Refinement of a machine Courses_m0

• New variable participants representing information about course participants (modelled as a relation between the sets
of open courses courses and the set PARTICIPANTS)

• Invariant inv1_2: ∀ c. c ∈ courses ⟹ courseInstructor(c) ∉ participants[{c}] states that “for every opened course c, the
instructor of this course is not amongst its participants ” (REQ10)

MACHINE Courses_m0
SEES Courses_c0
VARIABLES courses
INVARIANTS

inv0_1: courses ⊆ COURCES
inv0_2: card(courses) ≤ m

EVENTS
INITIALISATION≜ …
OPENCOURSE ≜ …
CLOSECOURSE ≜ …

Courses_m0 machine
is refined by a
machine
Members_m1

MACHINE Members_m1
REFINES Courses_m0
SEES Members_c1
VARIABLES courses participants
INVARIANTS
inv1_1: participants ∈ courses ↔ PARTICIPANTS
inv1_2: ∀ c. c ∈ courses ⟹ courseInstructor(c) ∉ participants[{c}]

EVENTS
INITIALISATION≜

then
…

act2: participants := ∅ // The variable is initialised to the empty set.
end

we had before ….

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Modelling machine Members_m1
The original abstract event OPENCOURSE stays unchanged in this refinement, while an
additional assignment is added to CLOSECOURSE to update participants by removing the
information about a closing course crs from it.

OPENCOURSE refines OPENCOURSE ≜ // no changes in this event
any crs
where

grd1: card(courses) < m
grd2: crs ∉ courses

then
act1: courses := courses ∪ {crs}

end
CLOSECOURSE refines CLOSECOURSE ≜ // we add in to the event an additional action

any crs
where

grd1: crs ∈ courses
then

act1: courses := courses ∖ {crs}
act2: participants := {crs} participants // removing all the relationships between this

course and its participants.
end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Machine Members_m1
• A new event REGISTER is added. It models the registration of a participant p for an opened
course c.

• The guard of the event ensures that p is not the instructor of the course (grd1_3) and is not yet
registered for the course (grd1_4).

• The action of the event updates participants accordingly by adding the mapping c ↦ p to it.
REGISTER ≜ // the registration of a participant p for an opened course c

any p c
where

grd1_1: c ∈ courses
grd1_2: p ∈ PARTICIPANTS
grd1_3: p≠CourseInstructor(c) // p is not the instructor of the course
grd1_4: c ↦p ∉ participants // p is not yet registered for the course

then
act1: participants := participants ∪ {c ↦p} // adding all the relationships between this

course and its participants.
end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Data Refinement
• In data refinement, abstract variables v are removed and replaced by concrete variables w.

•The states of abstract machine M are related to the states of concrete machine N by gluing
invariants J(v, w).

• In Event-B, the gluing invariants J are declared as invariants of N and also contain the local
concrete invariants, i.e., those constraining only concrete variables w.

• Coming back to the Course Management System…

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Data refinement of Members_m1
machine

• We perform a data refinement by replacing abstract variables courses and participants by a new concrete
variable attendants:

inv2_1: attendants ∈ COURSES ℙ(PATICIPANTS)

- is a partial function from COURSES to some set of participants.

The following invariants at as gluing invariants, linking abstract variables courses and participants with
concrete variable attendants

inv2_2: courses = dom(attendants)

inv2_3: ∀ c. c ∈ courses ⟹ participants[{c}] = attendants(c) // for every opened course c, the set of

participants attending that course represented abstractly as

participants[{c}] is the same as attendants(c).

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Members_m2 machine
MACHINE Members_m2
REFINES Members_m1
SEES Members_c1
VARIABLES attendants
INVARIANTS

inv2_1: attendants ∈ COURSES ℙ(PATICIPANTS)
inv2_2: courses = dom(attendants)
inv2_3: ∀ c. c ∈ courses ⟹ participants[{c}] = attendants(c)

EVENTS
…

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Refinement of OPENCOURSE event

• The concrete guards ensure that crs is a closed course and the number of opened courses
(card(attendants)) has not reached the limit m.

• The action of OPENCOURSE_new sets the initial participants for the newly opened course crs to
be the empty set.

MACHINE Members_m1 REFINES Courses_m0
….
OPENCOURSE refines OPENCOURSE ≜

any crs
where

grd1: card(courses) < m
grd2: crs ∉ courses

then
act1: courses := courses ∪ {crs}

end

MACHINE Members_m2 REFINES Members_m1
…
OPENCOURSE_new refines OPENCOURSE ≜

any crs
where

grd2_1: crs ∉ dom(attendants)
grd2_2: card(attendants) ≠ m

then
act1: attendants(crc) := ∅

end
we had before …. now

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Refinement of CLOSECOURSE event
• Abstract event CLOSECOURSE is refined by concrete event CLOSECOURSE_new, where one
course crs is closed at a time. The guard and action of concrete event CLOSECOURSE_new are as
expected:

MACHINE Members_m1 REFINES Courses_m0
….
CLOSECOURSE refines CLOSECOURSE ≜

any crs
where

grd1: crs ∈ courses
then

act1: courses := courses ∖ {crs}
act2: participants := {crs} participants

end

MACHINE Members_m2 REFINES Members_m1
….
CLOSECOURSE_new refines CLOSECOURSE ≜

any crs
where

grd1: crs ∈ dom(attendants)
then

act1: attendants := {crs} attendants
end

we had before …. now

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Refinement of REGISTER event

MACHINE Members_m1 REFINES Courses_m0
…
REGISTER ≜

any p c
where

grd1_1: c ∈ courses
grd1_2: p ∈ PARTICIPANTS
grd1_3: p≠CourseInstructor(c)
grd1_4: c ↦p ∉ participants

then
act1: participants := participants ∪ {c ↦p}

end

MACHINE Members_m2 REFINES Members_m1
…
REGISTER_new refines REGISTER ≜

any p c
where

grd2_1: c ∈ dom(attendants)
grd2_2: p ∈ PARTICIPANTS
grd2_3: p≠CourseInstructor(c)
grd2_4: p ∉ attendants(𝐶𝐶)

then
act1: attendants(𝐶𝐶) := attendants(𝐶𝐶) ∪ {p}

end

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

Summary of the development
REQ id Models

REQ1 Members_c1

REQ2 Members_c1

REQ3 Courses_c0

REQ4 Members_c1

REQ5 Courses_m0

REQ6 Courses_m0

REQ7 Courses_m0

REQ8 Courses_m0

REQ9 Members_m1

REQ10 Members_m1

Machine
Courses_m0

Context
Members_c1

Context
Courses_c0

Machine
Members_m1

refines extends

sees

Machine
Members_m2

refines

Requirements tracing:
The hierarchy of the development:

sees

sees

Summary
We studied how to use different mathematical concepts (sets, functions, relations) and
operations over them to specify behaviour of safety-critical systems and systems that require
modelling some access rights

The main verification technique was proof of the invariant preservation

This is important for the verification of safety and preservation of access control restrictions

However, dealing with liveness (progress) properties is harder in Event-B while model checking is
great in this.

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 6

	DD2460 Lecture 6. �More examples of specifications and refinement
	Lecture outline
	Example: printer access for students
	Printer access
	Printer access: context
	Printer access: machine
	Model events
	Model events
	Printer access rules
	Model events: modification of ADD event
	Model events: modification of ADD event
	Model events: modification of UNIFY event
	More examples
	More examples
	Comment on Initialisation event
	Simple example: seat booking system
	Modelling seat booking system in Event-B
	Seat booking system
	Machine BookingSeats_m0
	Model development with Event-B
	A course management system:�Requirements
	A course management system (cont.)
	A course management system (cont.)
	A course management system (cont.)
	A course management system: development with Event-B
	A course management system: Context
	A course management system: Machine
	A course management system: Machine
	Course Management System: refinement
	Machine Refinement
	Superposition Refinement
	Superposition Refinement
	Refinement of a machine Courses_m0
	Modelling machine Members_m1
	Machine Members_m1
	Data Refinement
	Data refinement of Members_m1 machine
	Members_m2 machine
	Refinement of OPENCOURSE event
	Refinement of CLOSECOURSE event
	Refinement of REGISTER event
	Summary of the development
	Summary

