
ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 5

DD2460 Lecture 5.
Using Set Theory, Functions and Relations in Formal Specification

Elena Troubitsyna

Lecture outline

ELENA TROUBITSYNA. DD2460 SOFTWARE SAFETY AND SECURITY. LECTURE 5

Basic operations of sets

Predicates

Operations on relations and functions

Examples of using relations and functions in specification of access control

Basic set theory
• A set is a collection of elements.

• Elements of a set may be numbers, names, identifiers, etc.
 E.g. the set ℕ is the collections of all natural numbers.

• Examples:
 {3,5,7,…}
 {red, green, black}
 {yes, no}
 {wait, start, process, stop}
 But not: {1, 2, green}

• Elements of a set are not ordered.

• Set may be finite or infinite.

Membership
• Relationship between an element and a set: is the element a member of the set or not?

• For element 𝒙𝒙 and set 𝑺𝑺, we express the membership relation as follows

𝒙𝒙 ∈ 𝑺𝑺 (‘𝒙𝒙 is a member of 𝑺𝑺’)

where ∈ is a predicate over sets and elements

• Set membership is a boolean property relating an element and a set, i.e., either x is in S or x is
not in S.

• This means that there is no concept of an element occurring more that once in a set, e.g.,
• 𝑎𝑎, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;
• 3, 7 = 3, 7, 7

• Conversely, the element is not a member of the set: 𝒙𝒙 ∉ 𝑺𝑺

Set definition
• If a set has only finite number of elements, then it can be written explicitly, by listing all of its
elements within set brackets ′{′ and }′ ′:
 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 = 1𝐴𝐴, 1𝐵𝐵, 1𝐶𝐶, 1𝐷𝐷
 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

• Some sets have predefined names:
 ℕ – 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0, 1, 2, 3, …
 ℤ − 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 …− 2,−1, 0, 1, 2, …

• The empty set ∅ contains no elements at all. It is the smallest possible set.

Set comprehension
• Enumerating all of the elements of a set is not always possible.

• Would like to describe a set by in terms of a distinguishing property of its elements.

• Set can be defined by means of a set comprehension:

𝒙𝒙 𝒙𝒙 ∈ 𝑻𝑻 ∧ 𝑷𝑷(𝒙𝒙)

“Set of all 𝑥𝑥 in 𝑇𝑇 that satisfy 𝑃𝑃(𝑥𝑥)”
• Each element of a set satisfies some criterion. Criterions are defined by predicates.

A variable ranging over … condition

Examples on set comprehension

• Examples:

 Natural numbers less than 10: 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥 < 10

 Even integers: 𝑥𝑥 𝑥𝑥 ∈ ℤ ∧ (∃ 𝑦𝑦.𝑦𝑦 ∈ ℤ ∧ 2𝑦𝑦 = 𝑥𝑥)

 Sometimes it is helpful to specify a “pattern” for the elements

 E.g. 2𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥2 ≥ 3

More examples on set comprehension

• Examples:

 What is the set defined by the set comprehension:

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑚𝑚.𝑚𝑚 ∈ ℤ ∧𝑚𝑚3 = 𝑧𝑧) ?

More examples on set comprehension

• Examples:

 What is the set defined by the set comprehension:

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑚𝑚.𝑚𝑚 ∈ ℤ ∧𝑚𝑚3 = 𝑧𝑧) ?

Answer: 1, 8, 27, 64

Subset and equality relations for sets
• A set 𝑺𝑺 is said to be subset of set 𝑻𝑻 when every element of 𝑺𝑺 is also an element of 𝑻𝑻. This is
written as follows:

𝑺𝑺 ⊆ 𝑻𝑻

• For example:
 3, 7 ⊆ 1, 2, 3, 5, 7, 9 ;
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⊆ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ⊆ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽

• A set 𝑺𝑺 is said to be equal to set 𝑻𝑻 when 𝑺𝑺 ⊆ 𝑻𝑻 and 𝑻𝑻 ⊆ 𝑺𝑺
𝑺𝑺 = 𝑻𝑻

More examples
Set membership says nothing about the relationship between the elements of a set
other than that they are members of the same set.
o the order in which we enumerate a set is not significant, e.g.,

• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑏𝑏, 𝑎𝑎, 𝑐𝑐 ;
o there is no concept of an element occurring more that once in a set, e.g.,

• 𝑎𝑎,𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;

These two characteristics distinguish sets from data structures such as lists or arrays
where elements appear in order and the same element my occur multiple times.

Operations on sets (set operators)
• Union of S and T: set of elements in either S or T:

𝑺𝑺 ∪ 𝑻𝑻

• Intersection of S and T: set of elements in both S and T:
𝑺𝑺 ∩ 𝑻𝑻

• Difference of S and T: set of elements in S but not in T:
𝑺𝑺 ∖ 𝑻𝑻

Examples on Set Operators
o Union

• 1,2 ∪ 2,3,5 = 1,2,3,5
• ∅ ∪ 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

o Intersection
• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∩ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
• 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∩ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =∅
• 2,3,5 ∩ ∅ = ∅

o Difference
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∖ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
• 𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∖ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
• 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∖ ∅ = 𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Power sets
• The power set of a set 𝑺𝑺 is the set whose elements are all subsets of 𝑺𝑺,

written ℙ(𝑺𝑺)

• Example,
ℙ 1,3,5 = ∅, 1 , 3 , 5 , 1,3 , 1,5 , 3,5 , 1,3,5

• 𝑺𝑺 ∈ ℙ 𝑻𝑻 is the same as 𝑺𝑺 ⊆ 𝑻𝑻

• Sets are themselves elements – so we can have sets of sets

• Example, ℙ 1,3,5 is an example of a set of sets

1,3

1,3,5

1,5 3,5

1 3 5

Types of sets
• All the elements of a set must have the same type.

• For example, 2, 3, 4 is a set of integers.

2, 3, 4 ∈ ℙ ℤ .

So the type of 2, 3, 4 is ℙ ℤ .

To declare 𝒙𝒙 to be a set of elements of type T we write either

𝒙𝒙 ∈ ℙ 𝑻𝑻 or 𝒙𝒙 ⊆ 𝑻𝑻

For example, math ⊆ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 - so type of math is ℙ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

Cardinality
• The number of elements in a set is called its cardinality

• In Event-B this is written as card(S)
• Examples:
 card({1, 2, 3})=3
 card({a, b, c, d})=4
 card({Bill, Anna, Anna, Bill})=2
 card(ℙ 1,3,5)=8

• Cardinality is only defined for finite sets.
• If S is an infinite set, then card(S) is undefined. Whenever you use the card operator, you must ensure

that it is only applied to a finite set.

Expressions
• Expressions are syntactic structures for specifying values (elements or sets)

• Basic expressions are
 literals (e.g., 3, ∅);
 variables (e.g., x, a, room, registered);
 carrier sets (e.g., S, STUDENTS, FRUITS).

• Compound expressions are formed by applying expressions to operators such as

𝒙𝒙 + 𝒚𝒚 and 𝑺𝑺 ∪ 𝑻𝑻
to any level of nesting.

Predicates
• Predicates are syntactic structures for specifying logical statements, i.e., statements that are
either TRUE or FALSE (but not both!!!).

• Equality of expressions is an example of a predicate
 e.g., registered = registered _spring∪ registered _fall.

• Set membership, e.g., 𝟓𝟓 ∈ ℕ

• Subset relations, e.g., 𝑺𝑺 ⊆ 𝑻𝑻

• For integer elements we can write ordering predicates such as 𝒙𝒙 < 𝒚𝒚 .

Predicate logic
• Basic predicates: 𝒙𝒙 ∈ 𝑺𝑺,𝑺𝑺 ⊆ 𝑻𝑻,𝒙𝒙 ≤ 𝒚𝒚

• Predicate operators:

Name Predicate Definitions
Negation ¬ 𝑃𝑃 P does not hold
Conjunction 𝑃𝑃 ∧ 𝑄𝑄 both P and Q hold
Disjunction 𝑃𝑃 ∨ 𝑄𝑄 either P or Q holds
Implication 𝑃𝑃 ⇒ 𝑄𝑄 if P holds, then Q holds

Examples
𝑃𝑃 - Bob attends MATH course,

𝑄𝑄 - Mary is happy

Predicate
¬𝑃𝑃 Bob does not attend MATH course

𝑃𝑃 ∧ 𝑄𝑄 Bob attends MATH course and Mary is happy

𝑃𝑃 ∨ 𝑄𝑄 Bob attends MATH course or Mary is happy

𝑃𝑃 ⇒ 𝑄𝑄 If Bob attends MATH course, then Mary is happy

Quantified Predicates
We can quantify over a variable of a predicate universally or existentially:

Name Predicate Definition

Universal Quantification ∀𝑥𝑥 � 𝑃𝑃 P holds for all x

Existential Quantification ∃𝑥𝑥 � 𝑃𝑃 P holds for some x

Quantified Predicates
In the predicate ∀𝑥𝑥 � 𝑃𝑃 the quantification is over all possible values in the type
of the variable x.

Typically we constrain the range of values using implication.

Examples:

 ∀𝑥𝑥 � 𝑥𝑥 > 5 ⟹ 𝑥𝑥 > 3
 ∀𝑠𝑠𝑠𝑠 � 𝑠𝑠𝑠𝑠 ∈ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⟹ 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Quantified Predicates
In the case of existential quantification we typically constraint the range of
values using conjunction.

Example:

 we could specify that integer z has a positive square root as follows:

∃ 𝑦𝑦.𝑦𝑦 ≥ 0 ∧ 𝑦𝑦2 = 𝑧𝑧
 ∃ 𝑠𝑠𝑠𝑠 � 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∧ 𝑠𝑠𝑠𝑠 ∉ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Examples
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵

TRUE or FALSE?

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ⟹ 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴

∃ 𝑥𝑥. 𝑥𝑥 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ⟹ 𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Examples
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ⟹ 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴

∃ 𝑥𝑥. 𝑥𝑥 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ⟹ 𝑥𝑥 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

TRUE
FALSE

FALSE
TRUE

TRUE

Free and bound variables
Variables play two different roles in predicate logic:

• A variable that is universally or existentially quantified in a predicate is said to be a bound
variable.

• A variable referenced in a predicate that is not bound variable is called a free variable.

• Example

∃ 𝒚𝒚.𝒚𝒚 ≥ 𝟎𝟎 ∧ 𝒚𝒚𝟐𝟐 = 𝒛𝒛

𝑦𝑦 is bound while 𝑧𝑧 is free.

This is a property of y and may be true or false depending on what z is.

The role of y is to bind the quantifier ∃ and the formula together.

Predicates on Sets
Predicates on sets can be defined in terms of the logical operators as follows:

Name Predicate Definition

Subset 𝑺𝑺 ⊆ 𝑻𝑻 ∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝒙𝒙 ∈ 𝑻𝑻

Set equality 𝑺𝑺 = 𝑻𝑻 𝑺𝑺 ⊆ 𝑻𝑻 ∧ 𝑻𝑻 ⊆ 𝑺𝑺

Duality of universal and existential
quantification
¬∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝑻𝑻 = ∃𝒙𝒙 � (𝒙𝒙 ∈ 𝑺𝑺 ∧ ¬𝑻𝑻)

¬∃𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝑻𝑻 = ∀𝒙𝒙 � (𝒙𝒙 ∈ 𝑺𝑺 ⇒ ¬𝑻𝑻)

Defining set operators with logic
Name Predicate Definition

Negation 𝒙𝒙 ∉ 𝑺𝑺 ¬(𝒙𝒙 ∈ 𝑺𝑺)

Union 𝒙𝒙 ∈ 𝑺𝑺 ∪ 𝑻𝑻 𝒙𝒙 ∈ 𝑺𝑺 ∨ 𝒙𝒙 ∈ 𝑻𝑻

Intersection 𝒙𝒙 ∈ 𝑺𝑺 ∩ 𝑻𝑻 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒙𝒙 ∈ 𝑻𝑻

Difference 𝒙𝒙 ∈ 𝑺𝑺 ∖ 𝑻𝑻 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒙𝒙 ∉ 𝑻𝑻

Subset 𝑺𝑺 ⊆ 𝑻𝑻 ∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝒙𝒙 ∈ 𝑻𝑻

Power set 𝒙𝒙 ∈ ℙ(𝑻𝑻) 𝒙𝒙 ⊆ 𝑻𝑻

Empty set 𝒙𝒙 ∈ ∅ FALSE

Membership 𝒙𝒙 ∈ {a,…, b} 𝒙𝒙=a ∨ … ∨ 𝒙𝒙=b

Predicates in Event-B
• The invariants of an Event-B model and the guards of an event are formulated as predicates.

• The proof obligations generated by Rodin are also predicates.

• A predicate is simply an expression, the value of which is either true or false.

Example: access control to a building
A system for controlling access to a university building

• An university has some fixed number of students.

• Students can be inside or outside the university building.

• The system should allow a new student to be registered in order to get the access to the
university building.

• To deny the access to the building for a student the system should support deregistration.

• The system should allow only registered students to enter the university building.

Example: access control to a building
A system for controlling access to a university building

out
in

registered

Model context
CONTEXT BuildingAccess_c0

SETS STUDENTS //

CONSTANTS max_capacity // max capacity of the building is defined as a model constant
(we will need it later, could be skipped for this example)

AXIOMS
axm1: finite(STUDENTS)
axm2: max_capacity ∈ ℕ
axm3: max_capacity > 0

END

Model machine
MACHINE BuildingAccess_m0

SEES BuildingAccess_c0

VARIABLES registered in out
//The machine state is represented by three variables, registered, in, out.

INVARIANTS
inv1: registered ⊆ STUDENTS // registered students are of type STUDENTS

inv2: registered = in ∪ out // registered students are either inside or outside
the university building

inv3: in ∩ out = ∅ // no student is both inside and outside the university building

EVENTS …

EVENTS
INITIALISATION≜

then
act1: registered, in, out := ∅,∅,∅ // initially all the variables are empty

end

ENTER ≜ // a student entering the building
any st
where

grd1: st ∈ registered // student must be registered
grd2: st ∈ out // student must be outside

then
act1: in := in ∪ {st} // add to in
act2: out := out \ {st} // remove from out

end

Redundant guard since every
student from out is registered

EXIT ≜ // a student leaves the building
any st
where

grd1: st ∈ registered // a student must be registered
grd2: st ∈ in // a student must be inside

then
act1: in := in \ {st} // remove st from in

end
REGISTER ≜ // registration a new student

any st
where

grd1: st ∈ STUDENTS // a new student
grd2: st ∉ registered // … that is not in the set registered yet

then
act1: registered := registered ∪ {st} // add st to registered
act2: out := out ∪ {st} // add st to out

end

Redundant guard since every
student from out is registered

DEREGISTER1 ≜ // de-register a student
any st
where

grd1: st ∈ registered // a student must be registered
then

act1: registered := registered \ {st} // remove st from registered
act2: in := in \ {st} // remove st from in
act3: out := out \ {st} // remove st from out

end
DEREGISTER2 ≜ // de-register a student while he/she is outside the building

any st
where

grd1: st ∈ out // a new student
then

act1: registered := registered \ {st} // remove st from registered
act2: out := out ∖ {st} // remove st from out

end
END

Machine behaviour and nondeterminism
• The behaviour of an Event-B machine is defined as a transition system that moves from one
state to another through execution of events.

• The states of a machine are represented by the different configurations of values for the
variables:
 In our example, the state defined by the variables registered, in, out
 NOTE: the order in which events are presented in the specification does not matter. The execution order

is defined only by the guards

Machine behaviour and nondeterminism
• In any state that a machine can reach, an enabled event is chosen to be executed to define the
next transition.

• If several events are enabled in a state, then the choice of which event occurs is
nondeterministic.

• Also, if an event is enabled for several different parameter values, the choice of value for the
parameters is nondeterministic – the choice just needs to satisfy the event guards.
 For example, in the REGISTER event, the choice of value for parameter st is nondeterministic, with the

choice of value being constrained by the guards of the event to ensure that it is a fresh value.

• Treating the choice of event and parameter values as nondeterministic is an abstraction of
different ways in which the choice might be made in an implementation of the model.

Relations between sets
• Relation between sets is an important mathematical structure which is commonly used in
expressing specifications.

• Relations allow us to express complicated interconnections and relationships between
entitites formally.

Ordered pairs
• An ordered pair is an element consisting of two parts:

a first part and second part

• An ordered pair with first part 𝒙𝒙 and second part 𝒚𝒚 is written as:
𝒙𝒙 ↦ 𝒚𝒚

• Examples:
• 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ↦ 𝒓𝒓𝒓𝒓𝒓𝒓
• (𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ↦ 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)
• (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ↦ 𝟑𝟑𝟑𝟑)
• (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ↦ 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎)

Cartesian product

• The Cartesian product of two sets is

the set of pairs whose first part is in 𝑺𝑺 and second part is in 𝑻𝑻

• The Cartesian product of 𝑺𝑺 with 𝑻𝑻 is written: 𝑺𝑺 × 𝑻𝑻

Cartesian product: example
Lets consider two sets: 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 and 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Fall

Spring

Databases

Math

Logic

SWQuality

SWSafety

Cartesian product: example

Fall

Spring

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 × 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Databases

Math

Logic

SWQuality

SWSafety

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

Cartesian product:
definition and more examples

• Defining Cartesian product:

• Examples:

 ℕ × ℕ pairs of natural numbers

 1,2,3 × 𝑎𝑎, 𝑏𝑏 = 1 ↦ 𝑎𝑎, 1 ↦ 𝑏𝑏, 2 ↦ 𝑎𝑎, 2 ↦ 𝑏𝑏, 3 ↦ 𝑎𝑎, 3 ↦ 𝑏𝑏
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 × ∅ = ∅
 1 , 1,2 × 𝑎𝑎, 𝑏𝑏 = 1 ↦ 𝑎𝑎, 1 ↦ 𝑏𝑏, 1,2 ↦ 𝑎𝑎, 1,2 ↦ 𝑏𝑏
 card(𝑦𝑦𝑦𝑦𝑦𝑦,𝑛𝑛𝑛𝑛 × 𝑎𝑎, 𝑏𝑏) = card(𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑎𝑎,𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑏𝑏,𝑛𝑛𝑛𝑛 ↦ 𝑎𝑎,𝑛𝑛𝑛𝑛 ↦ 𝑏𝑏) = 4

Predicate Definition

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺 × 𝑻𝑻 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒚𝒚 ∈ 𝑻𝑻

Cartesian product is a type constructor
• 𝑺𝑺 × 𝑻𝑻 is a new type constructed from types 𝑺𝑺 and 𝑻𝑻.

• Cartesian product is the type constructor for ordered pairs.

• Given 𝒙𝒙 ∈ 𝑺𝑺 and 𝒚𝒚 ∈ 𝑻𝑻 we have 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺 × 𝑻𝑻

• Examples:

 4 ↦ 7 ∈ ℤ × ℤ
 2, 3 ↦ 4 ∈ ℙ ℤ × ℤ
 2 ↦ 1, 3 ↦ 3, 4 ↦ 5 ∈ ℙ(ℤ × ℤ)

Sets of order pairs
A simple database can be modelled as a set of ordered pairs:

𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦

Relations
• A relation R between sets 𝑺𝑺 and 𝑻𝑻 expresses a relationship between elements in 𝑺𝑺 and elements in 𝑻𝑻:
 A relation is captured simply as a set of ordered pairs (𝒔𝒔 ↦ 𝒕𝒕) with 𝒔𝒔 ∈ 𝑺𝑺 and 𝒕𝒕 ∈ 𝑻𝑻 .

• A relation is a common modelling structure so Event-B has a special notation for it:
𝑺𝑺 ⟷ 𝑻𝑻 = ℙ (𝑺𝑺 × 𝑻𝑻)

• We can write then

𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦

Domain and range
𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

Anna

Ben

Jack

Irum

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵

Alex

Databases

Math

Logic

SWQuality
SWSafety

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Domain
• The domain of a relation 𝑹𝑹 is the set of first parts of all the pairs in 𝑹𝑹, written 𝒅𝒅𝒅𝒅𝒅𝒅(𝑹𝑹)

𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦

Predicate Definition

𝒙𝒙 ∈ 𝒅𝒅𝒅𝒅𝒅𝒅(𝑹𝑹) ∃ 𝒚𝒚. 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑹𝑹

Range
• The range of a relation 𝑹𝑹 is the set of second parts of all the pairs in 𝑹𝑹, written 𝒓𝒓𝒓𝒓𝒓𝒓 𝑅𝑅

𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦

Predicate Definition

𝒚𝒚 ∈ 𝒓𝒓𝒓𝒓𝒓𝒓(𝑹𝑹) ∃ 𝒙𝒙 .𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑹𝑹

Relational image definition
• Assume 𝑹𝑹 ∈ 𝑺𝑺 ↔ 𝑻𝑻 and 𝑨𝑨 ⊆ 𝑺𝑺

• The relational image of set 𝑨𝑨 under relation 𝑹𝑹 is written 𝑹𝑹 𝑨𝑨

Predicate Definition

𝒚𝒚 ∈ 𝑹𝑹 𝑨𝑨 ∃ 𝒙𝒙. 𝒙𝒙 ∈ 𝑨𝑨 ∧ 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑹𝑹

Relational image examples
• 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦

Partial functions
• Special kind of relation: each domain element has at most one range element associated with it.

• To declare 𝒇𝒇 as a partial function:
𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀

• This says that 𝒇𝒇 is a many-to-one relation.

• It is said to be partial because there may be values in the set 𝑿𝑿 that are not in the domain of 𝒇𝒇

• Each domain element is mapped to one range element:

𝒙𝒙 ∈ 𝒅𝒅𝒅𝒅𝒅𝒅 𝒇𝒇 ⟹ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒇𝒇 𝒙𝒙 = 𝟏𝟏

• More often is formalised as a uniqueness constraint

𝒙𝒙 ↦ 𝒚𝒚𝟏𝟏 ∈ 𝒇𝒇 ∧ 𝒙𝒙 ↦ 𝒚𝒚𝟐𝟐 ∈ 𝒇𝒇 ⟹ 𝒚𝒚𝟏𝟏=𝒚𝒚𝟐𝟐

Function Application
We can use functional application for partial functions

• If 𝒙𝒙 ∈ 𝒅𝒅𝒅𝒅𝒅𝒅 𝒇𝒇 , then we write 𝒇𝒇 𝒙𝒙 for the unique range element associated with 𝒙𝒙 in 𝒇𝒇.

• if 𝒙𝒙 ∉ 𝒅𝒅𝒅𝒅𝒅𝒅 𝒇𝒇 , then 𝒇𝒇 𝒙𝒙 is undefined.

• if 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒇𝒇 𝒙𝒙 > 𝟏𝟏, then 𝒇𝒇 𝒙𝒙 is undefined.

Name Expression Meaning Well-definedness

Function application 𝒇𝒇 𝒙𝒙 𝒇𝒇 𝒙𝒙 = 𝒚𝒚 ⟺
𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝒇𝒇

𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀
∧ 𝒙𝒙 ∈ 𝒅𝒅𝒅𝒅𝒅𝒅(𝒇𝒇)

Examples
𝑆𝑆𝐴𝐴𝑀𝑀𝑆𝑆𝑆𝑆= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0123, 1230, 2301, 3012

𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 0123,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 1230, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦ 3012

• 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝐵𝐵𝐵𝐵𝐵𝐵)=1230

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽) is undefined

Domain Restriction
• Given relation 𝑹𝑹 ∈ 𝑺𝑺 ⟷ 𝑻𝑻 and 𝑨𝑨 ⊆ 𝑺𝑺, the domain restriction of 𝑹𝑹 by 𝑨𝑨 is written

𝑨𝑨 𝑹𝑹

• Restrict relation 𝑹𝑹 so it only contains pairs whose first part is in the set 𝑨𝑨 (keep only those pairs
whose first element is in A)

• Example:
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ↦ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇= 𝑟𝑟𝑟𝑟𝑟𝑟 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Domain Subtraction
• Given 𝑹𝑹 ∈ 𝑺𝑺 ⟷ 𝑻𝑻 and 𝑨𝑨 ⊆ 𝑺𝑺 the domain subtraction of 𝑹𝑹 by 𝑨𝑨 is written

𝑨𝑨 𝑹𝑹

• Remove those pairs from relation 𝑹𝑹 whose first part is in the set 𝑨𝑨 (keep only those pairs whose
first element NOT in A)

• Example:
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ↦ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇= 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ↦ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Range Restriction
• Given 𝑹𝑹 ∈ 𝑺𝑺 ⟷ 𝑻𝑻 and 𝑨𝑨 ⊆ 𝑻𝑻 the range restriction of 𝑹𝑹 by 𝑨𝑨 is written

𝑹𝑹. 𝑨𝑨

• Restrict relation R so the it only contains pairs whose second part is in the set 𝑨𝑨 (keep only
those pairs whose second element is in 𝑨𝑨)

• Example:
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ↦ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ↦ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Range Subtraction
• Given 𝑹𝑹 ∈ 𝑺𝑺 ⟷ 𝑻𝑻 and 𝑨𝑨 ⊆ 𝑻𝑻 the range subtraction of 𝑹𝑹 by 𝑨𝑨 is written

𝑹𝑹 𝑨𝑨

• Remove those pairs from relation 𝑹𝑹 whose second part is in the set 𝑨𝑨 (keep only those pairs
whose second element NOT in 𝑨𝑨)

• Example:
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ↦ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ↦ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑟𝑟𝑟𝑟 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Domain and range,
restriction and subtraction: summary
Assume 𝑹𝑹 ∈ 𝑺𝑺 ↔ 𝑻𝑻 and 𝑨𝑨 ⊆ 𝑺𝑺,𝑩𝑩 ⊆ 𝑻𝑻

Predicate Definition Name

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝐴𝐴 𝑅𝑅 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝒙𝒙 ∈ 𝐴𝐴 Domain restriction

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝐴𝐴 𝑅𝑅 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝒙𝒙 ∉ 𝐴𝐴 Domain subtraction

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 𝐵𝐵 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝒚𝒚 ∈ 𝐵𝐵 Range restriction

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 𝐵𝐵 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝑦𝑦 ∉ 𝐵𝐵 Range subtraction

Function Overriding
• Override the function 𝒇𝒇 by the function 𝒈𝒈 :

𝒇𝒇 𝒈𝒈

• Function 𝒇𝒇 is updated according to 𝒈𝒈 (Override: replace existing mapping with new ones)

• 𝒇𝒇 and 𝒈𝒈 must be partial functions of the same type

Function overriding definition
• Definition in terms of function override and set union

𝒇𝒇 𝒂𝒂 ↦ 𝒃𝒃 = 𝒂𝒂 𝒇𝒇 ∪ 𝒂𝒂 ↦ 𝒃𝒃

𝒇𝒇 𝒈𝒈 = 𝒅𝒅𝒅𝒅𝒅𝒅(𝒈𝒈) 𝒇𝒇 ∪ 𝒈𝒈

• Examples:

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 0123,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 1230, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 2301, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦ 3012 ,

𝒈𝒈 = {𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 5555}

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒈𝒈= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 0123,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 5555, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 2301, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦ 3012

𝒈𝒈𝟏𝟏 = {𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 5555,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 1111}

𝑫𝑫𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒈𝒈𝟏𝟏= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ↦ 1111,𝐵𝐵𝐵𝐵𝐵𝐵 ↦ 5555, 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 ↦ 2301, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ↦ 3012

Relation and function
Any operation applicable to a relation or a set is also applicable to a function

- domain and range of a function, range restriction, etc.

If 𝒇𝒇 is a function , then 𝒇𝒇(𝒙𝒙) is the result of function 𝒇𝒇 for the argument 𝑥𝑥.

Total Functions
• A total function is a special kind of partial function. Declaration 𝒇𝒇 as a total function

𝒇𝒇 ∈ 𝑿𝑿 ⟶ 𝒀𝒀

• This means that 𝒇𝒇 is well-defined for every element in 𝑿𝑿, i.e., 𝒇𝒇 ∈ 𝑿𝑿 ⟶ 𝒀𝒀 is shorthand for
𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀 ∧ 𝒅𝒅𝒅𝒅𝒅𝒅 𝒇𝒇 = 𝑿𝑿

Total injective function
Function called total injective (or 1-1), if for every element 𝒚𝒚 from its range there exists only one
element 𝒙𝒙 in the domain and 𝒅𝒅𝒅𝒅𝒅𝒅 𝒇𝒇 = 𝑿𝑿. Declaration 𝒇𝒇

𝒇𝒇 ∈ 𝑿𝑿 ↣ 𝒀𝒀

• Example:

𝒔𝒔𝑫𝑫𝒂𝒂𝒓𝒓𝒔𝒔𝒂𝒂𝑺𝑺𝒂𝒂 ∈ 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 ↣ 𝑼𝑼𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵

Every user in a system has one unique user name.

Total surjective function
Function called surjective, denoted as

𝒇𝒇 ∈ 𝑿𝑿 ↠ 𝒀𝒀

if its range is the whole target and 𝒓𝒓𝒓𝒓𝒓𝒓 𝒇𝒇 = 𝒀𝒀.

• Example

𝒇𝒇 −”𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠”
𝒇𝒇 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ↠ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

- No school without students (full set 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is covered).

Bijective function
Function is bijective, if it is total, injective and surjective:

𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀

• Example

“Married to” – is bijective function,

𝑿𝑿 - set of “married man”

𝒀𝒀 - set of “married woman”

Wrap-up
We refreshed the basics of set theory and predicate logic.

Sometimes even such simple constructs as sets can be used to specify some interesting
behaviour but we need to define the relations between the variables in the invariant

Relations and functions allow us specify more complex data structures, i.e., automatically
connect sets by defining a specific relation or functions between them

In the specifications, the properties of these mathematical structures would define certain
constraints, e.g., if you defined a function then you cannot add to it a pair with the same first
element as in some existing pair but different second element because it breaks the definition of
what function is. Similarly to other properties (injective, surjective, bijective)

More examples to follow

	DD2460 Lecture 5. �Using Set Theory, Functions and Relations in Formal Specification
	Lecture outline
	Basic set theory
	Membership
	Set definition
	Set comprehension
	Examples on set comprehension
	More examples on set comprehension
	More examples on set comprehension
	Subset and equality relations for sets
	More examples
	Operations on sets (set operators)
	Examples on Set Operators
	Power sets
	Types of sets
	Cardinality
	Expressions
	Predicates
	Predicate logic
	Examples
	Quantified Predicates
	Quantified Predicates
	Quantified Predicates
	Examples
	Examples
	Free and bound variables
	Predicates on Sets
	Duality of universal and existential quantification
	Defining set operators with logic
	Predicates in Event-B
	Example: access control to a building
	Example: access control to a building
	Model context
	Model machine
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Machine behaviour and nondeterminism
	Machine behaviour and nondeterminism
	Relations between sets
	Ordered pairs
	Cartesian product
	Cartesian product: example
	Cartesian product: example
	Cartesian product: �definition and more examples
	Cartesian product is a type constructor
	Sets of order pairs
	Relations
	Domain and range
	Domain
	Range
	Relational image definition
	Relational image examples
	Partial functions
	Function Application
	Examples
	Domain Restriction
	Domain Subtraction
	Range Restriction
	Range Subtraction
	Domain and range, �restriction and subtraction: summary
	Function Overriding
	Function overriding definition
	Relation and function
	Total Functions
	Total injective function
	Total surjective function
	Bijective function
	Wrap-up

