The NP-completeness of Subset Sum

Pilu Crescenzi and Viggo Kann

University of Florence and KTH

October 2011

Crescenzi and Kann (UniFi and KTH)

Basic definitions

- Class NP
 - Set of decision problems that admit "short" and efficiently verifiable solutions
 - Formally, $L \in \mathbb{NP}$ if and only if there exist
 - polynomial p
 - polynomial-time machine V
 - such that, for any x,

$$x \in L \Leftrightarrow \exists y (|y| \le p(|x|) \land V(x, y) = 1)$$

- Polynomial-time reducibility
 - L₁ ≤ L₂ if there exists polynomial-time computable function f such that, for any x,

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

- NP-complete problem
 - $L \in \text{NP}$ is NP-complete if any language in NP is polynomial-time reducible to L
 - Hardest problem in NP

Basic results

Cook-Levin theorem

- Sat problem
 - Given a boolean formula in conjunctive normal form (disjunction of conjunctions), is the formula satisfiable?
- Sat is NP-complete

• 3-Sat

- Each clause contains exactly three literals
- 3-Sat is NP-complete
 - Simple proof by local substitution
 - $l_1 \Rightarrow (l_1 \lor y \lor z) \land (l_1 \lor y \lor \overline{z}) \land (l_1 \lor \overline{y} \lor z) \land (l_1 \lor \overline{y} \lor \overline{z})$
 - $l_1 \vee l_2 \Rightarrow (l_1 \vee l_2 \vee y) \land (l_1 \vee l_2 \vee \overline{y})$
 - $I_1 \vee I_2 \vee I_3 \Rightarrow I_1 \vee I_2 \vee I_3$

•
$$I_1 \vee I_2 \vee \cdots \vee I_k \Rightarrow$$

 $(\mathit{l}_1 \lor \mathit{l}_2 \lor \mathit{y}_1) \land (\overline{\mathit{y}_1} \lor \mathit{l}_3 \lor \mathit{y}_2) \land (\overline{\mathit{y}_2} \lor \mathit{l}_4 \lor \mathit{y}_3) \land \dots \land (\overline{\mathit{y}_{k-3}} \lor \mathit{l}_{k-1} \lor \mathit{l}_k)$

A B A A B A

Problem definition: Subset Sum

Given a (multi)set A of integer numbers and an integer number s, does there exist a subset of A such that the sum of its elements is equal to s?

- No polynomial-time algorithm is known
- Is in NP (short and verifiable certificates):
 - If a set is "good", there exists subset B ⊆ A such that the sum of the elements in B is equal to s
 - Length of B encoding is polynomial in length of A encoding
 - There exists a polynomial-time algorithm that verifies whether *B* is a set of numbers whose sum is *s*:
 - Verify that $\sum_{a \in B} a = s$

NP-completeness

- Reduction of 3-Sat to Subset Sum:
 - *n* variables *x_i* and *m* clauses *c_j*
- For each variable x_i , construct numbers t_i and f_i of n + m digits:
 - The *i*-th digit of t_i and f_i is equal to 1
 - For $n + 1 \le j \le n + m$, the *j*-th digit of t_i is equal to 1 if x_i is in clause c_{j-n}
 - For $n + 1 \le j \le n + m$, the *j*-th digit of f_i is equal to 1 if $\overline{x_i}$ is in clause c_{j-n}
 - All other digits of t_i and f_i are 0
- Example:

 $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$

	i			j			
Number	1	2	3	1	2	3	4
t ₁	1	0	0	1	0	0	1
f ₁	1	0	0	0	1	1	0
t ₂	0	1	0	1	0	1	0
f ₂	0	1	0	0	1	0	1
t3	0	0	1	1	1	0	1
f ₃	0	0	1	0	0	1	0

• For each clause c_j , construct numbers x_j and y_j of n + m digits:

- The (n + j)-th digit of x_j and y_j is equal to 1
- All other digits of x_i and y_j are 0
- Example:

 $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \underline{x_3}) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$

	i			j			
Number	1	2	3	1	2	3	4
x1	0	0	0	1	0	0	0
<i>y</i> 1	0	0	0	1	0	0	0
×2	0	0	0	0	1	0	0
<i>y</i> 2	0	0	0	0	1	0	0
x3	0	0	0	0	0	1	0
<i>y</i> 3	0	0	0	0	0	1	0
×4	0	0	0	0	0	0	1
<i>y</i> 4	0	0	0	0	0	0	1

• Finally, construct a sum number s of n + m digits:

- For $1 \le j \le n$, the *j*-th digit of *s* is equal to 1
- For $n+1 \le j \le n+m$, the *j*-th digit of *s* is equal to 3

Proof of correctness

- Show that Formula satisfiable \Rightarrow Subset exists:
 - Take t_i if x_i is true
 - Take f_i if x_i is false
 - Take x_i if number of true literals in c_i is at most 2
 - Take y_j if number of true literals in c_j is 1
 - Example
 - $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3)$
 - All variables true

	i			j			
Number	1	2	3	1	2	3	4
t ₁	1	0	0	1	0	0	1
t ₂	0	1	0	1	0	1	0
t3	0	0	1	1	1	0	1
x2	0	0	0	0	1	0	0
<i>y</i> ₂	0	0	0	0	1	0	0
×3	0	0	0	0	0	1	0
<i>y</i> 3	0	0	0	0	0	1	0
×4	0	0	0	0	0	0	1
5	1	1	1	3	3	3	3

- Show that Subset exists \Rightarrow Formula satisfiable:
 - Assign value true to x_i if t_i is in subset
 - Assign value false to x_i if f_i is in subset
 - Exactly one number per variable must be in the subset
 - Otherwise one of first *n* digits of the sum is greater than 1
 - Assignment is consistent
 - At least one variable number corresponding to a literal in a clause must be in the subset
 - Otherwise one of next *m* digits of the sum is smaller than 3
 - Each clause is satisfied