The NP-completeness of Subset Sum

Pilu Crescenzi and Viggo Kann

University of Florence and KTH

October 2011

Basic definitions

- Class NP
- Set of decision problems that admit "short" and efficiently verifiable solutions
- Formally, $L \in N P$ if and only if there exist
- polynomial p
- polynomial-time machine V
- such that, for any x,

$$
x \in L \Leftrightarrow \exists y(|y| \leq p(|x|) \wedge V(x, y)=1)
$$

- Polynomial-time reducibility
- $L_{1} \leq L_{2}$ if there exists polynomial-time computable function f such that, for any x,

$$
x \in L_{1} \Leftrightarrow f(x) \in L_{2}
$$

- NP-complete problem
- $L \in N P$ is NP-complete if any language in NP is polynomial-time reducible to L
- Hardest problem in NP

Basic results

- Cook-Levin theorem
- Sat problem
- Given a boolean formula in conjunctive normal form (disjunction of conjunctions), is the formula satisfiable?
- Sat is NP-complete
- 3-Sat
- Each clause contains exactly three literals
- 3-Sat is NP-complete
- Simple proof by local substitution
- $I_{1} \Rightarrow\left(I_{1} \vee y \vee z\right) \wedge\left(I_{1} \vee y \vee \bar{z}\right) \wedge\left(I_{1} \vee \bar{y} \vee z\right) \wedge\left(I_{1} \vee \bar{y} \vee \bar{z}\right)$
- $I_{1} \vee I_{2} \Rightarrow\left(I_{1} \vee I_{2} \vee y\right) \wedge\left(I_{1} \vee I_{2} \vee \bar{y}\right)$
- $I_{1} \vee I_{2} \vee I_{3} \Rightarrow I_{1} \vee I_{2} \vee I_{3}$
- $I_{1} \vee I_{2} \vee \cdots \vee I_{k} \Rightarrow$

$$
\left(I_{1} \vee I_{2} \vee y_{1}\right) \wedge\left(\overline{y_{1}} \vee I_{3} \vee y_{2}\right) \wedge\left(\overline{y_{2}} \vee I_{4} \vee y_{3}\right) \wedge \cdots \wedge\left(\overline{y_{k-3}} \vee I_{k-1} \vee I_{k}\right)
$$

Problem definition: Subset Sum

Given a (multi)set A of integer numbers and an integer number s, does there exist a subset of A such that the sum of its elements is equal to s ?

- No polynomial-time algorithm is known
- Is in NP (short and verifiable certificates):
- If a set is "good", there exists subset $B \subseteq A$ such that the sum of the elements in B is equal to s
- Length of B encoding is polynomial in length of A encoding
- There exists a polynomial-time algorithm that verifies whether B is a set of numbers whose sum is s :
- Verify that $\sum_{a \in B} a=s$

NP-completeness

- Reduction of 3-Sat to Subset Sum:
- n variables x_{i} and m clauses c_{j}
- For each variable x_{i}, construct numbers t_{i} and f_{i} of $n+m$ digits:
- The i-th digit of t_{i} and f_{i} is equal to 1
- For $n+1 \leq j \leq n+m$, the j-th digit of t_{i} is equal to 1 if x_{i} is in clause c_{j-n}
- For $n+1 \leq j \leq n+m$, the j-th digit of f_{i} is equal to 1 if $\overline{x_{i}}$ is in clause c_{j-n}
- All other digits of t_{i} and f_{i} are 0
- Example:

$$
\left.\begin{array}{l}
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{X_{1}} \vee \overline{X_{2}} \vee x_{3}\right) \wedge\left(\overline{X_{1}} \vee x_{2} \vee \overline{X_{3}}\right) \wedge\left(x_{1} \vee \overline{X_{2}} \vee x_{3}\right) \\
\qquad \begin{array}{||c|c|c|c|c|c|c|c|}
\hline & \text { Number } & 1 & 2 & 3 & 1 & 2 & 3 \\
\hline
\end{array} \\
\hline \hline t_{1} \\
1
\end{array}\right)
$$

- For each clause c_{j}, construct numbers x_{j} and y_{j} of $n+m$ digits:
- The $(n+j)$-th digit of x_{j} and y_{j} is equal to 1
- All other digits of x_{i} and y_{j} are 0
- Example:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)
$$

	i				j			
Number	1	2	3	1	2	3	4	
x_{1}	0	0	0	1	0	0	0	
y_{1}	0	0	0	1	0	0	0	
x_{2}	0	0	0	0	1	0	0	
y_{2}	0	0	0	0	1	0	0	
x_{3}	0	0	0	0	0	1	0	
y_{3}	0	0	0	0	0	1	0	
x_{4}	0	0	0	0	0	0	1	
y_{4}	0	0	0	0	0	0	1	

- Finally, construct a sum number s of $n+m$ digits:
- For $1 \leq j \leq n$, the j-th digit of s is equal to 1
- For $n+1 \leq j \leq n+m$, the j-th digit of s is equal to 3

Proof of correctness

- Show that Formula satisfiable \Rightarrow Subset exists:
- Take t_{i} if x_{i} is true
- Take f_{i} if x_{i} is false
- Take x_{j} if number of true literals in c_{j} is at most 2
- Take y_{j} if number of true literals in c_{j} is 1
- Example
- $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$
- All variables true

	i				j				
Number	1	2	3	1	2	3	4		
t_{1}	1	0	0	1	0	0	1		
t_{2}	0	1	0	1	0	1	0		
t_{3}	0	0	1	1	1	0	1		
x_{2}	0	0	0	0	1	0	0		
y_{2}	0	0	0	0	1	0	0		
x_{3}	0	0	0	0	0	1	0		
y_{3}	0	0	0	0	0	1	0		
x_{4}	0	0	0	0	0	0	1		
s	1	1	1	3	3	3	3		

- Show that Subset exists \Rightarrow Formula satisfiable:
- Assign value true to x_{i} if t_{i} is in subset
- Assign value false to x_{i} if f_{i} is in subset
- Exactly one number per variable must be in the subset
- Otherwise one of first n digits of the sum is greater than 1
- Assignment is consistent
- At least one variable number corresponding to a literal in a clause must be in the subset
- Otherwise one of next m digits of the sum is smaller than 3
- Each clause is satisfied

