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Topics for Today

1 Abstract Vector Space

2 Linear Transformations of Abstract Vector Spaces

3 Isomorphisms of Abstract Vector Spaces
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

1 (Addition) ~u, ~v ∈ V then ~u + ~v ∈ V

2 (Commutativity) ~u + ~v = ~v + ~u

3 (Associativity) (~u + ~v) + ~w = ~u + (~v + ~w)

4 (Identity) There exists ~0 such that ~u +~0 = ~u

5 (Inverse) For every ~u ∈ V , there exists a ~v ∈ V such that ~u + ~v = ~0.
We denote such a ~v = −~u

6 (Scalar Multiplication) For every c ∈ F , and every ~u ∈ V , c · ~u ∈ V

7 (Identity) For every ~u ∈ V , 1 · ~u = ~u

8 (Associativity) For ever c , d ∈ F and every ~u ∈ V , c · (d · ~u) = (cd) · ~u
9 (Distributivity) For every c, d ∈ F and every ~u, ~v ∈ V ,

(c + d) · ~u = c · ~u + d · ~v and c · (~u + ~v) = c · ~u + c · ~v
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First Theorem

Up until now we have discussed only the vector spaces Rn and their
subspaces.

However, using just these axioms we were able to prove
universal facts about any vector spaces

Theorem

If ~v is a vectors in a vector space V , and if k is a scalar, then

1 0~v = ~0

2 k~0 = ~0

3 (−1)~v = −~v
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:
V = {f : R→ R}.

To see this is a vector space, we would first need to
define what it means to add two functions and what it means to multiply
by a scalar. We do this in the natural way: if f , g ∈ V , then we can write
define f + g as the function such that

(f + g)(x) = f (x) + g(x)

whereas if c ∈ R, we define the function cf such that

(cf )(x) = c · f (x)

Now, we can begin to talk about the properties of vectors spaces we have
dealt with. That is: linear dependence, subspaces, basis, linear
transformations, etc...
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Linear Dependence

Exercise

Let 1 denote the constant function that sends everything to 1. Show that
the set {1, cos2(x), sin2(x)} is a linear dependent set of vectors in the
vectors space of functions.

Patrick Meisner (KTH) Lecture 20 6 / 27



Linear Dependence

Exercise

Let 1 denote the constant function that sends everything to 1. Show that
the set {1, cos2(x), sin2(x)} is a linear dependent set of vectors in the
vectors space of functions.

Patrick Meisner (KTH) Lecture 20 6 / 27



Wronski’s Test

If we have a set of functions from R→ R given by

{f1(x), f2(x), . . . , fn(x)}

then we define the Wronskian of the functions to be

W (x) := det




f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n




Theorem (Wronski’s Test)

A set of n functions from R→ R are linearly independent if and only if the
Wronskian of the functions is not identically zero.
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Example of Wronski’s Test

Exercise

Using that fact that if f1(x) = 1, f2(x) = cos2(x) and f3(x) = sin2(x), then

f ′1 = 0, f ′′1 = 0, f ′2 = −2 sin(x) cos(x), f ′′2 = 2 sin2(x)− 2 cos2(x)

f ′3 = 2 sin(x) cos(x), f ′′3 = 2 cos2(x)− 2 sin2(x)

show that {f1, f2, f3} is linearly dependent by showing that the Wronskian
is identically zero.

Setting up the Wronskian, we see that

W (x) = det

1 cos(x) sin(x)
0 −2 sin(x) cos(x) 2 sin(x) cos(x)
0 2 sin2(x)− 2 cos2(x) 2 cos2(x)− 2 sin2(x)
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Example of Wronski’s Test 2

Expanding the determinant along the first column, we find that

W (x) = det

((
−2 sin(x) cos(x) 2 sin(x) cos(x)

2 sin2(x)− 2 cos2(x) 2 cos2(x)− 2 sin2(x)

))

= (−2 sin(x) cos(x))(2 cos2(x)− 2 sin2(x))

−(2 sin(x) cos(x))(2 sin2(x)− 2 cos2(x))

= −4 sin(x) cos3(x) + 4 sin3(x) cos(x)− 4 sin3(x) cos(x) + 4 sin(x) cos3(x)

= 0
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Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a
vector space under the same scalar multiplication and addition of V , then
we call W a subspace of V .

Example: If we let Wn−1 be the set of all polynomials of degree at most
n − 1:

Wn−1 = {a0 + a1x + a2x
2 + · · ·+ an−1x

n−1 : ai ∈ R}

then we W is a vector space using the same vector addition and scalar
multiplication as the vector space of functions. Hence we say the
polynomials are a subspace of the vector space of functions.
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Linear Independent Polynomials

Exercise

Using the fact that if fj(x) = x j then f
(m)
m (x) = m! and f

(m)
j (x) = 0 if

j > m, show that the set {f0, f1, . . . , fn−1} is linear independent for any n.

Using the fact, we see that the Wronskian of the vectors will be

W (x) = det





1 x x2 x3 · · · xn−1

0 1 ∗ ∗ · · · ∗
0 0 2 ∗ · · · ∗
0 0 0 6 · · · ∗
...

...
...

...
. . .

...
0 0 0 0 · · · (n − 1)!




= 1× 1× 2× 6× · · · × (n − 1)! 6= 0

Patrick Meisner (KTH) Lecture 20 11 / 27



Linear Independent Polynomials

Exercise

Using the fact that if fj(x) = x j then f
(m)
m (x) = m! and f

(m)
j (x) = 0 if

j > m, show that the set {f0, f1, . . . , fn−1} is linear independent for any n.

Using the fact, we see that the Wronskian of the vectors will be

W (x) = det





1 x x2 x3 · · · xn−1

0 1 ∗ ∗ · · · ∗
0 0 2 ∗ · · · ∗
0 0 0 6 · · · ∗
...

...
...

...
. . .

...
0 0 0 0 · · · (n − 1)!





= 1× 1× 2× 6× · · · × (n − 1)! 6= 0
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Dimension of Space of Polynomials

So we see that {1, x , x2, . . . , xn−1} is a linearly independent set of vectors.

Moreover, clearly any polynomials of degree at most n − 1 can be written
as a linear combination of vectors in {1, x , x2, . . . , xn−1} and so it is a
spanning set.

Thus, we may conclude that {1, x , x2, . . . , xn−1} is a basis for the
polynomials of degree at most n − 1.

Hence, if Wn−1 = {a0 + a1x + a2x
2 + · · ·+ an−1x

n−1 : ai ∈ R}, then

dim(Wn−1) = number of elements in a basis = n
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Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {a0 + a1x + a2x

2 + · · ·+ anx
n : ai ∈ R, n ≥ 0}.

Then we see that a basis for this would necessarily be all the powers x :
{1, x , x2, x3, . . . }.

Hence,
dim(W ) = number of elements in a basis =∞

and W is what we call an infinite dimensional subspace.

Moreover, since all polynomials are also functions, we see that the vector
space of all functions from the reals to the reals is also infinite dimensional.
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Unusual Vector Space

The vector space axioms do not suppose that the vector addition and
scalar multiplication behave in a way that we are used to, only that they
satisfy the properties of the axioms.

Hence, it is possible to define very
strange vector spaces.

Exercise

Let V be the set of positive real numbers but define vector addition and
scalar multiplication by R as follows:

u ⊕ v = u · v (vector addition)

k ⊗ u = uk (scalar multiplication by R)

Show that these operations satisfy the axioms and hence makes V a vector
space.
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Solution

Axiom 4 - There exists a ~0 such that u⊕~0 = u.

We know that ~0 ∈ V so it
must be a real number, say ~0 = c. Hence,

u = u ⊕~0 = u · c =⇒ c = 1

So, in this vector space ~0 = 1.

Axiom 5 - There is a negative of u such that u ⊕ (−u) = ~0. Again we
know that (−u) ∈ V , so it must be a real number, say (−u) = d . Hence,

1 = ~0 = u ⊕ (−u) = u · d =⇒ d =
1

u

So, in this vector space (−u) = 1/u.

Note that even with all the weirdness here we still have that

(−1)⊗ u = u−1 =
1

u
= (−u)
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Solution 2

Axiom 7 - If k is a scalar, then k ⊗ (u ⊕ v) = (k ⊗ u)⊕ (k ⊗ v).

Indeed,
we have that

k⊗(u⊕v) = k⊗(u·v) = (u·v)k = (uk)·(vk) = (uk)⊕(vk) = (k⊗u)⊕(k⊗v)

Remark

Even though the set of element in V are the real numbers, V is NOT a
subspace of R or any other Rn! This is because in order to be a subspace,
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Linear Transformations Between Abstract Vector Spaces

Definition

If T : V →W is a function from a vector space V to a vector space W
then T is called a linear transformation from V to W if the following
properties hold for all vectors ~u, ~v and for all scalars c

1 T (c~u) = cT (~u)

2 T (~u + ~v) = T (~u) + T (~v)

Again, we have seen that we have some properties directly from the
definition.

Theorem

If T : V →W is a linear transformation, then:

1 T (~0) = ~0

2 T (−~u) = −T (~u)

3 T (~u − ~v) = T (~u)− T (~v)
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Kernel and Range

Definition

If T : V →W is a linear transformation then the set of vectors in V that
T maps into ~0 is called the kernel of T and is denoted ker(T ).

If T : V →W is a linear transformation then the range of T , denoted by
ran(T ), is the set of all vectors in W that are images of at least one vector
in V ; that is ran(T ) is the image of the domain V under the
transformation T

Theorem

If T : V →W is a linear transformation then ker(T ) is subspace of V and
ran(T ) is a subspace of W .

Patrick Meisner (KTH) Lecture 20 18 / 27



Kernel and Range

Definition

If T : V →W is a linear transformation then the set of vectors in V that
T maps into ~0 is called the kernel of T and is denoted ker(T ).

If T : V →W is a linear transformation then the range of T , denoted by
ran(T ), is the set of all vectors in W that are images of at least one vector
in V ; that is ran(T ) is the image of the domain V under the
transformation T

Theorem

If T : V →W is a linear transformation then ker(T ) is subspace of V and
ran(T ) is a subspace of W .

Patrick Meisner (KTH) Lecture 20 18 / 27



Kernel and Range

Definition

If T : V →W is a linear transformation then the set of vectors in V that
T maps into ~0 is called the kernel of T and is denoted ker(T ).

If T : V →W is a linear transformation then the range of T , denoted by
ran(T ), is the set of all vectors in W that are images of at least one vector
in V ; that is ran(T ) is the image of the domain V under the
transformation T

Theorem

If T : V →W is a linear transformation then ker(T ) is subspace of V and
ran(T ) is a subspace of W .

Patrick Meisner (KTH) Lecture 20 18 / 27



One-to-one and Onto

Definition

A linear transformation T : V →W is one-to-one if it maps distinct
vectors in V into distinct vectors in W .

A linear transformation T : V →W is onto if every vector in W has a
vector in V such that T (~v) = ~w .

Theorem

A linear transformation is T : V →W is one-to-one if and only if
ker(T ) = {~0}.

A linear transformation is T : V →W is onto if and only if ran(T ) = W .
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Isomorphisms

Definition

A linear transformation T : V →W is called an isomorphism if it is
one-to-one and onto

, and we say that a vector V is isomorphic to W if
there exists an isomorphism from V to W .

Theorem

Any n-dimensional vector space defined over the reals is isomorphic to Rn.

Proof.

Let V be an n-dimensional vectors space. Then there is a basis for V :
B = {~v1, . . . , ~vn}.Then the linear transformation defined by

T (a1~v1 + a2~v2 + · · ·+ an~vn) = a1~e1 + a2~e2 + · · ·+ an~en

is an isomorphism.
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Examples

Let V = {f : R→ R} and let x1, x2 . . . , xn be any set of real numbers.

Then the function

T :V → Rn

f → (f (x1), f (x2), . . . , f (xn))

is a linear transformation. This is called the evaluation at x1, x2, . . . , xn
transformation.

The kernel would be any function that is 0 at all of x1, . . . , xn. So it is not
one-to-one.

If all the xi were distinct then the range would be all of Rn. So it would be
onto.
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Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m

, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm.

Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix.

We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)

Patrick Meisner (KTH) Lecture 20 22 / 27



Examples

Let Wm−1 = {a0 + a1x + a2x
2 + · · ·+ am−1x

m−1} be the space of
polynomials of degree at most m, then we know that deg(Wm−1) = m and
so isomorphic to Rm. Hence the evaluation at x1, x2 . . . , xn transformation
would behave like a transformation from Rm → Rn:

T :Wm−1 ∼= Rm → Rn

f → (f (x1), f (x2), . . . , f (xn))

So, let us find the matrix. We know that 1, x , x2, . . . , xm−1 is a basis for
Wm−1. So we need to calculate T (x i ) for i = 0, . . . ,m − 1:

T (x0) = T (1) = (1, 1, . . . , 1)

T (x i ) = (x i1, x
i
2, . . . , x

i
n)
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Matrix of Evaluation Function

Thus we see that T can be given by the matrix
1 x1 x2 . . . xn
1 x21 x22 . . . x2n
...

...
...

. . .
...

1 xm−11 xm−12 . . . xm−1n



A little more analysis would tell us that

1 If m > n then T is onto

2 If m < n then there is a nontrivial solution to T (f ) = 0.

3 If m = n, then this is an isomorphism.
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Conclusion About Polynomials

Hence we may conclude the following theorem about polynomials

Theorem

For any real number c1, c2 . . . , cn, x1, x2, . . . , xn you can find a polynomial
of degree n such that

f (x1) = c1, f (x2) = c1, . . . , f (xn) = cn
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More Examples

The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T :V → V

f → f ′

We get the kernel of this map will be the constant functions and that the
map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote Wn as the subspace of V of polynomials of degree at
most n, then the derivative would be a linear transformation from Wn to
Wn−1 and it’s matrix would be

0 1 0 . . . 0
0 0 2 . . . 0
...

...
. . .

...
0 0 0 . . . n − 1
0 0 0 . . . 0
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Final Example

The trace function from the n × n square matrices to R is also a linear
transformation:

T :Mn,n → R
A→ Tr(A)

This map will be onto but not one-to-one. Interesting question: What is
the matrix of the this linear transformation?

The determinant function from the n × n square matrices to R is not a
linear transformation:

T :Mn,n → R
A→ det(A)

since det(cA) = cn det(A) 6= c det(A).

Patrick Meisner (KTH) Lecture 20 26 / 27



Final Example

The trace function from the n × n square matrices to R is also a linear
transformation:

T :Mn,n → R
A→ Tr(A)

This map will be onto but not one-to-one.

Interesting question: What is
the matrix of the this linear transformation?

The determinant function from the n × n square matrices to R is not a
linear transformation:

T :Mn,n → R
A→ det(A)

since det(cA) = cn det(A) 6= c det(A).

Patrick Meisner (KTH) Lecture 20 26 / 27



Final Example

The trace function from the n × n square matrices to R is also a linear
transformation:

T :Mn,n → R
A→ Tr(A)

This map will be onto but not one-to-one. Interesting question: What is
the matrix of the this linear transformation?

The determinant function from the n × n square matrices to R is not a
linear transformation:

T :Mn,n → R
A→ det(A)

since det(cA) = cn det(A) 6= c det(A).

Patrick Meisner (KTH) Lecture 20 26 / 27



Final Example

The trace function from the n × n square matrices to R is also a linear
transformation:

T :Mn,n → R
A→ Tr(A)

This map will be onto but not one-to-one. Interesting question: What is
the matrix of the this linear transformation?

The determinant function from the n × n square matrices to R is not a
linear transformation:

T :Mn,n → R
A→ det(A)

since det(cA) = cn det(A) 6= c det(A).

Patrick Meisner (KTH) Lecture 20 26 / 27



Final Example

The trace function from the n × n square matrices to R is also a linear
transformation:

T :Mn,n → R
A→ Tr(A)

This map will be onto but not one-to-one. Interesting question: What is
the matrix of the this linear transformation?

The determinant function from the n × n square matrices to R is not a
linear transformation:

T :Mn,n → R
A→ det(A)

since det(cA) = cn det(A) 6= c det(A).

Patrick Meisner (KTH) Lecture 20 26 / 27



The End

The End
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