SF 1684 Algebra and Geometry Lecture 20

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Abstract Vector Space
(2) Linear Transformations of Abstract Vector Spaces
(3) Isomorphisms of Abstract Vector Spaces

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(0) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(0) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
(0) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(9) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
(0) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$
(1) (Identity) For every $\vec{u} \in V, 1 \cdot \vec{u}=\vec{u}$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(9) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
(3) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$
(1) (Identity) For every $\vec{u} \in V, 1 \cdot \vec{u}=\vec{u}$
(8) (Associativity) For ever $c, d \in F$ and every $\vec{u} \in V, c \cdot(d \cdot \vec{u})=(c d) \cdot \vec{u}$

Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that satisfies these axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(9) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
(3) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$
(1) (Identity) For every $\vec{u} \in V, 1 \cdot \vec{u}=\vec{u}$
(8) (Associativity) For ever $c, d \in F$ and every $\vec{u} \in V, c \cdot(d \cdot \vec{u})=(c d) \cdot \vec{u}$
(9) (Distributivity) For every $c, d \in F$ and every $\vec{u}, \vec{v} \in V$, $(c+d) \cdot \vec{u}=c \cdot \vec{u}+d \cdot \vec{v}$ and $c \cdot(\vec{u}+\vec{v})=c \cdot \vec{u}+c \cdot \vec{v}$

First Theorem

Up until now we have discussed only the vector spaces \mathbb{R}^{n} and their subspaces.

First Theorem

Up until now we have discussed only the vector spaces \mathbb{R}^{n} and their subspaces. However, using just these axioms we were able to prove universal facts about any vector spaces

First Theorem

Up until now we have discussed only the vector spaces \mathbb{R}^{n} and their subspaces. However, using just these axioms we were able to prove universal facts about any vector spaces

Theorem

If \vec{v} is a vectors in a vector space V, and if k is a scalar, then
(1) $0 \vec{v}=\overrightarrow{0}$
(2) $k \overrightarrow{0}=\overrightarrow{0}$
(3) $(-1) \vec{v}=-\vec{v}$

Vector Space of Functions

We could consider the set of all functions from the reals to the reals: $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$.

Vector Space of Functions

We could consider the set of all functions from the reals to the reals: $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$. To see this is a vector space, we would first need to define what it means to add two functions and what it means to multiply by a scalar.

Vector Space of Functions

We could consider the set of all functions from the reals to the reals: $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$. To see this is a vector space, we would first need to define what it means to add two functions and what it means to multiply by a scalar. We do this in the natural way: if $f, g \in V$, then we can write define $f+g$ as the function such that

$$
(f+g)(x)=f(x)+g(x)
$$

Vector Space of Functions

We could consider the set of all functions from the reals to the reals: $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$. To see this is a vector space, we would first need to define what it means to add two functions and what it means to multiply by a scalar. We do this in the natural way: if $f, g \in V$, then we can write define $f+g$ as the function such that

$$
(f+g)(x)=f(x)+g(x)
$$

whereas if $c \in \mathbb{R}$, we define the function $o f$ such that

$$
(c f)(x)=c \cdot f(x)
$$

Vector Space of Functions

We could consider the set of all functions from the reals to the reals: $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$. To see this is a vector space, we would first need to define what it means to add two functions and what it means to multiply by a scalar. We do this in the natural way: if $f, g \in V$, then we can write define $f+g$ as the function such that

$$
(f+g)(x)=f(x)+g(x)
$$

whereas if $c \in \mathbb{R}$, we define the function $o f$ such that

$$
(c f)(x)=c \cdot f(x)
$$

Now, we can begin to talk about the properties of vectors spaces we have dealt with.

Vector Space of Functions

We could consider the set of all functions from the reals to the reals: $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$. To see this is a vector space, we would first need to define what it means to add two functions and what it means to multiply by a scalar. We do this in the natural way: if $f, g \in V$, then we can write define $f+g$ as the function such that

$$
(f+g)(x)=f(x)+g(x)
$$

whereas if $c \in \mathbb{R}$, we define the function of such that

$$
(c f)(x)=c \cdot f(x)
$$

Now, we can begin to talk about the properties of vectors spaces we have dealt with. That is: linear dependence, subspaces, basis, linear transformations, etc...

Linear Dependence
Exercise
Let 1 denote the constant function that sends everything to 1 . Show that the set $\left\{1, \cos ^{2}(x), \sin ^{2}(x)\right\}$ is a linear dependent set of vectors in the vectors space $\overline{6} f$ functions.
Three ratoon on linearly cleperdat iff there exists $c, c_{1}, c_{1} \neq 0$
sech that $c_{1} \vec{v}_{1}+c_{2} \bar{v}_{2}+c_{3} \bar{v}^{2}=0$
Con 1 find $C_{1}, C_{1}, C_{\text {, }}$ sech that $* C_{1} \cdot 1+C_{2} \cos ^{2} x+H_{5} \sin ^{2} x=0$
Fie. * must be true for all x.

$$
c_{1}=-1, \quad c_{2}=1, c_{3}=1
$$

$$
c_{1} 1+\cos ^{1} x\left(-C \sin ^{2} x=-1+\underline{\cos ^{1} x+\sin ^{2} x}=-1+1=0\right.
$$

Linear Dependence

Exercise

Let 1 denote the constant function that sends everything to 1 . Show that the set $\left\{1, \cos ^{2}(x), \sin ^{2}(x)\right\}$ is a linear dependent set of vectors in the vectors space of functions.

Wronski's Test

If we have a set of functions from $\mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}
$$

Wronski's Test

If we have a set of functions from $\mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}
$$

then we define the Wronskian of the functions to be

$$
\xlongequal[\substack{n \\
\text { dariv tive }}]{W(x)}:=(\underbrace{\left(\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \ldots & f_{n}^{(n-1)}
\end{array}\right)}_{M}) \text { - - fentions } \begin{gathered}
\text { - derivctive } \\
\text { of forctions } \\
\text { (n-1)-st deivetu } \\
\text { functic }
\end{gathered}
$$

Wronski's Test

If we have a set of functions from $\mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}
$$

then we define the Wronskian of the functions to be

$$
\xlongequal{W(x):=\operatorname{det}}\left(\left(\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right)\right)
$$

Theorem (Wronski's Test)

A set of n functions from $\mathbb{R} \rightarrow \mathbb{R}$ are linearly independent if and only if the Wronskian of the functions is not identically zero.

Example of Wronski's Test

Exercise

Using that fact that if $f_{1}(x)=1, f_{2}(x)=\cos ^{2}(x)$ and $f_{3}(x)=\sin ^{2}(x)$, then

$$
\begin{gathered}
f_{1}^{\prime}=0, f_{1}^{\prime \prime}=0, f_{2}^{\prime}=-2 \sin (x) \cos (x), f_{2}^{\prime \prime}=2 \sin ^{2}(x)-2 \cos ^{2}(x) \\
f_{3}^{\prime}=2 \sin (x) \cos (x), f_{3}^{\prime \prime}=2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{gathered}
$$

show that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is linearly dependent by showing that the Wronskian is identically zero.

Example of Wronski's Test

Exercise

Using that fact that if $f_{1}(x)=1, f_{2}(x)=\cos ^{2}(x)$ and $f_{3}(x)=\sin ^{2}(x)$, then

$$
\begin{gathered}
f_{1}^{\prime}=\underset{\gtrless}{0} f_{1}^{\prime \prime}=0, f_{2}^{\prime}=-2 \sin (x) \cos (x) \\
f_{3}^{\prime}=2 \sin (x) \cos (x), f_{3}^{\prime \prime}=2 \cos ^{2}(x)-2 \sin ^{2}(x)-2 \cos ^{2}(x)
\end{gathered}
$$

show that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is linearly dependent by showing that the Wronskian is identically zero.

Setting up the Wronskian, we see that

$$
W(x)=\operatorname{det}\left(\left(\begin{array}{cc}
\cos (x) & \sin (x) \\
0 \\
0
\end{array}\right]\left[\begin{array}{cc}
\frac{-2 \sin (x) \cos (x)}{2 \sin ^{2}(x)-2 \cos ^{2}(x)} & 2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{array}\right)\right)_{2^{2 n} \text { deir }}^{- \text {-dentivip }}
$$

Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

$$
W(x)=\operatorname{det}\left(\left(\begin{array}{cc}
-2 \sin (x) \cos (x) & 2 \sin (x) \cos (x) \\
2 \sin ^{2}(x)-2 \cos ^{2}(x) & 2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{array}\right)\right)
$$

Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

$$
\begin{gathered}
W(x)=\operatorname{det}\left(\left(\begin{array}{cc}
-2 \sin (x) \cos (x) & 2 \sin (x) \cos (x) \\
2 \sin ^{2}(x)-2 \cos ^{2}(x) & 2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{array}\right)\right) \\
=(-2 \sin (x) \cos (x))\left(2 \cos ^{2}(x)-2 \sin ^{2}(x)\right)
\end{gathered}
$$

Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

$$
\begin{aligned}
W(x)=\operatorname{det} & \left(\left(\begin{array}{cc}
-2 \sin (x) \cos (x) & 2 \sin (x) \cos (x) \\
2 \sin ^{2}(x)-2 \cos ^{2}(x) & 2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{array}\right)\right) \\
= & (-2 \sin (x) \cos (x))\left(2 \cos ^{2}(x)-2 \sin ^{2}(x)\right) \\
& -(2 \sin (x) \cos (x))\left(2 \sin ^{2}(x)-2 \cos ^{2}(x)\right)
\end{aligned}
$$

Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

$$
\begin{aligned}
W(x)=\operatorname{det} & \left(\left(\begin{array}{cc}
-2 \sin (x) \cos (x) & 2 \sin (x) \cos (x) \\
2 \sin ^{2}(x)-2 \cos ^{2}(x) & 2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{array}\right)\right) \\
= & (-2 \sin (x) \cos (x))\left(2 \cos ^{2}(x)-2 \sin ^{2}(x)\right) \\
& -(2 \sin (x) \cos (x))\left(2 \sin ^{2}(x)-2 \cos ^{2}(x)\right)
\end{aligned}
$$

$=-4 \sin (x) \cos ^{3}(x)+4 \sin ^{3}(x) \cos (x)-4 \sin ^{3}(x) \cos (x)+4 \sin (x) \cos ^{3}(x)$

Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

$$
\begin{gathered}
W(x)=\operatorname{det}\left(\left(\begin{array}{cc}
-2 \sin (x) \cos (x) & 2 \sin (x) \cos (x) \\
2 \sin ^{2}(x)-2 \cos ^{2}(x) & 2 \cos ^{2}(x)-2 \sin ^{2}(x)
\end{array}\right)\right) \\
=(-2 \sin (x) \cos (x))\left(2 \cos ^{2}(x)-2 \sin ^{2}(x)\right) \\
=\begin{array}{l}
-(2 \sin (x) \cos (x))\left(2 \sin ^{2}(x)-2 \cos ^{2}(x)\right) \\
=0
\end{array}+\frac{\left.4 \sin (x) \cos ^{3}(x)+4 \sin ^{3}(x) \cos (x)-4 \sin ^{3}(x) \cos (x)+x\right)}{}
\end{gathered}
$$

Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a vector space under the same scalar multiplication and addition of V, then we call W a subspace of V.

Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a vector space under the same scalar multiplication and addition of V, then we call W a subspace of V.

Example: If we let W_{n-1} be the set of all polynomials of degree at most $n-1$:

$$
W_{n-1}=\left\{a_{0}+\underset{\sim}{a_{1} x}+\underset{\sim}{a_{2} x^{2}}+\cdots+\underset{\sim}{a_{n-1} x^{n-1}}: a_{i} \in \mathbb{R}\right\}
$$

Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a vector space under the same scalar multiplication and addition of V, then we call W a subspace of V.

Example: If we let W_{n-1} be the set of all polynomials of degree at most $n-1$:

$$
W_{n-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}
$$

then we W is a vector space using the same vector addition and scalar multiplication as the vector space of functions.

Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a vector space under the same scalar multiplication and addition of V, then we call W a subspace of V.

Example: If we let W_{n-1} be the set of all polynomials of degree at most $n-1$:

$$
W_{n-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}
$$

then we W is a vector space using the same vector addition and scalar multiplication as the vector space of functions. Hence we say the polynomials are a subspace of the vector space of functions.

Linear Independent Polynomials

Exercise
Using the fact that if $f_{j}(x)=x^{j}$ then $f_{m}^{(m)}(x)=m!$ and $f_{j}^{(m)}(x)=0$ if show that the set $\left\{f_{0}, f_{1}, \ldots, f_{n-1}\right\}$ is linear independent for any n. MT J

$$
\left\{1, x, x_{1}^{2}, \ldots x^{n-1}\right\}
$$ for all $x=\quad \Rightarrow \quad C 0, C_{1} \ldots C_{n_{1}}=0$

Linear Independent Polynomials

Exercise

Using the fact that if $f_{j}(x)=x^{j}$ then $f_{m}^{(m)}(x)=m$! and $f_{j}^{(m)}(x)=0$ if $j \not \subset \sim m$, show that the set $\left\{f_{0}, f_{1}, \ldots, f_{n-1}\right\}$ is linear indepencent forr any n.

M8)

Using the fact, we see that the Wronskian of the vectors will be

Linear Independent Polynomials

Exercise

Using the fact that if $f_{j}(x)=x^{j}$ then $f_{m}^{(m)}(x)=m$! and $f_{j}^{(m)}(x)=0$ if $j>m$, show that the set $\left\{f_{0}, f_{1}, \ldots, f_{n-1}\right\}$ is linear independent for any n.

Using the fact, we see that the Wronskian of the vectors will be

$$
\begin{aligned}
& =1 \times \frac{1}{2} \times 2 \times 6 \times \cdots \times(n-1)!
\end{aligned}
$$

Linear Independent Polynomials

Exercise

Using the fact that if $f_{j}(x)=x^{j}$ then $f_{m}^{(m)}(x)=m$! and $f_{j}^{(m)}(x)=0$ if $j>m$, show that the set $\left\{f_{0}, f_{1}, \ldots, f_{n-1}\right\}$ is linear independent for any n.

Using the fact, we see that the Wronskian of the vectors will be

$$
\begin{aligned}
W(x) & =\operatorname{det}\left(\left(\begin{array}{cccccc}
1 & x & x^{2} & x^{3} & \cdots & x^{n-1} \\
0 & 1 & * & * & \cdots & * \\
0 & 0 & 2 & * & \cdots & * \\
0 & 0 & 0 & 6 & \cdots & * \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & (n-1)!
\end{array}\right)\right) \\
& =1 \times 1 \times 2 \times 6 \times \cdots \times(n-1)!\neq 0
\end{aligned}
$$

Dimension of Space of Polynomials

So we see that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a linearly independent set of vectors.

Dimension of Space of Polynomials

So we see that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most $n-1$ can be written as a linear combination of vectors in $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ and so it is a spanning set.

$$
w_{a-1}=\left\{a_{0}+a_{1} x+a_{2 x}+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}
$$

Dimension of Space of Polynomials

So we see that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most $n-1$ can be written as a linear combination of vectors in $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ and so it is a spanning set.

Thus, we may conclude that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis for the polynomials of degree at most $n-1$.

Dimension of Space of Polynomials

So we see that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most $n-1$ can be written as a linear combination of vectors in $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ and so it is a spanning set.

Thus, we may conclude that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis for the polynomials of degree at most $n-1$.

Hence, if $W_{n-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$, then

$$
\operatorname{dim}\left(W_{n-1}\right)
$$

Dimension of Space of Polynomials

So we see that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most $n-1$ can be written as a linear combination of vectors in $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ and so it is a spanning set.

Thus, we may conclude that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis for the polynomials of degree at most $n-1$.

Hence, if $W_{n-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$, then

$$
\operatorname{dim}\left(W_{n-1}\right)=\text { number of elements in a basis }
$$

Dimension of Space of Polynomials

So we see that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most $n-1$ can be written as a linear combination of vectors in $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ and so it is a spanning set.

Thus, we may conclude that $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis for the polynomials of degree at most $n-1$.

Hence, if $W_{n-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$, then

$$
\operatorname{dim}\left(W_{n-1}\right)=\text { number of elements in a basis }=n
$$

Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree $W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}, n \geq 0\right\}$.

Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree $W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}, n \geq 0\right\}$.

Then we see that a basis for this would necessarily be all the powers x : $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$.

$$
\left[1, x, x^{2}, x^{n}\right) \text { is linear indepardet for all } M
$$

Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree $W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}, n \geq 0\right\}$.

Then we see that a basis for this would necessarily be all the powers x : $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$.

Hence,

$$
\operatorname{dim}(W)=\text { number of elements in a basis }
$$

Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree $W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}, n \geq 0\right\}$.

Then we see that a basis for this would necessarily be all the powers x : $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$.

Hence,

$$
\operatorname{dim}(W)=\text { number of elements in a basis }=\infty
$$

Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree $W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}, n \geq 0\right\}$.

Then we see that a basis for this would necessarily be all the powers x : $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$.

Hence,

$$
\operatorname{dim}(W)=\text { number of elements in a basis }=\infty
$$

and W is what we call an infinite dimensional subspace.
Vector space.

Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree $W=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{R}, n \geq 0\right\}$.

Then we see that a basis for this would necessarily be all the powers x : $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$.

Hence,

$$
\operatorname{dim}(W)=\text { number of elements in a basis }=\infty
$$

and W is what we call an infinite dimensional subspace.

Moreover, since all polynomials are also functions, we see that the vector space of all functions from the reals to the reals is also infinite dimensional.
Question: whd is the basis at all torctions?

Unusual Vector Space

The vector space axioms do not suppose that the vector addition and scalar multiplication behave in a way that we are used to, only that they satisfy the properties of the axioms.

Unusual Vector Space

The vector space axioms do not suppose that the vector addition and scalar multiplication behave in a way that we are used to, only that they satisfy the properties of the axioms. Hence, it is possible to define very strange vector spaces.

Unusual Vector Space

The vector space axioms do not suppose that the vector addition and scalar multiplication behave in a way that we are used to, only that they satisfy the properties of the axioms. Hence, it is possible to define very strange vector spaces.

Exercise

Let V be the set of positive real numbers but define vector addition and scalar multiplication by \mathbb{R} as follows:

Unusual Vector Space

The vector space axioms do not suppose that the vector addition and scalar multiplication behave in a way that we are used to, only that they satisfy the properties of the axioms. Hence, it is possible to define very strange vector spaces.

Exercise

Let V be the set of positive real numbers but define vector addition and scalar multiplication by \mathbb{R} as follows:

Whet is $\overrightarrow{0}$?

$$
u \oplus v=u \cdot v \text { (vector addition) what is (-u)? }
$$

$$
k \otimes u=u^{k}(\text { scalar multiplication by } \mathbb{R})
$$

Show that these operations satisfy the axioms and hence makes V a vector space.

Set of all
position real weber

Unusual Vector Space

The vector space axioms do not suppose that the vector addition and scalar multiplication behave in a way that we are used to, only that they satisfy the properties of the axioms. Hence, it is possible to define very strange vector spaces.

Exercise

Let V be the set of positive real numbers but define vector addition and scalar multiplication by \mathbb{R} as follows:

$$
\begin{gathered}
u \oplus v=u \cdot v \\
k \otimes u=u^{k}(\text { scalar multiplication by } \mathbb{R})
\end{gathered}
$$

Show that these operations satisfy the axioms and hence makes V a vector space.

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$.

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number,
v as a set
is just the pasitin
reni numbers.

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$.

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
\begin{aligned}
& u=u \oplus \overrightarrow{0}=u \cdot c \\
& \uparrow \frac{\uparrow}{\text { Multiplying as rat nerkers }} \\
& \text { adding as vectors in } V
\end{aligned}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
\stackrel{u}{3}=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.

$$
\begin{aligned}
& 2 \oplus 1-2 \cdot 1=2 \\
& \text { adding on rector } r V
\end{aligned}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $\frac{u \oplus(-u)=\overrightarrow{0}}{\substack{u \\ \text { definifion of }-4}}$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$.
as a Set is He red nomkers

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
\begin{aligned}
& \xrightarrow{1=\overrightarrow{0}=u \oplus \underset{\sim}{(-u)}} \\
& \text { addition as redone in } V
\end{aligned}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
\underline{1}=\overrightarrow{\substack{T \\ \text { addition } \\ \text { or vation }}} \underset{\substack{u}}{\substack{\text { Mulliplicatios } \\ \text { at real numberso }}}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
1=\overrightarrow{0}=u \oplus(-u)=u \cdot d \Longrightarrow d=\frac{1}{u}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
1=\overrightarrow{0}=u \oplus(-u)=u \cdot d \Longrightarrow d=\frac{1}{u}
$$

So, in this vector space $(-u)=1 / u$.

$$
(-2)=\frac{1}{2} \quad \text { of positive rel number }
$$

$$
\begin{aligned}
& V \text { is the sat } \\
& \text { of positive Pal montes }
\end{aligned}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
1=\overrightarrow{0}=u \oplus(-u)=u \cdot d \Longrightarrow d=\frac{1}{u}
$$

So, in this vector space $(-u)=1 / u$.

Note that even with all the weirdness here we still have that

$$
\begin{gathered}
(-1) \otimes u \\
2 \\
\text { sccilor }
\end{gathered}
$$

molliplicction

$$
4 \text { ureter }
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
1=\overrightarrow{0}=u \oplus(-u)=u \cdot d \Longrightarrow d=\frac{1}{u}
$$

So, in this vector space $(-u)=1 / u$.

Note that even with all the weirdness here we still have that

$$
\begin{aligned}
& (-1) \otimes u=u^{-1} \\
& \text { lebinitior of scalar wo Itiplicotion } \quad \text { k } \otimes u=u^{k}
\end{aligned}
$$

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
1=\overrightarrow{0}=u \oplus(-u)=u \cdot d \Longrightarrow d=\frac{1}{u}
$$

So, in this vector space $(-u)=1 / u$.

Note that even with all the weirdness here we still have that

Solution

Axiom 4 - There exists a $\overrightarrow{0}$ such that $u \oplus \overrightarrow{0}=u$. We know that $\overrightarrow{0} \in V$ so it must be a real number, say $\overrightarrow{0}=c$. Hence,

$$
u=u \oplus \overrightarrow{0}=u \cdot c \Longrightarrow c=1
$$

So, in this vector space $\overrightarrow{0}=1$.
Axiom 5 - There is a negative of u such that $u \oplus(-u)=\overrightarrow{0}$. Again we know that $(-u) \in V$, so it must be a real number, say $(-u)=d$. Hence,

$$
1=\overrightarrow{0}=u \oplus(-u)=u \cdot d \Longrightarrow d=\frac{1}{u}
$$

So, in this vector space $(-u)=1 / u$.

Note that even with all the weirdness here we still have that

$$
(-1) \otimes u=u^{-1}=\frac{1}{u}=(-u)
$$

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$.

$$
k(u+v)=\text { kurt bu }
$$

Solution 2

Axiom 7-If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that
$k \otimes(u \oplus v)$

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that

$$
\begin{aligned}
& k \otimes(u \oplus v)=k \otimes(u \cdot v) \\
& \uparrow \\
& \uparrow \\
& \text { vator } \\
& \text { real } \\
& \text { addition } \\
& \text { dunke } \\
& \text { multiplicedian }
\end{aligned}
$$

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that

$$
\begin{aligned}
& k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}
\end{aligned}
$$

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that

$$
k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}=\left(u^{k}\right) \cdot\left(v^{k}\right)
$$

个
proper to at
red lumber
exptrertidran

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that

$$
\begin{gathered}
k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}=\underset{T}{\left(u^{k}\right) \cdot\left(v^{k}\right)}=\left(u^{k}\right) \oplus\left(v^{k}\right) \\
\substack{\text { jed name } \\
\text { Multiple. }}
\end{gathered}
$$

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that

$$
\begin{aligned}
& \text { reel } \\
& \text { number } \\
& \text { satar } \\
& \text { doll, }
\end{aligned}
$$

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that
$k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}=\left(u^{k}\right) \cdot\left(v^{k}\right)=\left(u^{k}\right) \oplus\left(v^{k}\right)=(k \otimes u) \oplus(k \otimes v)$
pasitin
Remark
Even though the set of element in V are the V numbers, V is NOT a subspace of \mathbb{R}

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that
$k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}=\left(u^{k}\right) \cdot\left(v^{k}\right)=\left(u^{k}\right) \oplus\left(v^{k}\right)=(k \otimes u) \oplus(k \otimes v)$

Remark

Even though the set of element in V are the real numbers, V is NOT a subspace of \mathbb{R} or any other \mathbb{R}^{n} !

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that
$k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}=\left(u^{k}\right) \cdot\left(v^{k}\right)=\left(u^{k}\right) \oplus\left(v^{k}\right)=(k \otimes u) \oplus(k \otimes v)$

Remark

Even though the set of element in V are the real numbers, V is NOT a subspace of \mathbb{R} or any other \mathbb{R}^{n} ! This is because in order to be a subspace, the vector addition and scalar multiplication must be the same in both spaces!!

Solution 2

Axiom 7 - If k is a scalar, then $k \otimes(u \oplus v)=(k \otimes u) \oplus(k \otimes v)$. Indeed, we have that
$k \otimes(u \oplus v)=k \otimes(u \cdot v)=(u \cdot v)^{k}=\left(u^{k}\right) \cdot\left(v^{k}\right)=\left(u^{k}\right) \oplus\left(v^{k}\right)=(k \otimes u) \oplus(k \otimes v)$

Remark

Even though the set of element in V are the real numbers, V is NOT a subspace of \mathbb{R} or any other \mathbb{R}^{n} ! This is because in order to be a subspace, the vector addition and scalar multiplication must be the same in both spaces!! Clearly the vector addition and scalar multiplication in V and \mathbb{R} are different.

Linear Transformations Between Abstract Vector Spaces

Definition

If $T: V \rightarrow W$ is a function from a vector space V to a vector space W then T is called a linear transformation from V to W if the following properties hold for all vectors \vec{u}, \vec{v} and for all scalars c
(1) $T(c \vec{u})=c T(\vec{u})$
(2) $\bar{T}(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$

Linear Transformations Between Abstract Vector Spaces

Definition

If $T: V \rightarrow W$ is a function from a vector space V to a vector space W then T is called a linear transformation from V to W if the following properties hold for all vectors \vec{u}, \vec{v} and for all scalars c
(1) $T(c \vec{u})=c T(\vec{u})$
(2) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$

Again, we have seen that we have some properties directly from the definition.

Linear Transformations Between Abstract Vector Spaces

Definition

If $T: V \rightarrow W$ is a function from a vector space V to a vector space W then T is called a linear transformation from V to W if the following properties hold for all vectors \vec{u}, \vec{v} and for all scalars c
(1) $T(c \vec{u})=c T(\vec{u})$
(2) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$

Again, we have seen that we have some properties directly from the definition.

Theorem

If $T: V \rightarrow W$ is a linear transformation, then:
(1) $T(\overrightarrow{0})=\overrightarrow{0}$
(2) $T(-\vec{u})=-T(\vec{u})$
(3) $T(\vec{u}-\vec{v})=T(\vec{u})-T(\vec{v})$

Kernel and Range

Definition

If $T: V \rightarrow W$ is a linear transformation then the set of vectors in V that T maps into $\overrightarrow{0}$ is called the kernel of T and is denoted $\operatorname{ker}(T)$.

Kernel and Range

Definition

If $T: V \rightarrow W$ is a linear transformation then the set of vectors in V that T maps into $\overrightarrow{0}$ is called the kernel of T and is denoted $\operatorname{ker}(T)$.

If $T: V \rightarrow W$ is a linear transformation then the range of T, denoted by $\operatorname{ran}(T)$, is the set of all vectors in W that are images of at least one vector in V; that is $\operatorname{ran}(T)$ is the image of the domain V under the transformation T

Kernel and Range

Definition

If $T: V \rightarrow W$ is a linear transformation then the set of vectors in V that T maps into $\overrightarrow{0}$ is called the kernel of T and is denoted $\operatorname{ker}(T)$.

If $T: V \rightarrow W$ is a linear transformation then the range of T, denoted by $\operatorname{ran}(T)$, is the set of all vectors in W that are images of at least one vector in V; that is $\operatorname{ran}(T)$ is the image of the domain V under the transformation T

Theorem

If $T: V \rightarrow \underset{\sim}{W}$ is a linear transformation then $\operatorname{ker}(T)$ is subspace of V and $\operatorname{ran}(T)$ is a subspace of W.

One-to-one and Onto

Definition

A linear transformation $T: V \rightarrow W$ is one-to-one if it maps distinct vectors in V into distinct vectors in W.

One-to-one and Onto

Definition

A linear transformation $T: V \rightarrow W$ is one-to-one if it maps distinct vectors in V into distinct vectors in W.

A linear transformation $T: V \rightarrow W$ is onto if every vector in W has a vector in V such that $T(\vec{v})=\vec{w}$.

One-to-one and Onto

Definition

A linear transformation $T: V \rightarrow W$ is one-to-one if it maps distinct vectors in V into distinct vectors in W.

A linear transformation $T: V \rightarrow W$ is onto if every vector in W has a vector in V such that $T(\vec{v})=\vec{w}$.

Theorem

A linear transformation is $T: V \rightarrow W$ is one-to-one if and only if $\operatorname{ker}(T)=\{\overrightarrow{0}\}$.

One-to-one and Onto

Definition

A linear transformation $T: V \rightarrow W$ is one-to-one if it maps distinct vectors in V into distinct vectors in W.

A linear transformation $T: V \rightarrow W$ is onto if every vector in W has a vector in V such that $T(\vec{v})=\vec{w}$.

Theorem

A linear transformation is $T: V \rightarrow W$ is one-to-one if and only if $\operatorname{ker}(T)=\{\overrightarrow{0}\}$.

A linear transformation is $T: V \rightarrow W$ is onto if and only if $\operatorname{ran}(T)=W$.

Isomorphisms

Definition

A linear transformation $T: V \rightarrow W$ is called an isomorphism if it is one-to-one and onto

Definition
A linear transformation $T: V \rightarrow W$ is called an isomorphism if it is one-to-one and onto, and we say that a vector V is isomorphic to W if there exists an isomorphism from V to W.
The difference in bijection \& isomosphim
cones into play when conscleing ir finite dimensional
vector spaces

Isomorphisms

Definition

A linear transformation $T: V \rightarrow W$ is called an isomorphism if it is one-to-one and onto, and we say that a vector \bar{V} is isomorphic to W if there exists an isomorphism from V to W.

Theorem

Any n-dimensional vector space defined over the reals is isomorphic to \mathbb{R}^{n}.
inforticeder fit dimeneroad

Proof.

Isomorphisms

Definition

A linear transformation $T: V \rightarrow W$ is called an isomorphism if it is one-to-one and onto, and we say that a vector V is isomorphic to W if there exists an isomorphism from V to W.

Theorem

Any n-dimensional vector space defined over the reals is isomorphic to \mathbb{R}^{n}.

Proof.

Let V be an n-dimensional vectors space.

Isomorphisms

Definition

A linear transformation $T: V \rightarrow W$ is called an isomorphism if it is one-to-one and onto, and we say that a vector V is isomorphic to W if there exists an isomorphism from V to W.

Theorem

Any n-dimensional vector space defined over the reals is isomorphic to \mathbb{R}^{n}.

Proof.

Let V be an n-dimensional vectors space. Then there is a basis for V : $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.

Isomorphisms

Definition

A linear transformation $T: V \rightarrow W$ is called an isomorphism if it is one-to-one and onto, and we say that a vector V is isomorphic to W if there exists an isomorphism from V to W.

Theorem

Any n-dimensional vector space defined over the reals is isomorphic to \mathbb{R}^{n}.

Proof.

Let V be an n-dimensional vectors space. Then there is a basis for V : $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$. Then the linear transformation defined by

$$
T\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}\right)=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+\cdots+a_{n} \vec{e}_{n} \in \mathbb{R}^{n}
$$

Examples

Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ and let $x_{1}, x_{2} \ldots, x_{n}$ be any set of real numbers.

Examples

Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ and let $x_{1}, x_{2} \ldots, x_{n}$ be any set of real numbers.
Then the function
are var variables

$$
\begin{aligned}
T: V & \rightarrow \mathbb{R}^{n} \\
\quad f & \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

is a linear transformation.

Examples

Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ and let $x_{1}, x_{2} \ldots, x_{n}$ be any set of real numbers.
Then the function

$$
\begin{aligned}
T: V & \rightarrow \mathbb{R}^{n} \\
\quad f & \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

is a linear transformation. This is called the evaluation at $x_{1}, x_{2}, \ldots, x_{n}$ transformation.
Exercice: prove this is imear

Examples

Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ and let $x_{1}, x_{2} \ldots, x_{n}$ be any set of real numbers.
Then the function

$$
\begin{aligned}
T: V & \rightarrow \mathbb{R}^{n} \\
\quad f & \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
f(x)= & \left(x-x_{1}\right)\left(x-x_{0}\right) \\
& \cdots\left(x-x_{n}\right) \\
T(f) & =\vec{o}
\end{aligned}
$$

is a linear transformation. This is called the evaluation at $x_{1}, x_{2}, \ldots, x_{n}$ transformation.

The kernel would be any function that is 0 at all of x_{1}, \ldots, x_{n}. So it is not one-to-one.

$$
\begin{aligned}
& T(f)=\overrightarrow{0}=(0, \ldots, 0) \\
& 1 \\
& \left(f\left(x_{1}\right), f\left(x_{0}\right), \ldots, f\left(x_{n}\right)\right) \rightleftarrows \begin{array}{l}
f\left(x_{1}\right)=0 \\
f\left(x_{1}\right)=0 \ldots f\left(x_{1}\right)=0
\end{array}
\end{aligned}
$$

Examples

Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ and let $x_{1}, x_{2} \ldots, x_{n}$ be any set of real numbers.
Then the function

$$
\begin{aligned}
T: V & \rightarrow \mathbb{R}^{n} \\
\quad f & \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

is a linear transformation. This is called the evaluation at $x_{1}, x_{2}, \ldots, x_{n}$ transformation.

The kernel would be any function that is 0 at all of x_{1}, \ldots, x_{n}. So it is not one-to-one.

If all the x_{i} were distinct then the range would be all of R^{n}. So it would be onto.

$$
\text { Supper } x_{y}=x_{2} \quad \text { He } f\left(x_{y}\right)=f\left(x_{l}\right) \text { and ftereton can at }
$$

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most $m \sim 1$

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}.

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}. Hence the evaluation at $x_{1}, x_{2} \ldots, x_{n}$ transformation would behave like a transformation from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

$$
\begin{aligned}
T & : W_{m-1} \cong \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& f \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}. Hence the evaluation at $x_{1}, x_{2} \ldots, x_{n}$ transformation would behave like a transformation from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

$$
\begin{aligned}
& T: W_{m-1} \cong \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& \quad \quad f \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

So, let us find the matrix.

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}. Hence the evaluation at $x_{1}, x_{2} \ldots, x_{n}$ transformation would behave like a transformation from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

$$
\begin{aligned}
& T: W_{m-1} \cong \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& \quad \quad f \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

So, let us find the matrix. We know that $1, x, x^{2}, \ldots, x^{m-1}$ is a basis for W_{m-1}. So we need to calculate $T\left(x^{i}\right)$ for $i=0, \ldots, m-1$:

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}. Hence the evaluation at $x_{1}, x_{2} \ldots, x_{n}$ transformation would behave like a transformation from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

$$
\begin{aligned}
& T: W_{m-1} \cong \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& \quad \quad f \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

So, let us find the matrix. We know that $1, x, x^{2}, \ldots, x^{m-1}$ is a basis for W_{m-1}. So we need to calculate $T\left(x^{i}\right)$ for $i=0, \ldots, m-1$:

$$
T\left(x^{0}\right)=T(1)=(1,1, \ldots, 1)
$$

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}. Hence the evaluation at $x_{1}, x_{2} \ldots, x_{n}$ transformation would behave like a transformation from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

$$
\begin{aligned}
& T: W_{m-1} \cong \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& \quad \quad f \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

So, let us find the matrix. We know that $1, x, x^{2}, \ldots, x^{m-1}$ is a basis for W_{m-1}. So we need to calculate $T\left(x^{i}\right)$ for $i=0, \ldots, m-1$:

$$
\begin{aligned}
& f\left(x_{i} i\right)=1 \\
& f\left(x_{\mathrm{c}}\right)=1
\end{aligned}
$$

$$
T\left(x^{0}\right)=T(1)=(1,1, \ldots, 1)
$$

$$
T\left(x^{i}\right)=\left(x_{1}^{i}, x_{2}^{i}, \ldots, x_{n}^{i}\right)
$$

$$
\begin{aligned}
& f(x)=x^{i} \\
& f\left(x_{1}\right)=x^{i}
\end{aligned}
$$

Examples

Let $W_{m-1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}\right\}$ be the space of polynomials of degree at most m, then we know that $\operatorname{deg}\left(W_{m-1}\right)=m$ and so isomorphic to \mathbb{R}^{m}. Hence the evaluation at $x_{1}, x_{2} \ldots, x_{n}$ transformation would behave like a transformation from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

$$
\begin{aligned}
& T: W_{m-1} \cong \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& \quad \quad f \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)
\end{aligned}
$$

So, let us find the matrix. We know that $1, x, x^{2}, \ldots, x^{m-1}$ is a basis for W_{m-1}. So we need to calculate $T\left(x^{i}\right)$ for $i=0, \ldots, m-1$:

$$
\begin{gathered}
T\left(x^{0}\right)=T(1)=(1,1, \ldots, 1) \\
T\left(x^{i}\right)=\left(x_{1}^{i}, x_{2}^{i}, \ldots, x_{n}^{i}\right)
\end{gathered}
$$

Matrix of Evaluation Function

Thus we see that T can be given by the matrix

Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that

Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
(1) If $m>n$ then T is onto

Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
(1) If $m>n$ then T is onto
(2) If $m<n$ then there is a nontrivial solution to $T(f)=0$.

Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
(1) If $m>n$ then T is onto
(2) If $m<n$ then there is a nontrivial solution to $T(f)=0$.
(3) If $m=n$, then this is an isomorphism.

Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
(1) If $m>n$ then T is onto
(2) If $m<n$ then there is a nontrivial solution to $T(f)=0$.
(3) If $m=n$, then this is an isomorphism.

Conclusion About Polynomials

Hence we may conclude the following theorem about polynomials

Conclusion About Polynomials

Hence we may conclude the following theorem about polynomials

Theorem

For any real number $c_{1}, c_{2} \ldots, c_{n}, x_{1}, x_{2}, \ldots, x_{n}$ you can find a polynomial of degree n such that

Conclusion About Polynomials
for all $\vec{c} \in \mathbb{R}^{h} \quad 1$ can find $f \in W_{n}$ sit

$$
T(f)=\vec{c}
$$

Hence we may conclude the following theorem about polynomials
Theorem
For any real number $c_{1}, c_{2} \ldots, c_{n}, x_{1}, x_{2}, \ldots, x_{n}$ you can find a polynomial of degree n such that

$$
f\left(x_{1}\right)=c_{1}, f\left(x_{2}\right)=c_{2}, \ldots, f\left(x_{n}\right)=c_{n}
$$

$\left.\left(x_{1}, c_{1}\right), x_{c}, c_{1}\right) \ldots\left(x_{n}, c_{n}\right)$ as paints or t plano
 can find poly noel that goes through all th points.

More Examples

The map from the space of functions to itself that takes the derivative is also a linear transformation:

$$
\begin{aligned}
T: V & \rightarrow V \\
f & \rightarrow f^{\prime}
\end{aligned}
$$

More Examples

The map from the space of functions to itself that takes the derivative is also a linear transformation:

$$
\begin{aligned}
T: V & \rightarrow V \\
f & \rightarrow f^{\prime}
\end{aligned}
$$

We get the kernel of this map will be the constant functions

More Examples

The map from the space of functions to itself that takes the derivative is also a linear transformation:

$$
\begin{gathered}
T: V \rightarrow V \\
f \rightarrow f^{\prime}
\end{gathered}
$$

We get the kernel of this map will be the constant functions and that the map is onto (this is the Fundamental Theorem of Calculus).

More Examples

The map from the space of functions to itself that takes the derivative is also a linear transformation:

$$
\begin{aligned}
T: V & \rightarrow V \\
f & \rightarrow f^{\prime}
\end{aligned}
$$

We get the kernel of this map will be the constant functions and that the map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote W_{n} as the subspace of V of polynomials of degree at most n,

More Examples

The map from the space of functions to itself that takes the derivative is also a linear transformation:

$$
\begin{aligned}
T: V & \rightarrow V \\
f & \rightarrow f^{\prime}
\end{aligned}
$$

We get the kernel of this map will be the constant functions and that the map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote W_{n} as the subspace of V of polynomials of degree at most n, then the derivative would be a linear transformation from W_{n} to W_{n-1}

$$
\begin{aligned}
& \text { Tak a polynomial at degre } n \text { cal } \\
& \text { sads } t \text { a poly nomion of deage } n-1 .
\end{aligned}
$$

More Examples

The map from the space of functions to itself that takes the derivative is also a linear transformation:

$$
\begin{aligned}
T: V & \rightarrow V \\
f & \rightarrow f^{\prime}
\end{aligned}
$$

We get the kernel of this map will be the constant functions and that the map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote W_{n} as the subspace of V of polynomials of degree at most n, then the derivative would be a linear transformation from W_{n} to W_{n-1} and it's matrix would be

| Patrick Meisner (KTH) |
| :---: | :---: | :---: | :---: | :---: |\(\left(\begin{array}{ccccc}0 \& 1 \& 0 \& \cdots \& 0

0 \& 0 \& 2 \& \cdots \& 0

\vdots \& \vdots \& \ddots \& \vdots \&

0 \& 0 \& 0 \& \cdots \& n-1\end{array}\right)\) ason of Zorces.

Final Example

The trace function from the $n \times n$ square matrices to \mathbb{R} is also a linear transformation:
vector splece

$$
T: \stackrel{M_{n, n}}{\text { (}} \rightarrow \mathbb{R}
$$

$$
A \rightarrow \operatorname{Tr}(A)
$$

Final Example

The trace function from the $n \times n$ square matrices to \mathbb{R} is also a linear transformation:

$$
\begin{aligned}
T: M_{n, n} & \rightarrow \mathbb{R} \\
A & \rightarrow \operatorname{Tr}(A)
\end{aligned}
$$

This map will be onto but not one-to-one.

Final Example

The trace function from the $n \times n$ square matrices to \mathbb{R} is also a linear transformation:

$$
\begin{aligned}
T: M_{n, n} & \rightarrow \mathbb{R} \\
A & \rightarrow \operatorname{Tr}(A)
\end{aligned}
$$

This map will be onto but not one-to-one. Interesting question: What is the matrix of the this linear transformation?

Final Example

The trace function from the $n \times n$ square matrices to \mathbb{R} is also a linear transformation:

$$
\begin{aligned}
T: M_{n, n} & \rightarrow \mathbb{R} \\
A & \rightarrow \operatorname{Tr}(A)
\end{aligned}
$$

This map will be onto but not one-to-one. Interesting question: What is the matrix of the this linear transformation?

The determinant function from the $n \times n$ square matrices to \mathbb{R} is not a linear transformation:

$$
\begin{aligned}
T: M_{n, n} & \rightarrow \mathbb{R} \\
& A \rightarrow \operatorname{det}(A)
\end{aligned}
$$

Final Example

The trace function from the $n \times n$ square matrices to \mathbb{R} is also a linear transformation:

$$
\begin{aligned}
T: M_{n, n} & \rightarrow \mathbb{R} \\
A & \rightarrow \operatorname{Tr}(A)
\end{aligned}
$$

This map will be onto but not one-to-one. Interesting question: What is the matrix of the this linear transformation?

The determinant function from the $n \times n$ square matrices to \mathbb{R} is not a linear transformation:

$$
\begin{aligned}
T: M_{n, n} & \rightarrow \mathbb{R} \\
& A \rightarrow \operatorname{det}(A)
\end{aligned}
$$

since $\operatorname{det}(c A)=c^{n} \operatorname{det}(A) \neq c \operatorname{det}(A)$.

The End

The End

