SF 1684 Algebra and Geometry Lecture 19

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Quadratic Forms
(2) Geometry of Quadratic Forms

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

These are called linear forms on \mathbb{R}^{n}.

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

These are called linear forms on \mathbb{R}^{n}.

We have asked questions about when a system of these have solutions and if so, what are they?

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

These are called linear forms on \mathbb{R}^{n}.

We have asked questions about when a system of these have solutions and if so, what are they? This lead us to matrices, which then lead us to questions about matrices themselves.

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

These are called linear forms on \mathbb{R}^{n}.

We have asked questions about when a system of these have solutions and if so, what are they? This lead us to matrices, which then lead us to questions about matrices themselves. For example, the subspaces we can define out of them (i.e. row and null spaces).

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

These are called linear forms on \mathbb{R}^{n}.

We have asked questions about when a system of these have solutions and if so, what are they? This lead us to matrices, which then lead us to questions about matrices themselves. For example, the subspaces we can define out of them (i.e. row and null spaces).

We have then discussed linear transformations and their geometry

Linear Forms

Recall that we up until now we have only been interested in equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

These are called linear forms on \mathbb{R}^{n}.

We have asked questions about when a system of these have solutions and if so, what are they? This lead us to matrices, which then lead us to questions about matrices themselves. For example, the subspaces we can define out of them (i.e. row and null spaces).

We have then discussed linear transformations and their geometry and how eigenvalues and eigenvectors play into the understanding of their geometry and their change of variables.

Quadratic Forms

But what about more complicated equations?

Quadratic Forms

But what about more complicated equations? One's that aren't linear.

Quadratic Forms

But what about more complicated equations? One's that aren't linear. For example:

$$
x^{2}+4 x y \quad x^{3}+3 x z+2 y^{4} \quad \ldots
$$

Quadratic Forms

But what about more complicated equations? One's that aren't linear. For example:

$$
x^{2}+4 x y \quad x^{3}+3 x z+2 y^{4} \quad \ldots
$$

Can the work we have done help us understand these?

Quadratic Forms

But what about more complicated equations? One's that aren't linear. For example:

$$
x^{2}+4 x y \quad x^{3}+3 x z+2 y^{4} \quad \ldots
$$

Can the work we have done help us understand these? Let's look at the simplest class of these: quadratic forms

Quadratic Forms

But what about more complicated equations? One's that aren't linear. For example:

$$
x^{2}+4 x y \quad x^{3}+3 x z+2 y^{4} \quad \ldots
$$

Can the work we have done help us understand these? Let's look at the simplest class of these: quadratic forms

Definition

A quadratic form on \mathbb{R}^{n} is a polynomial in n variables where the total degree of each term is 2 .

Quadratic Forms

But what about more complicated equations? One's that aren't linear. For example:

$$
x^{2}+4 x y \quad x^{3}+3 x z+2 y^{4} \quad \ldots
$$

Can the work we have done help us understand these? Let's look at the simplest class of these: quadratic forms

Definition

A quadratic form on \mathbb{R}^{n} is a polynomial in n variables where the total degree of each term is 2 .For example:
$Q(\vec{x})=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x^{n}+a_{n+1} x_{1} x_{2}+a_{n+2} x_{1} x_{3}+\cdots+a_{*} x_{5} x_{7}+\ldots$
croy terms.

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this?

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this? If we let $\vec{x}=\left(x_{1}, x_{2}\right)$, then

$$
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this? If we let $\vec{x}=\left(x_{1}, x_{2}\right)$, then

$$
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2} x_{1}+3 x_{2}^{2}
$$

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this? If we let $\vec{x}=\left(x_{1}, x_{2}\right)$, then

$$
\begin{gathered}
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2} x_{1}+3 x_{2}^{2} \\
=x_{1}\left(x_{1}+2 x_{2}\right)+x_{2}\left(2 x_{1}+2 x_{3}\right)
\end{gathered}
$$

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this? If we let $\vec{x}=\left(x_{1}, x_{2}\right)$, then

$$
\begin{gathered}
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2} x_{1}+3 x_{2}^{2} \\
=x_{1}\left(x_{1}+2 x_{2}\right)+x_{2}\left(2 x_{1}+2 x_{3}\right) \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1}+2 x_{2} \\
2 x_{1}+2 x_{3}
\end{array}\right]}
\end{gathered}
$$

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this? If we let $\vec{x}=\left(x_{1}, x_{2}\right)$, then

$$
\begin{gathered}
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2} x_{1}+3 x_{2}^{2} \\
=x_{1}\left(x_{1}+2 x_{2}\right)+x_{2}\left(2 x_{1}+2 x_{3}\right) \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1}+2 x_{2} \\
2 x_{1}+2 x_{3}
\end{array}\right]} \\
=\vec{x} \cdot\left(\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) \vec{x}\right)
\end{gathered}
$$

Example of Quadratic Form

Consider the quadratic form

$$
Q(\vec{x})=x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}
$$

Can we use vectors and matrices to understand this? If we let $\vec{x}=\left(x_{1}, x_{2}\right)$, then

$$
\begin{gathered}
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2} x_{1}+3 x_{2}^{2} \\
=x_{1}\left(x_{1}+2 x_{2}\right)+x_{2}\left(2 x_{1}+2 x_{3}\right) \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1}+2 x_{2} \\
2 x_{1}+2 x_{3}
\end{array}\right]} \\
=\vec{x} \cdot\left(\begin{array}{ll}
\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) & x
\end{array}\right) \\
Q(\vec{x})=\vec{x}^{T} A \vec{x}
\end{gathered}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{\top} A \vec{x}$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

$$
\begin{aligned}
& \text { Proof. } \\
& \text { Suppose } \\
& \qquad Q(\vec{x})=a_{1,1} x_{1} x_{1}
\end{aligned}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose
$Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose

$$
Q(\vec{x})=\underline{a_{1,1}} x_{1} x_{1}+\underset{a_{1,2} x_{1} x_{2}}{ }+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

Then setting

$$
A=\left(\begin{array}{cccc}
\frac{a_{1,1}}{a_{2,1}} & \frac{a_{1,2}}{a_{2,2}} & \ldots & a_{1, n} \\
\frac{a_{2, n}}{\vdots} & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right)
$$

Quadratic Forms and Matrices
Theorem
For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{\top} A \vec{x}$

Proof.
Suppose Transformation is just a mop $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

Then setting

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right)
$$

Exercise: expend $x^{7} A x$ to see that $x x^{2}$ indeed got this

We get $Q(\vec{x})=\vec{x}^{\top} \underline{A}$.

$$
T_{A}(x)=A \stackrel{\rightharpoonup}{x}
$$

Quadratic Forms and Matrices

Theorem

For any quadratic form on \mathbb{R}^{n}, Q, you can find a square $n \times n$ matrix such that $Q(\vec{x})=\vec{x}^{T} A \vec{x}$

Proof.

Suppose

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

Then setting

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right)
$$

We get $Q(\vec{x})=\vec{x}^{\top} A \vec{x}$.

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
$Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots$

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} \underline{x_{2} x_{1}}+a_{2,2} x_{2} x_{2}+\ldots
$$

However, we see that $x_{1} x_{2}=x_{2} x_{1}$

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} \xlongequal{x_{2} x_{2}}+\ldots
$$

However, we see that $x_{1} x_{2}=x_{2} x_{1}$, so we could simplify this and get

$$
Q(\vec{x})=a_{1,1} x_{1}^{2}+\underset{\sim}{a}+a_{2,2}^{2} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}
$$

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

However, we see that $x_{1} x_{2}=x_{2} x_{1}$, so we could simplify this and get

$$
Q(\vec{x})=a_{1,1} x_{1}^{2}+a_{2,2} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}+\underline{\underline{\left(a_{1,2}+a_{2,1}\right) x_{1} x_{2}}}+\cdots
$$

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

However, we see that $x_{1} x_{2}=x_{2} x_{1}$, so we could simplify this and get

$$
\begin{aligned}
Q(\vec{x}) & =\underset{\sim}{a_{1,1}} x_{1}^{2}+\underset{\sim}{a a_{2,2} x_{2}^{2}}+\cdots+\underset{\sim}{a_{n, n}} x_{n}^{2}+\left(\underset{\sim}{a+a_{2,1}}\right) x_{1} x_{2}+\ldots \\
& =a_{1,1} x_{1}^{2}+\underset{\sim}{a_{2,2}} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}+2 a_{1,2}^{\prime} x_{1} x_{2}+\ldots
\end{aligned}
$$

where we have just set $a_{1,2}^{\prime}=\frac{1}{2}\left(a_{1,2}+a_{2,1}\right)$ and so on.

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

However, we see that $x_{1} x_{2}=x_{2} x_{1}$, so we could simplify this and get

$$
\begin{aligned}
Q(\vec{x}) & =a_{1,1} x_{1}^{2}+a_{2,2} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}+\left(a_{1,2}+a_{2,1}\right) x_{1} x_{2}+\ldots \\
& =a_{1,1} x_{1}^{2}+a_{2,2} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}+2 a_{1,2}^{\prime} x_{1} x_{2}+\ldots
\end{aligned}
$$

where we have just set $a_{1,2}^{\prime}=\frac{1}{2}\left(a_{1,2}+a_{2,1}\right)$ and so on. Hence, if we define
A^{\prime} is
symmetric

$$
\begin{aligned}
& \rightarrow A^{\prime}=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2}^{\prime} & a_{1,3}^{\prime} & \ldots & a_{1, n}^{\prime} \\
a_{1,2}^{\prime} & a_{2,2 n} & a_{2,3}^{\prime} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \\
a_{1, n}^{\prime} & a_{2, n}^{\prime} & a_{3, n}^{\prime} & \cdots & a_{n, n}
\end{array} \quad \begin{array}{c}
\text { multiply by } \\
\text { multiplication } \\
\text { by }
\end{array}\right. \\
& \text { by } 2
\end{aligned}
$$

Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

$$
Q(\vec{x})=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{1, n} x_{1} x_{n}+a_{2,1} x_{2} x_{1}+a_{2,2} x_{2} x_{2}+\ldots
$$

However, we see that $x_{1} x_{2}=x_{2} x_{1}$, so we could simplify this and get

$$
\begin{aligned}
Q(\vec{x}) & =a_{1,1} x_{1}^{2}+a_{2,2} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}+\left(a_{1,2}+a_{2,1}\right) x_{1} x_{2}+\ldots \\
& =a_{1,1} x_{1}^{2}+a_{2,2} x_{2}^{2}+\cdots+a_{n, n} x_{n}^{2}+2 a_{1,2}^{\prime} x_{1} x_{2}+\ldots
\end{aligned}
$$

where we have just set $a_{1,2}^{\prime}=\frac{1}{2}\left(a_{1,2}+a_{2,1}\right)$ and so on. Hence, if we define

$$
A^{\prime}=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2}^{\prime} & a_{1,3}^{\prime} & \ldots & a_{1, n}^{\prime} \\
a_{1,2}^{\prime} & a_{2,2} & a_{2,3}^{\prime} & \ldots & a_{2, n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots & \\
a_{1, n}^{\prime} & a_{2, n}^{\prime} & a_{3, n}^{\prime} & \ldots & a_{n, n}
\end{array}\right)
$$

we see that A^{\prime} is symmetric and $Q(\vec{x})=\vec{x}^{\top} A^{\prime} \vec{x}$.

Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and find a symmetric matrix A^{\prime} that gives the same quadratic form.

Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and find a symmetric matrix A^{\prime} that gives the same quadratic form.

$$
Q(\vec{x})=\vec{x}^{T} A \vec{x}
$$

Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and find a symmetric matrix A^{\prime} that gives the same quadratic form.

$$
\begin{aligned}
& \qquad Q(\vec{x})=\vec{x}^{T}(A \vec{x})=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \\
& \text { becam } f i \quad \partial x) \text { we know } \vec{x} \in \mathbb{R}^{3}
\end{aligned}
$$

Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and find a symmetric matrix A^{\prime} that gives the same quadratic form.

$$
\begin{gathered}
Q(\vec{x})=\vec{x}^{T} A \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left(\left(\begin{array}{ccc}
\frac{1}{4} & \frac{2}{4} & \frac{3}{6} \\
7 & 5 & 9
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \\
=\frac{1 x_{1} x_{1}+2 x_{1} x_{2}+3 x_{1} x_{3}+4 x_{1} x_{2}+5 x_{2} x_{2}+6 x_{2} x_{3}+7 x_{3} x_{1}+8 x_{3} x_{2}+9 x_{3} x_{3}}{}
\end{gathered}
$$

Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and find a symmetric matrix A^{\prime} that gives the same quadratic form.

$$
\begin{gathered}
Q(\vec{x})=\vec{x}^{T} A \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \\
=x_{1} x_{1}+2 x_{1} x_{2}+3 x_{1} x_{3}+\underline{4 x_{1} x_{2}}+5 x_{2} x_{2}+\underline{6 x_{2} x_{3}}+7 x_{3} x_{1}+8 x_{3} x_{2}+9 x_{3} x_{3} \\
=x_{1}^{2}+5 x_{2}^{2}+9 x_{3}^{2}+6 x_{1} x_{2}+10 x_{1} x_{3}+14 x_{2} x_{3}
\end{gathered}
$$

Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and find a symmetric matrix A^{\prime} that gives the same quadratic form.

$$
\begin{gathered}
Q(\vec{x})=\vec{x}^{T} A \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \\
=x_{1} x_{1}+2 x_{1} x_{2}+3 x_{1} x_{3}+4 x_{1} x_{2}+5 x_{2} x_{2}+6 x_{2} x_{3}+7 x_{3} x_{1}+8 x_{3} x_{2}+9 x_{3} x_{3} \\
=x_{1}^{2}+5 x_{2}^{2}+9 x_{3}^{2}+6 x_{1} x_{2}+10 x_{1} x_{3}+14 x_{2} x_{3} \\
=\$ x_{1}^{2}+\overrightarrow{5} x_{2}^{2}+9 x_{3}^{2}+2\left(3 x_{1} x_{2}\right)+2\left(5 x_{1} x_{3}\right)+2\left(\underline{7} x_{2} x_{3}\right)
\end{gathered}
$$

Concrete Example Continued

Hence we see that if $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$, then

$$
Q(\vec{x})=\vec{x}^{\top} \vec{A} \vec{x}=x_{1}^{2}+5 x_{2}^{2}+9 x_{3}^{2}+2\left(3 x_{1} x_{2}\right)+2\left(5 x_{1} x_{3}\right)+2\left(7 x_{2} x_{3}\right)
$$

Concrete Example Continued

Hence we see that if $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$, then

$$
Q(\vec{x})=\vec{x}^{T} \vec{x}=1 x_{1}^{2}+\underline{5} x_{2}^{2}+\underline{9} x_{3}^{2}+2\left(3 x_{1} x_{2}\right)+2\left(\underline{5} x_{1} x_{3}\right)+2\left(7 x_{2} x_{3}\right)
$$

$$
=\vec{x}^{T}\left(\begin{array}{ccc}
1 & 3 & 2 \\
3 & 5 & 7 \\
1 & 7 & 9
\end{array}\right) \vec{x}=\vec{x}^{T} A^{\prime} \vec{x}
$$

The Quadratic Form of a Symmetric Matrix

Therefore, when we are talking about the matrix of a quadratic form we may always assume it is symmetric.

The Quadratic Form of a Symmetric Matrix

Therefore, when we are talking about the matrix of a quadratic form we may always assume it is symmetric.

Definition

Given an $n \times n$ symmetric matrix A, we define the quadratic form associated with A to be

$$
Q_{A}(\vec{x})=\vec{x}^{\top} A \vec{x}
$$

Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the simplest matrices, which are diagonal matrices.

Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the simplest matrices, which are diagonal matrices. Now, if

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the simplest matrices, which are diagonal matrices. Now, if

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

then
$Q_{D}(\vec{x})=\vec{x}^{\top} D \vec{x}$

Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the simplest matrices, which are diagonal matrices. Now, if

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

then
$Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \cdot\left(\left(\begin{array}{cccc}d_{1} & 0 & \ldots & 0 \\ 0 & d_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & d_{n}\end{array}\right)\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]\right)$

Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the simplest matrices, which are diagonal matrices. Now, if

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

then
$Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \cdot\left(\left(\begin{array}{cccc}\frac{d_{1}}{0} & 0 & \ldots & 0 \\ 0 & \frac{d_{2}}{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & d_{n}\end{array}\right)\left[\begin{array}{c}x_{1} \\ \frac{x_{2}}{-} \\ \vdots \\ x_{n}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \cdot\left[\begin{array}{c}\frac{d_{1} x_{1}}{d_{2} x_{2}} \\ \vdots \\ d_{n} x_{n}\end{array}\right]$

Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the simplest matrices, which are diagonal matrices. Now, if

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

then

$$
\begin{aligned}
& Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \cdot\left(\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & \underline{0} \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{x_{1}}{x_{2}} \\
\underline{\vdots} \\
\underline{x_{n}}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{d_{1} x_{1}}{d_{2} x_{2}} \\
\vdots \\
d_{n} x_{n}
\end{array}\right] \\
&=d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2}
\end{aligned}
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices.

A symuntine \Rightarrow con ?dicegonal
such that $A=P^{\top} D P$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{\top} \underline{A} \vec{x}=\vec{x}^{\top} P^{\top} D P \vec{x}
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\frac{\vec{x}^{T} P^{T}}{\pi} D \vec{x}=\left(P_{\vec{x}}{ }^{T} D(\underline{P})\right.
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{\top} A \vec{x}=\vec{x}^{\top} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation.
ortonomal

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis.

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis. Moreover, we get

$$
Q_{A}(\vec{x})
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis. Moreover, we get

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis. Moreover, we get

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\underline{\vec{y}})
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis. Moreover, we get

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})=\lambda_{1} y_{1}^{2}+\cdots+\underline{\lambda_{n}} y_{n}^{2}
$$

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

$$
A=P^{T} D P
$$

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis. Moreover, we get

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})=\lambda_{1} y_{1}^{2}+\cdots+\underline{\lambda_{n}} y_{n}^{2}
$$

where the λ_{i} are the diagonal entries of D

Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric matrices, we can always orthogonally diagonalize these matrices. That is, we can always find an orthogonal matrix P such that

Hence

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=Q_{D}(P \vec{x})
$$

Now, we can view P as a change of basis operation. Hence, if we denote $\vec{y}=P \vec{x}$, this is essentially just looking at \vec{x} is a different basis. Moreover, we get

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

where the λ_{i} are the diagonal entries of D, which are the eigenvalues of A.

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q.
symmetric

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1$,

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}=x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=\underline{0}$,

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$.

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4$,

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4,2 a_{1,3}=0$,

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4,2 a_{1,3}=0, \underline{2} a_{2,3}=4$

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4,2 a_{1,3}=0,2 a_{2,3}=4$ and A will have to be symmetric.

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4,2 a_{1,3}=0,2 a_{2,3}=4$ and A will have to be symmetric. Hence

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 0 & 2 \\
0 & 2 & -1
\end{array}\right)
$$

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4,2 a_{1,3}=0,2 a_{2,3}=4$ and A will have to be symmetric. Hence

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 0 & 2 \\
0 & 2 & -1
\end{array}\right)
$$

$$
A=P^{\top} D P
$$

Now, we must orthogonally diagonalize A.

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4,2 a_{1,3}=0,2 a_{2,3}=4$ and A will have to be symmetric. Hence

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 0 & 2 \\
0 & 2 & -1
\end{array}\right)
$$

Now, we must orthogonally diagonalize A. Without showing the work, we get that the eigenvalues are $\lambda_{1}=0, \lambda_{2}=-3$ and $\lambda_{2}=3$

Example

Exercise

Let $Q(\vec{x})=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$. Find a change of basis such that $Q(\vec{y})=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$.

First, need to find the matrix associated to Q. We know that $a_{1,1}=1, a_{2,2}=0, a_{3,3}=-1$. Further, $2 a_{1,2}=-4, \underset{\sim}{2} a_{1,3}=0, \underset{\sim}{2} a_{2,3}=4$ and A will have to be symmetric. Hence

$$
A=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 0 & 2 \\
0 & 2 & -1
\end{array}\right) \begin{array}{cc}
-2 x_{1} x_{L} & -2 x_{C} x_{1} \\
\text { sppous 4lv iut } & -4 \text { intalal } \\
-4 x_{1} x_{1} & -4 x_{L} x_{1}
\end{array}
$$

Now, we must orthogonally diagonalize A. Without showing the work, we get that the eigenvalues are $\lambda_{1}=0, \lambda_{2}=-3$ and $\lambda_{2}=3$ and that we can find an orthonormal basis of eigenvectors:

$$
\overrightarrow{v_{1}}=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]
$$

Example 2

Hence,

$$
A=P^{T} D P
$$

Example 2

Hence,

Example 2

Hence,
$A=P^{T} D P=\left(\begin{array}{ccc}2 / 3 & 1 / 3 & 2 / 3 \\ -1 / 3 & -2 / 3 & 2 / 3 \\ -2 / 3 & 2 / 3 & 2 / 3\end{array}\right)\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{ccc}2 / 3 & -1 / 3 & -2 / 3 \\ 1 / 3 & -2 / 3 & 2 / 3 \\ 2 / 3 & 2 / 3 & 2 / 3\end{array}\right)$
and so

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}
$$

Example 2

Hence,

$$
A=P^{T} D P=\left(\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
-1 / 3 & -2 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & -2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)
$$

and so

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}
$$

Example 2

Hence,

$$
A=P^{T} D P=\left(\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
-1 / 3 & -2 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & -2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)
$$

and so

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})
$$

Example 2

Hence,

$$
A=P^{T} D P=\left(\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
-1 / 3 & -2 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & -2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)
$$

and so

$$
Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}=\vec{x}^{T} P^{T} D P \vec{x}=(P \vec{x})^{T} D(P \vec{x})=\vec{y}^{T} D \vec{y}=-3 y_{2}^{2}+3 y_{3}^{2}
$$

where

$$
\vec{y}=P \vec{x}=\underbrace{\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & -2 / 3 \\
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 2 / 3
\end{array}\right)}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\xlongequal{\left[\begin{array}{l}
\frac{2}{3} x_{1}-\frac{1}{3} x_{2}-\frac{2}{3} x_{3} \\
\frac{1}{3} x_{1}-\frac{2}{3} x_{2}+\frac{2}{3} x_{3} \\
\frac{2}{3} x_{1}+\frac{2}{3} x_{2}+\frac{2}{3} x_{3}
\end{array}\right]}=\begin{aligned}
& =y_{1} \\
& =y_{2}
\end{aligned}
$$

Example 3

Confirm the fact that

$$
Q_{A}(\vec{x})=Q_{D}(\vec{y})
$$

Example 3

Confirm the fact that

$$
Q_{A}(\vec{x})=Q_{D}(\vec{y})
$$

by showing, by hand, that

$$
Q_{D}(\vec{y})=-3 y_{2}^{2}+3 y_{3}^{2}
$$

Example 3

Confirm the fact that

$$
Q_{A}(\vec{x})=Q_{D}(\vec{y})
$$

by showing, by hand, that

$$
Q_{D}(\vec{y})=-3 y_{2}^{2}+3 y_{3}^{2}
$$

$$
=-3\left(\frac{1}{3} x_{1}-\frac{2}{3} x_{2}+\frac{2}{3} x_{3}\right)^{2}+3\left(\frac{2}{3} x_{1}+\frac{2}{3} x_{2}+\frac{2}{3} x_{3}\right)^{2}
$$

Example 3

Confirm the fact that

$$
Q_{A}(\vec{x})=Q_{D}(\vec{y})
$$

by showing, by hand, that

$$
Q_{D}(\vec{y})=-3 y_{2}^{2}+3 y_{3}^{2}
$$

$$
\begin{gathered}
=-3\left(\frac{1}{3} x_{1}-\frac{2}{3} x_{2}+\frac{2}{3} x_{3}\right)^{2}+3\left(\frac{2}{3} x_{1}+\frac{2}{3} x_{2}+\frac{2}{3} x_{3}\right)^{2} \\
=\underbrace{x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}}
\end{gathered}
$$

Example 3

Confirm the fact that

$$
Q_{A}(\vec{x})=Q_{D}(\vec{y})
$$

by showing, by hand, that

$$
Q_{D}(\vec{y})=-3 y_{2}^{2}+3 y_{3}^{2}
$$

$$
\begin{gathered}
\text { Exercigi, } \\
20 \text { shis } \\
{\left[\begin{array}{l}
\text { sfysior } \\
= \\
=
\end{array}\left(\frac{1}{3} x_{1}-\frac{2}{3} x_{2}+\frac{2}{3} x_{3}\right)^{2}+3\left(\frac{2}{3} x_{1}+\frac{2}{3} x_{2}+\frac{2}{3} x_{3}\right)^{2}\right.} \\
=x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3} \\
=Q_{A}(\vec{x})
\end{gathered}
$$

Geometry of Quadratic Forms

Much like how we wish to understand the solutions of $A \vec{x}=\vec{b}$ using geometry, we also would like to understand the solutions of $Q_{A}(\vec{x})=k$ using geometry.

$$
\mathbb{Q}_{A}(\vec{k}) \in \mathbb{R}
$$

Geometry of Quadratic Forms

Much like how we wish to understand the solutions of $A \vec{x}=\vec{b}$ using geometry, we also would like to understand the solutions of $Q_{A}(\vec{x})=k$ using geometry. Let us first start with the simplest example:

Exercise
Geometrically explain the solutions to $Q_{1_{2}}(\vec{x})=k . \quad I_{1}=\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right)$

$$
Q_{ \pm_{1}}(\bar{x})=\vec{x}^{\top} I_{2} \vec{x}=\binom{x}{y} \cdot\left(\begin{array}{l}
\left.\binom{16}{l} \cdot\binom{x}{y}\right)=\binom{x}{y} \cdot\binom{x}{y}=x^{2}+y^{2} .
\end{array}\right.
$$

What an the solutions in \mathbb{R}^{L} to $Q_{x_{2}}(\tilde{x})=x^{2}+y^{2}=k$?
The solutions geometrically form n circle centered at $(0,0)$ with radius \sqrt{k}

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
D=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
D=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)}_{\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)} \\
& =\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)
\end{aligned}
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)=B^{T} \underline{B}
\end{aligned}
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)=B^{T} B
\end{aligned}
$$

Hence,

$$
Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)=B^{T} B
\end{aligned}
$$

Hence,

$$
Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}=\vec{x}^{T} B^{T} B \vec{x}
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)=B^{T} B
\end{aligned}
$$

Hence,

$$
Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}=\vec{x}^{T} B^{T} B \vec{x}=(B \vec{x})^{T} B \vec{x}
$$

Geometry of a 2×2 Diagonal

Exercise

If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ with $k>0$.

We note that

$$
\begin{aligned}
D & =\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{d_{2}}
\end{array}\right)=B^{T} B
\end{aligned}
$$

Hence,

$$
Q_{D}(\vec{x})=\vec{x}^{T} D \vec{x}=\vec{x}^{T} B^{T} B \vec{x}=(B \vec{x})_{\Lambda_{2}}^{T} B \vec{x}=Q_{l_{2}}(B \vec{x})
$$

Geometry of a 2×2 Diagonal 2

Hence, we can view the solutions to $Q_{D}(\vec{x})=Q_{1_{2}}(B \vec{x})=k$

Geometry of a 2×2 Diagonal 2

Hence, we can view the solutions to $Q_{D}(\vec{x})=Q_{l_{2}}(B \vec{x})=k$ as the set of \vec{x} who, after the action of B, lie on the circle of radius k.

$$
\vec{y}=3 \bar{x}
$$

mont lie on the circle of radius b.

Geometry of a 2×2 Diagonal 2

Hence, we can view the solutions to $Q_{D}(\vec{x})=Q_{1_{2}}(B \vec{x})=k$ as the set of \vec{x} who, after the action of B, lie on the circle of radius k. So, what does the action of B do?

$$
B=\left(\begin{array}{cc}
\sqrt{d_{1}} & 0 \\
0 & \sqrt{l_{2}}
\end{array}\right)
$$

Geometry of a 2×2 Diagonal 2

Hence, we can view the solutions to $Q_{D}(\vec{x})=Q_{1_{2}}(B \vec{x})=k$ as the set of \vec{x} who, after the action of B, lie on the circle of radius k. So, what does the action of B do? Stretches the x-axis by $\sqrt{d_{1}}$ and the y-axis by $\sqrt{d_{2}}$.

Geometry of a 2×2 Diagonal 2

Hence, we can view the solutions to $Q_{D}(\vec{x})=Q_{1_{2}}(B \vec{x})=k$ as the set of \vec{x} who, after the action of B, lie on the circle of radius k. So, what does the action of B do? Stretches the x-axis by $\sqrt{d_{1}}$ and the y-axis by $\sqrt{d_{2}}$.

Hence, the set of solutions to $Q_{D}(\vec{x})=k$ is the ellipse whose x-radius is of length $\frac{\sqrt{k}}{\sqrt{d_{1}}}$ and whose y-radius is of length $\frac{\sqrt{k}}{\sqrt{d_{2}}}$.

Geometry of a 2×2 Diagonal 3

Exercise

Let $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ and $k>0$

Geometry of a 2×2 Diagonal 3

Exercise

Let $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ and $k>0$

We see that

$$
Q_{D}(\vec{x})=\left[\begin{array}{l}
x \\
y
\end{array}\right]^{T}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Geometry of a 2×2 Diagonal 3

Exercise

Let $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ and $k>0$

We see that

$$
Q_{D}(\vec{x})=\left[\begin{array}{l}
x \\
y
\end{array}\right]^{T}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=-x^{2}+y^{2}
$$

So then $Q_{D}(\vec{x})=k \Longrightarrow y^{2}=x^{2}+k$

Geometry of a 2×2 Diagonal 3

Exercise

Let $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, geometrically explain the solutions to the quadratic form $Q_{D}(\vec{x})=k$ and $k>0$

We see that

$$
Q_{D}(\vec{x})=\left[\begin{array}{l}
x \\
y
\end{array}\right]^{T}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=-x^{2}+y^{2}
$$

$$
\begin{aligned}
& y= x^{2}+k \\
& \Rightarrow \text { parches } \\
& y
\end{aligned}
$$

So then $Q_{D}(\vec{x})=k \Longrightarrow y^{2}=x^{2}+k$

Geometry of a 2×2 Diagonal 4

Similarly if $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, then $Q_{D}(\vec{x})=k \Longrightarrow x^{2}=y^{2}+k$ and we get a hyperbola.

Assuming boo

Geometry of a 2×2 Diagonal 4

Similarly if $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, then $Q_{D}(\vec{x})=k \Longrightarrow x^{2}=y^{2}+k$ and we get a hyperbola.

Further, if $D=\left[\begin{array}{cc}-d_{1} & 0 \\ 0 & d_{2}\end{array}\right]$ or $\left[\begin{array}{cc}d_{1} & 0 \\ 0 & -d_{2}\end{array}\right]$ with $d_{1}, d_{2}>0$, then we get that $Q_{D}(\vec{x})=k$ will be either a parabola or a hyperbola whose x-axis was stretched by a factor of $\frac{1}{\sqrt{d_{1}}}$ and y-axis was stretched by a factor of $\frac{1}{\sqrt{d_{2}}}$.

Geometry of a 2×2 Diagonal 5

Finally, if $D=\left(\begin{array}{cc}-d_{1} & 0 \\ 0 & -d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$ then always negative

$$
Q_{D}(\vec{x})=-d_{1} x^{2}-d_{2} y^{2}=k
$$

has no solutions if $k 0$ but is just the ellipse if $k<0$.

$$
\begin{aligned}
& -d_{1} x^{2}-d_{2 y}{ }^{2}=-2 \\
& \Rightarrow d_{1} x^{2}+d_{2} y^{2}=2
\end{aligned}
$$

Geometry of a 2×2 Diagonal 5

Finally, if $D=\left(\begin{array}{cc}-d_{1} & 0 \\ 0 & -d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$ then

$$
Q_{D}(\vec{x})=-d_{1} x^{2}-d_{2} y^{2}=k
$$

has no solutions if $k \underset{7}{ } 0$ but is just the ellipse if $k<0$.
Moreover, if $D=\left(\begin{array}{cc}-d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$ then

$$
Q_{D}(\vec{x})=-d_{1} x^{2}+d_{2} y^{2}=-k
$$

is the same as $Q_{-D}(\vec{x})=k$, and so would be a hyperbola.

$$
\begin{aligned}
& \text { S } \\
& \text { desires a } \\
& \text { hyperbole }
\end{aligned}
$$

$=-D$.

Geometry of a 2×2 Diagonal 5

Finally, if $D=\left(\begin{array}{cc}-d_{1} & 0 \\ 0 & -d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$ then

$$
Q_{D}(\vec{x})=-d_{1} x^{2}-d_{2} y^{2}=k
$$

has no solutions if $k>0$ but is just the ellipse if $k<0$.
Moreover, if $D=\left(\begin{array}{cc}-d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ with $d_{1}, d_{2}>0$ then

$$
Q_{D}(\vec{x})=-d_{1} x^{2}+d_{2} y^{2}=-k
$$

is the same as $Q_{-D}(\vec{x})=k$, and so would be a hyperbola.
Hence, we may always assume $k>0$

Geometry of an Arbitrary 2×2

Exercise

If A is any symmetric 2×2 matrix, geometrically describe the solution $Q(\vec{x})=k, k>0$.

Geometry of an Arbitrary 2×2

Exercise

If A is any symmetric 2×2 matrix, geometrically describe the solution $Q(\vec{x})=k, k>0$.

Well, we known that we can write $A=P^{\top} D P$, where the columns of P are the eigenvectors of A.

Geometry of an Arbitrary 2×2

Exercise

If A is any symmetric 2×2 matrix, geometrically describe the solution $Q(\vec{x})=k, k>0$.

Well, we known that we can write $A=P^{T} D P$, where the columns of P are the eigenvectors of A. Moreover, we know that his means that

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})
$$

Geometry of an Arbitrary 2×2

Exercise

If A is any symmetric 2×2 matrix, geometrically describe the solution $Q(\vec{x})=k, k>0$.

Well, we known that we can write $A=P^{T} D P$, where the columns of P are the eigenvectors of A. Moreover, we know that his means that

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})
$$

Moreover, $\vec{y}=P \vec{x}$ can viewed as just an orthonormal change of basis.

Geometry of an Arbitrary 2×2

Exercise

If A is any symmetric 2×2 matrix, geometrically describe the solution $Q(\vec{x})=k, k>0$.

Well, we known that we can write $A=P^{T} D P$, where the columns of P are the eigenvectors of A. Moreover, we know that his means that

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})
$$

Moreover, $\vec{y}=P \vec{x}$ can viewed as just an orthonormal change of basis. Thus, in the basis of eigenvectors of A, we know that Q_{A} will be an ellipse, parabola, or hyperbola depending on the properties of D.

Geometry of an Arbitrary 2×2

Exercise

If A is any symmetric 2×2 matrix, geometrically describe the solution $Q(\vec{x})=k, k>0$.

Well, we known that we can write $A=P^{T} D P$, where the columns of P are the eigenvectors of A. Moreover, we know that his means that

$$
Q_{A}(\vec{x})=Q_{D}(P \vec{x})=Q_{D}(\vec{y})
$$

Moreover, $\vec{y}=P \vec{x}$ can viewed as just an orthonormal change of basis. Thus, in the basis of eigenvectors of A, we know that Q_{A} will be an ellipse, parabola, or hyperbola depending on the properties of D.

in the standard bosis

That is, $Q_{A}(\vec{x})$ will be an ellipse, parabola or hyperbola stretched in the direction the eigenvectors of A.

Example

Exercise

Sketch the solutions to $Q_{A}(\vec{x})=36$ where $A=\left(\begin{array}{cc}5 & -2 \\ -2 & 8\end{array}\right)$.

Example

Exercise

Sketch the solutions to $Q_{A}(\vec{x})=36$ where $A=\left(\begin{array}{cc}5 & -2 \\ -2 & 8\end{array}\right)$.
First, we calculate the eigenvalues and eigenvectors:

Example

Exercise

Sketch the solutions to $Q_{A}(\vec{x})=36$ where $A=\left(\begin{array}{cc}5 & -2 \\ -2 & 8\end{array}\right)$.
First, we calculate the eigenvalues and eigenvectors:

$$
\lambda_{1}=4, \lambda_{2}=9, \vec{v}_{1}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right] \vec{v}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]
$$

Example

Exercise

Sketch the solutions to $Q_{A}(\vec{x})=36$ where $A=\left(\begin{array}{cc}5 & -2 \\ -2 & 8\end{array}\right)$.
First, we calculate the eigenvalues and eigenvectors:

$$
\lambda_{1}=\underset{\sqrt{(1)}}{4, \lambda_{2}}=\underset{\sqrt{70}}{9,} \overrightarrow{\vec{v}_{1}}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right] \overrightarrow{v_{2}}=\left[\begin{array}{c}
-\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]
$$

$$
\frac{f}{\sqrt{4}}
$$

Hence, it looks like a circle of radius " 6 that has been "stretched" by $\frac{1}{2}$ in the \vec{v}_{1} direction and a factor of $\frac{1}{3}$ in the \vec{v}_{2} direction.

we call this v_{1} \& r o th erinnide axes

Definiteness

Definition

A quadratic form $Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}$ is said to be

Definiteness

Definition

A quadratic form $Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}$ is said to be
(1) positive definite if $Q_{A}(\vec{x})>0$ for all $\vec{x} \neq 0$

Definiteness

Definition

A quadratic form $Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}$ is said to be
(1) positive definite if $Q_{A}(\vec{x})>0$ for all $\vec{x} \neq 0$
(2) negative definite if $Q_{A}(\vec{x})<0$ for all $\vec{x} \neq 0$

Definiteness

Definition

A quadratic form $Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}$ is said to be
(1) positive definite if $Q_{A}(\vec{x})>0$ for all $\vec{x} \neq 0$
(2) negative definite if $Q_{A}(\vec{x})<0$ for all $\vec{x} \neq 0$
(3) indefinite if $Q_{A}(\vec{x})$ has both positive and negative values

Definiteness and Eigenvalues

We see to understand the geometry of $Q_{A}(\vec{x})$ it is necessary to understand the geometry of $Q_{D}(\vec{x})$ which only depends on the eigenvalues of A.

Definiteness and Eigenvalues

We see to understand the geometry of $Q_{A}(\vec{x})$ it is necessary to understand the geometry of $Q_{D}(\vec{x})$ which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then

Definiteness and Eigenvalues

We see to understand the geometry of $Q_{A}(\vec{x})$ it is necessary to understand the geometry of $Q_{D}(\vec{x})$ which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then
(1) $Q_{A}(\vec{x})$ is positive definite if and only if all the eigenvalues of A are positive

Definiteness and Eigenvalues

We see to understand the geometry of $Q_{A}(\vec{x})$ it is necessary to understand the geometry of $Q_{D}(\vec{x})$ which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then
(1) $Q_{A}(\vec{x})$ is positive definite if and only if all the eigenvalues of A are positive
(2) $Q_{A}(\vec{x})$ is negative definite if and only if all the eigenvalues of A are negative

Definiteness and Eigenvalues

We see to understand the geometry of $Q_{A}(\vec{x})$ it is necessary to understand the geometry of $Q_{D}(\vec{x})$ which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then

\rightarrow ellipse

(1) $Q_{A}(\vec{x})$ is positive definite if and only if all the eigenvalues of A are positive $\quad \rightarrow$ w grab for $k>0$ (or ellipse for $k<0$)
(2) $Q_{A}(\vec{x})$ is negative definite if and only if all the eigenvalues of A are negative
(3) $Q_{A}(\vec{x})$ is indefinite if and only if at least one eigenvalue is positive and at least one is negative

Definiteness and Eigenvalues

We see to understand the geometry of $Q_{A}(\vec{x})$ it is necessary to understand the geometry of $Q_{D}(\vec{x})$ which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then
(1) $Q_{A}(\vec{x})$ is positive definite if and only if all the eigenvalues of A are positive
(2) $Q_{A}(\vec{x})$ is negative definite if and only if all the eigenvalues of A are negative
(3) $Q_{A}(\vec{x})$ is indefinite if and only if at least one eigenvalue is positive and at least one is negative

Note, if $Q_{A}(\vec{x})$ is negative definite, then $Q_{-A}(\vec{x})$ is positive definite so we may only consider positive definite and indefinite.

Positive Definiteness and Squares

Theorem

If A is a symmetric matrix, then the following statements are equivalent
(1) A is positive definite

Positive Definiteness and Squares

Theorem

If A is a symmetric matrix, then the following statements are equivalent
(1) A is positive definite \longrightarrow all eisuncte an jxitive
(2) There is a B such that $A=B^{2}$

Positive Definiteness and Squares

Theorem
If A is a symmetric matrix, then the following statements are equivalent
(1) A is positive definite
(2) There is a B such that $A=B^{2}$
(3) There is an invertible matrix C such that $A=C^{T} C$

$$
\begin{aligned}
& A=P^{\top} D P \\
& D=\left(\begin{array}{llll}
\alpha_{1} & & \\
& & { }_{2}
\end{array}\right)=\left(\begin{array}{llll}
\sqrt{\alpha_{1}} & & \\
& & \ddots & \\
& & & \alpha_{n}
\end{array}\right)\left(\begin{array}{llll}
\alpha_{\alpha_{1}} & & \\
& & \ddots & \\
& & & \alpha_{n}
\end{array}\right) \\
& \text { all eigenule of iositice } \\
& \text { Mare one } B \text { s symuetio } \\
& \text { so } B^{T}=0 \\
& \text { So } B^{2}=B^{\top} B \\
& \begin{array}{cl}
\text { so setting } & C=13 \\
\text { get } & =C^{\top} C
\end{array}
\end{aligned}
$$

Positive Definiteness and Squares

Theorem

If A is a symmetric matrix, then the following statements are equivalent
(1) A is positive definite
(2) There is a B such that $A=B^{2}$
(3) There is an invertible matrix C such that $A=C^{T} C$

Hence, by the same proof as before if A is positive definite, then $Q_{A}(\vec{x})=Q_{I_{n}}(C \vec{x})$

Positive Definiteness and Squares

Theorem

If A is a symmetric matrix, then the following statements are equivalent
(1) A is positive definite
(2) There is a B such that $A=B^{2}$
(3) There is an invertible matrix C such that $A=C^{T} C$

Hence, by the same proof as before if A is positive definite, then $Q_{A}(\vec{x})=Q_{I_{n}}(C \vec{x})$ and hence will be an n-dimensional circle in the " C " coordinate

Positive Definiteness and Squares
Toteansy, if A is poss. def the $Q_{A}(x)=k$ geometrically louts like an n-dim ellipse.
Theorem
If A is a symmetric matrix, then the following statements are equivalent
(1) A is positive definite
(2) There is a B such that $A=B^{2}$
(3) There is an invertible matrix C such that $A=C^{T} C$

Hence, by the same proof as before if A is positive definite, then $Q_{A}(\vec{x})=Q_{l_{n}}(C \vec{x})$ and hence will be an n-dimensional circle in the " C " coordinate, or an n-dimensional ellipse that is stretched by a factor of $\frac{1}{\sqrt{\lambda_{i}}}$ in the \vec{v}_{i} direction, where the λ_{i} are the eigenvalues of A and the \vec{v}_{i} the corresponding eigenvectors.

Definiteness and 2×2 Matrices.

Theorem
If A is a symmetric 2×2 matrix, then

Definiteness and 2×2 Matrices.

Theorem

If A is a symmetric 2×2 matrix, then
(1) $\vec{x}^{\top} A \vec{x}=1$ defines an ellipse if A is positive definite

Definiteness and 2×2 Matrices.

Theorem

If A is a symmetric 2×2 matrix, then
(1) $\vec{x}^{\top} A \vec{x}=1$ defines an ellipse if A is positive definite
(2) $\vec{x}^{T} A \vec{x}=1$ has no geometry (no graph) is A is negative definite

Definiteness and 2×2 Matrices.

Theorem

If A is a symmetric 2×2 matrix, then
(1) $\vec{x}^{\top} A \vec{x}=1$ defines an ellipse if A is positive definite
(2) $\vec{x}^{\top} A \vec{x}=1$ has no geometry (no graph) is A is negative definite
(3) $\vec{x}^{\top} A \vec{x}=1$ defines a hyperbola if A is indefinite
or parabola.

