SF 1684 Algebra and Geometry Lecture 16

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Linear Transformations in Different Bases
(2) Change of Basis for Square Linear Transformations
(3) Change of Basis for Non-Square Linear Transformations

Standard Matrix of a Linear Transformation

We have seen that for any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can associate a matrix.

Standard Matrix of a Linear Transformation

We have seen that for any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can associate a matrix. Namely,

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{n}\right)
\end{array}\right) \\
& e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad C_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \\
& e_{i} \cdot\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
\dot{0}
\end{array}\right] \epsilon_{\text {prsition }}^{i^{H}}
\end{aligned}
$$

Standard Matrix of a Linear Transformation

We have seen that for any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can associate a matrix. Namely,

$$
A=\left(\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{n}\right)
\end{array}\right)
$$

We call A the standard matrix of T. It has the property that

$$
T(\vec{x})=A \vec{x}
$$

Standard Matrix of a Linear Transformation

We have seen that for any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can associate a matrix. Namely,

$$
A=\left(\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{n}\right)
\end{array}\right)
$$

We call A the standard matrix of T. It has the property that

$$
T(\vec{x})=A \vec{x}
$$

There is another common notation for A, that is, we sometimes write $A=[T]$ and then write

$$
T(\vec{x})=[T] \vec{x}
$$

Standard Matrix of a Linear Transformation

We have seen that for any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can associate a matrix. Namely,

$$
A=\left(\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{n}\right)
\end{array}\right)
$$

We call A the standard matrix of T. It has the property that

$$
T(\vec{x})=A \vec{x}
$$

There is another common notation for A, that is, we sometimes write $A=[T]$ and then write

$$
T(\vec{x})=[T] \vec{x}
$$

NOTE: while T is a linear transformation [T] is a matrix!

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation.

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation. For example if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has standard matrix

$$
[T]=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
T\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & c \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
* \\
* \\
z
\end{array}\right)
$$

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation. For example if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has standard matrix

$$
[T]=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we can see that T fixes the z-axis

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation. For example if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has standard matrix

$$
[T]=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we can see that T fixes the z-axis while it rotates the x, y-plane about an angle of $\pi / 4$

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation. For example if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has standard matrix

$$
[T]=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we can see that T fixes the z-axis while it rotates the x, y-plane about an angle of $\pi / 4$.

However, sometimes it is not so obvious what the geometry is by looking at the standard matrix.

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation. For example if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has standard matrix

$$
[T]=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we can see that T fixes the z-axis while it rotates the x, y-plane about an angle of $\pi / 4$.

However, sometimes it is not so obvious what the geometry is by looking at the standard matrix. For example, if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has standard matrix

$$
[T]=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)
$$

Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about the geometry of the transformation. For example if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has standard matrix

$$
[T]=\left(\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we can see that T fixes the z-axis while it rotates the x, y-plane about an angle of $\pi / 4$.

However, sometimes it is not so obvious what the geometry is by looking at the standard matrix. For example, if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has standard matrix

$$
[T]=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)
$$

Can we describe this geometrically? If so, how?

Linear Transformation Not Under the Standard Basis

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[T]$ is called the standard matrix because we are using the standard basis $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ to define it.

$$
[T]=\left(\begin{array}{llll}
T\left(e_{1}\right) & T\left(a_{1}\right) & \cdots & T\left(a_{1}\right)
\end{array}\right)
$$

Linear Transformation Not Under the Standard Basis

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[T]$ is called the standard matrix because we are using the standard basis $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ to define it. However, we know that there are many different bases for \mathbb{R}^{n}. So why can't we use one of the other ones?

Linear Transformation Not Under the Standard Basis

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[T]$ is called the standard matrix because we are using the standard basis $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ to define it. However, we know that there are many different bases for \mathbb{R}^{n}. So why can't we use one of the other ones?

Theorem
 for \mathbb{R}^{n} and let

$$
A=\left(\left[\begin{array}{l}
T\left(\vec{v}_{1}\right) \\
\underset{\uparrow}{ } \\
{\left[\underset{\uparrow}{T}\left(\underset{\uparrow}{\overrightarrow{v_{2}}}\right)\right]_{B}} \\
\cdots
\end{array}\right]\left[T\left(\underset{\sim}{\vec{v}_{n}}\right)\right]_{B}\right)
$$

Comment: it $B=\left\{e_{1}, e_{1} \ldots e_{n}\right\} \quad A$ standard matrix

Linear Transformation Not Under the Standard Basis

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[T]$ is called the standard matrix because we are using the standard basis $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ to define it. However, we know that there are many different bases for \mathbb{R}^{n}. So why can't we use one of the other ones?

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ a basis for \mathbb{R}^{n} and let

$$
A=\left(\left[\begin{array}{llll}
\left.T\left(\vec{v}_{1}\right)\right]_{B} & {\left[T\left(\vec{v}_{2}\right)\right]_{\uparrow}} & \cdots & \left.\left[T\left(\vec{v}_{n}\right)\right]_{\uparrow}\right)
\end{array}\right.\right.
$$

Then
for every vector in $\vec{x} \in \mathbb{R}^{n}$.

$$
[T(\vec{x})]_{\beta}=A[\vec{x}]_{B}
$$

Linear Transformation Not Under the Standard Basis

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[T]$ is called the standard matrix because we are using the standard basis $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ to define it. However, we know that there are many different bases for \mathbb{R}^{n}. So why can't we use one of the other ones?

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ a basis for \mathbb{R}^{n} and let

$$
A=\left(\left[\begin{array}{llll}
\left.T\left(\vec{v}_{1}\right)\right]_{B} & {\left[T\left(\vec{v}_{2}\right)\right]_{B}} & \ldots & {\left[T\left(\vec{v}_{n}\right)\right]_{B}}
\end{array}\right)\right.
$$

Then

$$
[T(\vec{x})]_{B}=A[\vec{x}]_{B}
$$

for every vector in $\vec{x} \in \mathbb{R}^{n}$. Moreover, A is the unique matrix with this property and we commonly denote $A=[T]_{B}$ and call it the matrix of T with respect to the basis B.

Proof
Wat to skew $A=\left(\left[T\left(V_{1}\right)\right]_{A} \cdots \quad\left[T\left(V_{1}\right)\right]_{0}\right)$, then $[T(x)]_{D}=A[x]_{1}$

$$
[\vec{x}]_{p}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \stackrel{\text { def }}{\Rightarrow} \vec{x}=c_{1} \vec{v}_{1}+\cdots+c_{1} \vec{v}_{n}
$$

f HS:

$$
\begin{aligned}
& \left.[T(\vec{x})]_{B}=\left[T\left(c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}\right)\right]_{B}=E_{B} T\left(\vec{v}_{1}\right)+\cdots+c_{n} T\left(\vec{v}_{n}\right)\right]_{l P} \\
& =c_{1}\left[T\left(\overrightarrow{v_{1}}\right)\right]_{\ell}+\cdots+c_{n}\left[T\left(\vec{v}_{n}\right)\right]_{D}
\end{aligned}
$$

LIS:

$$
\begin{aligned}
& A[\stackrel{\rightharpoonup}{x}]_{D}=\left(G\left(V_{1}\right)\right)_{D} \cdots\left[T\left(V_{n}\right)_{D}\right)\left[\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right]=C_{1}\left(T\left(V_{1}\right)\right]_{B} t+C_{n}\left[\left(V_{n}\right)\right]_{B} \\
& R(t S=L(t S \quad \text { dore. }
\end{aligned}
$$

Example

Exercise

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation with standard matrix

$$
[T]=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)
$$

Find $[T]_{B}$, the matrix of T with respect to the basis $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Use it to describe T geometrically and calculate $\overrightarrow{e_{1}}$.

Example

Exercise

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation with standard matrix

$$
[T]=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)
$$

Find $[T]_{B}$, the matrix of T with respect to the basis $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Use it to describe T geometrically and calculate $\overrightarrow{e_{1}}$.
By the theorem, we know that

$$
[T]_{B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B} & \left.\left[T\left(\vec{v}_{2}\right)\right]_{B}\right)
\end{array}\right.\right.
$$

Example

Exercise

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation with standard matrix

$$
[T]=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)
$$

Find $[T]_{B}$, the matrix of T with respect to the basis $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Use it to describe T geometrically and calculate $\overrightarrow{e_{1}}$.
By the theorem, we know that

$$
[T]_{B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B} & \left.\left[T\left(\vec{v}_{2}\right)\right]_{B}\right)
\end{array}\right.\right.
$$

Hence, we need to find the coordinates of $T\left(\vec{v}_{1}\right)$ and $T\left(\vec{v}_{2}\right)$ with respect to B

Example Continued

Example Continued

$$
T\left(\vec{v}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Example Continued

$$
T\left(\overrightarrow{\vec{v}_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]
$$

Example Continued

$$
T\left(\vec{v}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\vec{v}_{1}=1 \vec{v}_{1}+0 \vec{v}_{2}
$$

Example Continued

$$
\left.T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{v_{2}^{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\overrightarrow{v_{1}}=1 \overrightarrow{\vec{v}}_{1}+\underline{0 \vec{v}_{2}} \xlongequal{\operatorname{ldg}}\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\frac{[1}{0}\right]
$$

Example Continued

$$
\begin{aligned}
& T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right]=\overrightarrow{v_{1}}=1 \overrightarrow{\vec{v}_{1}}+0 \overrightarrow{v_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

Example Continued

$$
\begin{aligned}
& T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right]=\overrightarrow{v_{1}}=1 \overrightarrow{\vec{v}_{1}}+0 \overrightarrow{v_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{\sqrt{5}} \\
\frac{2}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

Example Continued

$$
\begin{aligned}
& T\left(\vec{v}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\vec{v}_{1}=1 \vec{v}_{1}+0 \vec{v}_{2} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\vec{v}_{2}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{\sqrt{2}} \\
\frac{5}{\sqrt{2}}
\end{array}\right]=5 \vec{v}_{2}=0 \vec{v}_{1}+5 \vec{v}_{2}
\end{aligned}
$$

Example Continued

$$
\begin{aligned}
& T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\overrightarrow{\vec{v}_{1}}=1 \overrightarrow{\vec{v}_{1}}+0 \overrightarrow{v_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{\sqrt{2}}} \\
\frac{\sqrt{2}}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{\sqrt{2}} \\
\sqrt{2}
\end{array}\right]=5 \overrightarrow{v_{2}}=\underline{0} \vec{v}_{1}+\underline{\underline{5} \vec{v}_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{2}}\right)\right]_{B}=\left[\begin{array}{l}
\underline{0} \\
5
\end{array}\right]
\end{aligned}
$$

Example Continued

$$
\begin{aligned}
& T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\overrightarrow{v_{1}}=1 \overrightarrow{\vec{v}_{1}}+0 \overrightarrow{\vec{v}_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{\sqrt{2}} \\
\frac{\sqrt{5}}{\sqrt{2}}
\end{array}\right]=5 \overrightarrow{v_{2}}=0 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{2}}\right)\right]_{B}=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
\end{aligned}
$$

Hence we see that

$$
[T]_{B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B}\right)
$$

Example Continued

$$
\begin{aligned}
& T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\overrightarrow{v_{1}}=1 \overrightarrow{\vec{v}_{1}}+0 \overrightarrow{\vec{v}_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{\sqrt{2}} \\
\frac{\sqrt{5}}{\sqrt{2}}
\end{array}\right]=5 \overrightarrow{\vec{v}_{2}}=0 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{2}}\right)\right]_{B}=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
\end{aligned}
$$

Hence we see that

$$
[T]_{B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B} & \left.\left[T\left(\vec{v}_{2}\right)\right]_{B}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right), ~
\end{array}\right.\right.
$$

Example Continued

$$
\begin{aligned}
& T\left(\overrightarrow{v_{1}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\overrightarrow{v_{1}}=1 \overrightarrow{\vec{v}_{1}}+0 \vec{v}_{2} \Longrightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{\sqrt{2}} \\
\frac{\sqrt{5}}{\sqrt{2}}
\end{array}\right]=5 \overrightarrow{\vec{v}_{2}}=0 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}} \Longrightarrow\left[T\left(\overrightarrow{v_{2}}\right)\right]_{B}=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
\end{aligned}
$$

Hence we see that

$$
[T]_{B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B} & \left.\left[T\left(\vec{v}_{2}\right)\right]_{B}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right), ~
\end{array}\right.\right.
$$

In particular, $[T]_{B}$ is diagonal!

Example Continued

$$
\begin{aligned}
& T\left(\vec{v}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\vec{v}_{1}=1 \vec{v}_{1}+0 \vec{v}_{2} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\vec{v}_{2}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{5}{\sqrt{2}}
\end{array}\right]=5 \vec{v}_{2}=0 \vec{v}_{1}+5 \vec{v}_{2} \Longrightarrow\left[T\left(\vec{v}_{2}\right)\right]_{B}=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
\end{aligned}
$$

Hence we see that

$$
[T]_{B}=\left(\begin{array}{ll}
{\left[\left(\vec{v}_{1}\right)\right]_{B}} & \left.\left[T\left(\vec{v}_{2}\right)\right]_{B}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)
\end{array}\right.
$$

In particular, $[T]_{B}$ is diagonal! We've seen that transformations whose standard matrices are diagonal correspond to stretching the axes (i.e. stretching the standard basis \vec{e}_{i}).

Example Continued

$$
\begin{aligned}
& T\left(\vec{v}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]=\vec{v}_{1}=1 \vec{v}_{1}+0 \vec{v}_{2} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\vec{v}_{2}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{5}{\sqrt{2}}
\end{array}\right]=5 \vec{v}_{2}=0 \vec{v}_{1}+5 \vec{v}_{2} \Longrightarrow\left[T\left(\vec{v}_{2}\right)\right]_{B}=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
\end{aligned}
$$

Hence we see that

In particular, $[T]_{B}$ is diagonal! We've seen that transformations whose standard matrices are diagonal correspond to stretching the axes (i.e. stretching the standard basis \vec{e}_{i}).

Likewise, $[T]_{B}$ being diagonal corresponds to stretching along the basis vectors B.

Example Continued
That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Comment: This easy geometric inter pret action work, only be cause $[T]_{B}$ was diagond!

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of $\overrightarrow{v_{2}}$ by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B.

$$
\left[T\left(e_{1}\right)\right]_{B}=[\pi]_{B}\left[e_{1}\right]_{B}
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of $\overrightarrow{v_{2}}$ by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\begin{gathered}
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\underset{\uparrow}{\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]}+\underset{V_{1}}{\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]} \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\frac{1}{\sqrt{2}} \\
V_{2}
\end{gathered}
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

And so

$$
\left[T\left(\vec{e}_{1}\right)\right]_{B}=[T]_{B}\left[\vec{e}_{1}\right]_{B}
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

And so

$$
\left[T\left(\vec{e}_{1}\right)\right]_{B}=[T]_{B}\left[\vec{e}_{1}\right]_{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

And so

$$
\left[T\left(\vec{e}_{1}\right)\right]_{B}=[T]_{B}\left[\vec{e}_{1}\right]_{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{5}{\sqrt{2}}
\end{array}\right]
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write $\overrightarrow{e_{1}}$ in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

And so

$$
\begin{aligned}
& \text { so } \quad\left[T\left(\vec{e}_{1}\right)\right]_{B}=[T]_{B}\left[\vec{e}_{1}\right]_{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{5}{2}
\end{array}\right] \neq T\left(\vec{C}_{6}\right) \\
& \Longrightarrow \\
& \\
& \\
&
\end{aligned}
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

And so

$$
\begin{aligned}
& {\left[T\left(\vec{e}_{1}\right)\right]_{B}=[T]_{B}\left[\vec{e}_{1}\right]_{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{5}{\sqrt{2}}
\end{array}\right] } \\
\Longrightarrow & T\left(\vec{e}_{1}\right)=\frac{1}{\sqrt{2}} \vec{v}_{1}+\frac{5}{\sqrt{2}} \vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{5}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

Example Continued

That is, we may conclude that T acts by stretching along the direction of $\overrightarrow{v_{1}}$ by a factor of 1 and stretching along the direction of \vec{v}_{2} by a factor of 5 .

Now, to use this to calculate $T\left(\vec{e}_{1}\right)$, we need to write \vec{e}_{1} in the basis B. Indeed,

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

And so

$$
\begin{aligned}
& {\left[T\left(\vec{e}_{1}\right)\right]_{B}=[T]_{B}\left[\vec{e}_{1}\right]_{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{5}{\sqrt{2}}
\end{array}\right] } \\
\Longrightarrow & T\left(\vec{e}_{1}\right)=\frac{1}{\sqrt{2}} \vec{v}_{1}+\frac{5}{\sqrt{2}} \vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+\frac{5}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\vec{e}_{1}\right)$.

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix.

Comments on Example

Of course, this was a round about way of calculating $T\left(\vec{e}_{1}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

However, this becomes useful when if we need to compute $T(\vec{x})$ with

$$
\vec{x}=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

However, this becomes useful when if we need to compute $T(\vec{x})$ with

$$
\vec{x}=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=2\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+3\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

However, this becomes useful when if we need to compute $T(\vec{x})$ with

$$
\vec{x}=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=2\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+3\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow[\vec{x}]_{B}=\left[\begin{array}{l}
\frac{2}{3} \\
\hline
\end{array}\right]
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

However, this becomes useful when if we need to compute $T(\vec{x})$ with

$$
\vec{x}=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=2\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+3\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow[\vec{x}]_{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

and so

$$
[T(\vec{x})]_{B}=[T]_{B}[\vec{x}]_{B}
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

However, this becomes useful when if we need to compute $T(\vec{x})$ with

$$
\vec{x}=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=2\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+3\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow[\vec{x}]_{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

and so

$$
[T(\vec{x})]_{B}=[T]_{B}[\vec{x}]_{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Comments on Example

Of course, this was a round about way of calculating $T\left(\overrightarrow{e_{1}}\right)$. A much easier way would be to just use the standard matrix. That is:

$$
T\left(\vec{e}_{1}\right)=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

However, this becomes useful when if we need to compute $T(\vec{x})$ with

$$
\vec{x}=\left[\begin{array}{c}
\frac{5}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=2\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]+3\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \Longrightarrow[\vec{x}]_{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

and so

$$
[T(\vec{x})]_{B}=[T]_{B}[\vec{x}]_{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
2 \\
15
\end{array}\right] \neq T(\vec{x})
$$

$T(\bar{x})=2 \vec{r}_{1}+\left(S \overrightarrow{r_{2}}\right.$

Change of Basis of Linear Transformation

Question

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and B, B^{\prime} are two bases for \mathbb{R}^{n}, how are $[T]_{B}$ and $[T]_{B^{\prime}}$ related?

Change of Basis of Linear Transformation

Question

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and B, B^{\prime} are two bases for \mathbb{R}^{n}, how are $[T]_{B}$ and $[T]_{B^{\prime}}$ related?

Theorem

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $B_{\hat{\mathbb{}}}^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime}\right\}$ are two bases for \mathbb{R}^{n}, then

$$
[T]_{B^{\prime}}=P[T]_{B} P^{-1}
$$

where
is the transition matrix from $B \rightarrow B^{\prime}$.

Sketch of Proof

Sketch of Proof

If $P=P_{B \rightarrow B^{\prime}}$, then $P^{-1}=P_{B^{\prime} \rightarrow B}$.

Sketch of Proof

$$
\text { If } P=P_{B \rightarrow B^{\prime}} \text {, then } P^{-1}=P_{B^{\prime} \rightarrow B} \text {. So }
$$

$$
P[T]_{B} P^{-1}
$$

can be thought of doing three things to a vector in base B^{\prime} :

Sketch of Proof

If $P=P_{B \rightarrow B^{\prime}}$, then $P^{-1}=P_{B^{\prime} \rightarrow B}$. So

$$
P[T]_{B} P^{-1}
$$

can be thought of doing three things to a vector in base B^{\prime} :
(1) Changes the vector \vec{x} from base B^{\prime} to B

Sketch of Proof

If $P=P_{B \rightarrow B^{\prime}}$, then $P^{-1}=P_{B^{\prime} \rightarrow B}$. So

$$
P[T]_{B} P^{-1}
$$

can be thought of doing three things to a vector in base B^{\prime} :
(1) Changes the vector \vec{x} from base B^{\prime} to B

(2) Performs the operation of T is base B

Sketch of Proof

If $P=P_{B \rightarrow B^{\prime}}$, then $P^{-1}=P_{B^{\prime} \rightarrow B}$. So

$$
P[T]_{B} P^{-1} \rightarrow
$$

can be thought of doing three things to a vector in base B^{\prime} :
(1) Changes the vector \vec{x} from base B^{\prime} to B

(2) Performs the operation of T is base $B \quad G \quad C T J_{D}$
(3) Changes the resulting vector back from base B to $B^{\prime} \leftarrow p$

Sketch of Proof

If $P=P_{B \rightarrow B^{\prime}}$, then $P^{-1}=P_{B^{\prime} \rightarrow B}$. So

$$
P[T]_{B} P^{-1}
$$

can be thought of doing three things to a vector in base B^{\prime} :
(1) Changes the vector \vec{x} from base B^{\prime} to B
(2) Performs the operation of T is base B
(3) Changes the resulting vector back from base B to B^{\prime}

So it makes sense that this would be the same as just applying T in base B^{\prime}.

Transition Between Orthonormal Bases

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime}\right\}$ are two orthonormal bases for \mathbb{R}^{n}, then

$$
[T]_{B^{\prime}}=P[T]_{B} P^{T}
$$

where $P=P_{B \rightarrow B^{\prime}}$ is the transition matrix from $B \rightarrow B^{\prime}$.

Transition Between Orthonormal Bases

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime}\right\}$ are two orthonormal bases for \mathbb{R}^{n}, then

$$
[T]_{B^{\prime}}=P[T]_{B} P^{T}
$$

where $P=P_{B \rightarrow B^{\prime}}$ is the transition matrix from $B \rightarrow B^{\prime}$.

Proof.

Transition Between Orthonormal Bases

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime}\right\}$ are two orthonormal bases for \mathbb{R}^{n}, then

$$
[T]_{B^{\prime}}=P[T]_{B} P^{T}
$$

where $P=P_{B \rightarrow B^{\prime}}$ is the transition matrix from $B \rightarrow B^{\prime}$.

Proof.

If B and B^{\prime} are orthonormal bases then $P_{B \rightarrow B^{\prime}}$ is an orthogonal matrix. (Exercise: show this)

Transition Between Orthonormal Bases

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime}\right\}$ are two orthonormal bases for \mathbb{R}^{n}, then

$$
[T]_{B^{\prime}}=P[T]_{B} P^{T}
$$

where $P=P_{B \rightarrow B^{\prime}}$ is the transition matrix from $B \rightarrow B^{\prime}$.

Proof.

If B and B^{\prime} are orthonormal bases then $P_{B \rightarrow B^{\prime}}$ is an orthogonal matrix.
(Exercise: show this)
Thearen:
Hence $P^{T} P=I_{n}$ and so $P^{-1}=P^{T}$.

$$
T T]_{Q^{1}}=P[T]_{0} P^{-1}
$$

$$
\text { orthon }<7 \quad i^{-1}=p^{7}
$$

Transition to and from Standard Basis

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis for \mathbb{R}^{n} and S is the standard basis, then

$$
[T]_{S}=[T]=P[T]_{B} P^{-1}
$$

where

$$
S=\left\{e_{1}, \ldots e_{n}\right\}
$$

$$
P=P_{B \rightarrow S}=\left(\begin{array}{llll}
{\left[\vec{v}_{1}\right]_{S}} & {\left[\vec{v}_{2}\right]_{S}} & \ldots & {\left[\vec{v}_{n}\right]_{S}}
\end{array}\right)
$$

Transition to and from Standard Basis

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis for \mathbb{R}^{n} and S is the standard basis, then

$$
[T]_{S}=[T]=P[T]_{B} P^{-1}
$$

where

$$
P=P_{B \rightarrow S}=\left(\begin{array}{llll}
{\left[\vec{v}_{1}\right]_{S}} & {\left[\vec{v}_{2}\right]_{S}} & \ldots & {\left[\vec{v}_{n}\right]_{S}}
\end{array}\right)=\left(\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right)
$$

is the transition matrix from $B \rightarrow S$.

Transition to and from Standard Basis

Corollary

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis for \mathbb{R}^{n} and S is the standard basis, then

$$
[T]_{S}=[T]=P[T]_{B} P^{-1}
$$

where

$$
P=P_{B \rightarrow S}=\left(\begin{array}{llll}
\left.\vec{v}_{1}\right]_{S} & {\left[\vec{v}_{2}\right]_{S}} & \ldots & {\left[\vec{v}_{n}\right]_{S}}
\end{array}\right)=\left(\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right)
$$

is the transition matrix from $B \rightarrow S$.

Moreover, if B is an orthonormal basis, then

$$
[T]=P[T]_{B} P^{T}
$$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation with standard matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation with standard matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.
Then we saw if $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ with

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

then $[T]_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation with standard matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.
Then we saw if $B=\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}$ with

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

then $[T]_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$. Now, we see that B is an orthonormal basis (Exercise: check this), and so

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation with standard matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.
Then we saw if $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ with

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

then $[T]_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$. Now, we see that B is an orthonormal basis (Exercise: check this), and so

$$
P=P_{B \rightarrow S}=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

dart need orthonormal
for this

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation with standard matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.
Then we saw if $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ with

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

then $[T]_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$. Now, we see that B is an orthonormal basis
(Exercise: check this), and so

$$
\left.P=P_{B \rightarrow S}=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } \quad P^{-1}=P^{T}=\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
&
\end{array}
$$

since orthoromal

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation with standard matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$.
Then we saw if $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ with

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\begin{aligned}
S & =\text { standard } \\
& \text { bus } \\
& =\left[e_{11} e_{2}\right\}
\end{aligned}
$$

then $[T]_{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$. Now, we see that B is an orthonormal basis
(Exercise: check this), and so

$$
P=P_{B \rightarrow S}=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } \quad P^{-1}=P^{T}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

And a quick calculation confirms that

$$
\left.\begin{array}{ll}
\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)= & =\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right) & {[T]_{0}^{\frac{1}{\sqrt{2}}}} \\
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from $\mathbb{R}^{(C)} \rightarrow \mathbb{R}^{(\oplus)}$.

Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. This was necessary as if we if $T: \mathbb{R}^{(\boxminus)} \rightarrow \mathbb{R}^{(⿴ 囗}$, then $\vec{x} \in \mathbb{R}^{n}$ but $T(\vec{x}) \in \mathbb{R}^{m}$ and if we have a basis for $\mathbb{R}(1)$, then

$$
[T(\vec{x})]_{B} \text { beccar } f(\vec{x}) \in \mathbb{R}^{m}
$$

would make no sense.

$$
\begin{aligned}
& T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{4} \\
& {[T(x)]_{B}=[T]_{B}[\hat{x}]_{B}}
\end{aligned}
$$

Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from $\mathbb{R}^{(} \rightarrow \mathbb{R}^{n}$. This was necessary as if we if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then $\vec{x} \in \mathbb{R}^{n}$ but $T(\vec{x}) \in \mathbb{R}^{m}$ and if we have a basis for \mathbb{R}^{n}, then

$$
[T(\vec{x})]_{B}
$$

would make no sense. Whereas if we tried to use a basis B^{\prime} of \mathbb{R}^{m} so that $[T(\vec{x})]_{B^{\prime}}$ makes sense, we would now have that

$$
\stackrel{[\vec{x}]_{B^{\prime}}}{\rightleftarrows} \quad x \in \mathbb{R}^{n} \neq \mathbb{R}^{n}
$$

makes no sense.

$$
[T(\vec{x})]_{B}=[T]_{R}[\vec{x}]_{B}
$$

Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. This was necessary as if we if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then $\vec{x} \in \mathbb{R}^{n}$ but $T(\vec{x}) \in \mathbb{R}^{m}$ and if we have a basis for \mathbb{R}^{n}, then

$$
[T(\vec{x})]_{B}
$$

would make no sense. Whereas if we tried to use a basis B^{\prime} of \mathbb{R}^{m} so that $[T(\vec{x})]_{B^{\prime}}$ makes sense, we would now have that

$$
[\vec{x}]_{B^{\prime}}
$$

makes no sense.

Conclusion: using only one basis there is no way to make sense of the statement

$$
\left[(T(\vec{x})]_{B}^{B}=[T]_{B}^{B}[\vec{x}]_{\underline{B}}\right.
$$

if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for $n \neq m$.

Non-Square Linear Transformation With Respect to Two Bases

Theorem

Let $T: \mathbb{R}^{(n)} \rightarrow \mathbb{R}^{m}$ and let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for \mathbb{R}^{n} and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{m}^{\prime}\right\}$ be a basis for \mathbb{R}^{m}

Non-Square Linear Transformation With Respect to Two Bases

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $B=\left\{{\overrightarrow{v_{1}}}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for \mathbb{R}^{n} and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{m}^{\prime}\right\}$ be a basis for $\overline{\mathbb{R}}^{m}$ then we define

$$
A=\left(\left[\begin{array}{llll}
T\left(\vec{v}_{1}\right)
\end{array}\right]_{B^{\prime}}\left[\begin{array}{lll}
T\left(\underline{\vec{v}_{2}}\right)
\end{array}\right]_{B^{\prime}} \cdots \cdots,\left[\begin{array}{ll}
T\left(\vec{v}_{n}\right)
\end{array}\right]_{B^{\prime}}\right)
$$

and get that

$$
[T(\vec{x})]_{B^{\prime}}=A[\vec{x}]_{B}
$$

for every vector $\vec{x} \in \mathbb{R}^{n}$.

Non-Square Linear Transformation With Respect to Two Bases

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for \mathbb{R}^{n} and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{m}^{\prime}\right\}$ be a basis for \mathbb{R}^{m} then we define

$$
A=\left(\left[\begin{array}{llll}
\left.T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} & {\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}} & \ldots & {\left[T\left(\vec{v}_{n}\right)\right]_{B^{\prime}}}
\end{array}\right)\right.
$$

and get that

$$
[T(\vec{x})]_{B^{\prime}}=A[\vec{x}]_{B}
$$

for every vector $\vec{x} \in \mathbb{R}^{n}$. We denote the matrix $A=[T]_{B^{\prime}, B}$ ad call it the matrix for T with respect to the bases B and B^{\prime}.

Non-Square Linear Transformation With Respect to Two Bases

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for \mathbb{R}^{n} and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{m}^{\prime}\right\}$ be a basis for \mathbb{R}^{m} then we define we dn't

$$
A=\left(\left[\begin{array}{llll}
\left.T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} & {\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}} & \ldots & \left.\left[T\left(\vec{v}_{n}\right)\right]_{B^{\prime}}\right)
\end{array} \frac{n e e d}{n \neq m}\right.\right.
$$

and get that

$$
[T(\vec{x})]_{B^{\prime}}=A[\vec{x}]_{B}
$$

for every vector $\vec{x} \in \mathbb{R}^{n}$. We denote the matrix $A=[T]_{B^{\prime}, B}$ ad call it the matrix for T with respect to the bases B and B^{\prime}.

Remark

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and B is a basis for \mathbb{R}^{n}, then this new notation is consistent with our old notation in that $[T]_{B}=[T]_{B, B}$.

Example

Exercise

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation define by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{2} \\
-5 x_{1}+13 x_{2} \\
-7 x_{1}+16 x_{2}
\end{array}\right]
$$

Let $B=\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}$ be a basis for \mathbb{R}^{2} and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \vec{v}_{2}^{\prime}, \vec{v}_{3}^{\prime}\right\}$ be a basis for \mathbb{R}^{3} where

$$
\vec{v}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
5 \\
2
\end{array}\right], \vec{v}_{1}^{\prime}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \vec{v}_{2}^{\prime}=\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right], \vec{v}_{3}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

Find $[T]_{B^{\prime}, B}$.

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\overrightarrow{\vec{v}}_{1}\right)\right]_{B^{\prime}}\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

$$
\begin{aligned}
& B=\left\{\begin{array}{c}
w \\
y
\end{array}\right\} \\
& \text { gl }\left\langle w_{i}, w_{1}, v_{i}\right\}
\end{aligned}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{array}{r}
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right) \\
\vec{v}_{1}
\end{array}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{gathered}
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]=C_{1} V_{1}^{\prime}+C_{2} V_{v}^{\prime}+g y_{j}^{\prime} \\
\text { write in bass } B^{\prime}
\end{gathered}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{aligned}
& T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]=-\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
&=-\vec{v}_{2}^{\prime}-\frac{5}{2} \vec{v}_{3}^{\prime} \imath_{1}
\end{aligned}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{gathered}
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]=-\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
O_{1}^{\prime}-\vec{v}_{2}^{\prime}-\frac{5}{2} \vec{v}_{3}^{\prime} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
-\frac{1}{2}
\end{array}\right]
\end{gathered}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{gathered}
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]=-\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
=-\vec{v}_{2}^{\prime}-\frac{5}{2} \vec{v}_{3}^{\prime} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
-1 \\
-\frac{5}{2}
\end{array}\right] \\
T\left(\vec{v}_{2}\right)=T\left(\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right]
\end{gathered}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{gathered}
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]=-\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
=-\vec{v}_{2}^{\prime}-\frac{5}{2} \vec{v}_{3}^{\prime} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
-1 \\
-\frac{5}{2}
\end{array}\right] \\
T\left(\vec{v}_{2}\right)=T\left(\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right]=\frac{5}{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
=\frac{5}{2} \vec{v}_{1}^{\prime}+\frac{1}{2} \vec{v}_{2}^{\prime}-\frac{3}{4} \vec{v}_{3}^{\prime}
\end{gathered}
$$

Solution

We know that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

and can calculate

$$
\begin{gathered}
T\left(\vec{v}_{1}\right)=T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5(3)+13(1) \\
-7(3)+16(1)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]=-\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
=-\vec{v}_{2}^{\prime}-\frac{5}{2} \vec{v}_{3}^{\prime} \Longrightarrow\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
-1 \\
-\frac{5}{2}
\end{array}\right] \\
T\left(\vec{v}_{2}\right)=T\left(\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right]=\frac{5}{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
=\frac{5}{2} \vec{v}_{1}^{\prime}+\frac{1}{2} \vec{v}_{2}^{\prime}-\frac{3}{4} \vec{v}_{3}^{\prime} \Longrightarrow\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
\frac{5}{2} \\
\frac{1}{2} \\
-\frac{3}{4}
\end{array}\right]
\end{gathered}
$$

Solution 2

Thus we conclude that

$$
[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} \quad\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)
$$

Solution 2

Thus we conclude that

$$
\begin{aligned}
{[T]_{B^{\prime}, B}=\left(\left[T\left(\vec{v}_{1}\right)\right]_{B^{\prime}}\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right) } & =\left(\begin{array}{cc}
0 & \frac{5}{2} \\
-1 & \frac{1}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right) \\
\uparrow & \left.\uparrow T\left(\vec{v}_{1}\right)\right]_{B^{\prime}}\left[T\left(\vec{v}_{0}\right)\right]_{B^{\prime}}
\end{aligned}
$$

Solution 2

Thus we conclude that

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Solution 2

Thus we conclude that

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
2
\end{array}\right]=2 \vec{v}_{1}-\vec{v}_{2}
$$

Solution 2

Thus we conclude that

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
2
\end{array}\right]=2 \vec{v}_{1}-\vec{v}_{2} \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Solution 2

Thus we conclude that

$$
[T]_{B^{\prime}, B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} & \left.\left.\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)=\left(\begin{array}{cc}
0 & \frac{5}{2} \\
-1 & \frac{1}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right) .4{ }^{2}\right)
\end{array}\right.\right.
$$

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
2
\end{array}\right]=2 \vec{v}_{1}-\vec{v}_{2} \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

and so

$$
\left[T\left(\vec{e}_{1}\right)\right]_{B^{\prime}}
$$

Solution 2

Thus we conclude that

$$
[T]_{B^{\prime}, B}=\left(\left[\begin{array}{ll}
{\left[\left(\vec{v}_{1}\right)\right]_{B^{\prime}}} & \left.\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)=\left(\begin{array}{cc}
0 & \frac{5}{2} \\
-1 & \frac{1}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right) .4{ }^{2}
\end{array}\right.\right.
$$

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
2
\end{array}\right]=2 \vec{v}_{1}-\vec{v}_{2} \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

and so

$$
\left[T\left(\vec{e}_{1}\right)\right]_{B^{\prime}}=[T]_{B^{\prime}, B}\left[\vec{e}_{1}\right]_{B}
$$

Solution 2

Thus we conclude that

$$
[T]_{B^{\prime}, B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} & \left.\left.\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)=\left(\begin{array}{cc}
0 & \frac{5}{2} \\
-1 & \frac{1}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right) .4{ }^{2}\right)
\end{array}\right.\right.
$$

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
2
\end{array}\right]=2 \vec{v}_{1}-\vec{v}_{2} \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

and so

$$
\left[T\left(\vec{e}_{1}\right)\right]_{B^{\prime}}=[T]_{B^{\prime}, B}\left[\vec{e}_{1}\right]_{B}=\left(\begin{array}{cc}
0 & \frac{5}{2} \\
-1 & \frac{1}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Solution 2

Thus we conclude that

$$
[T]_{B^{\prime}, B}=\left(\left[\begin{array}{ll}
\left.T\left(\vec{v}_{1}\right)\right]_{B^{\prime}} & \left.\left.\left[T\left(\vec{v}_{2}\right)\right]_{B^{\prime}}\right)=\left(\begin{array}{cc}
0 & \frac{5}{2} \\
-1 & \frac{1}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right) .4{ }^{2}\right)
\end{array}\right.\right.
$$

Therefore, since

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
2
\end{array}\right]=2 \vec{v}_{1}-\vec{v}_{2} \Longrightarrow\left[\vec{e}_{1}\right]_{B}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

and so

$T(\vec{e})=\frac{-s}{2} v_{1}^{\prime}-\sum_{2} v_{2}^{\prime}-\frac{9}{4} v_{3}^{\prime}$ cheder that $*$ work i with the

Changing Two Bases for Non-Square Linear Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let B_{1} and B_{2} be bases for \mathbb{R}^{n} and $B_{1}^{\prime}, B_{2}^{\prime}$ be bases for \mathbb{R}^{m}. Then

$$
[T]_{\underline{B_{1}^{\prime}, B_{1}}}=P_{B_{2}^{\prime} \rightarrow B_{1}^{\prime}}[T]_{\underline{B_{2}^{\prime}, B_{2}}} P_{B_{2} \rightarrow B_{1}}^{-1}
$$

Changing Two Bases for Non-Square Linear Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let B_{1} and B_{2} be bases for \mathbb{R}^{n} and $B_{1}^{\prime}, B_{2}^{\prime}$ be bases for \mathbb{R}^{m}. Then

$$
[T]_{B_{B_{1}^{\prime}, B_{1}}}=P_{B_{2}^{\prime} \rightarrow B_{1}^{\prime}}[T]_{B_{2}^{\prime}, B_{2}} P_{B_{2} \rightarrow B_{1}}^{-1}
$$

Since $P_{B_{2} \rightarrow B_{1}}^{-1}=P_{B_{1} \rightarrow B_{2}}$, the right hand side can be thought of as three different operations:

Changing Two Bases for Non-Square Linear Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let B_{1} and B_{2} be bases for \mathbb{R}^{n} and $B_{1}^{\prime}, B_{2}^{\prime}$ be bases for \mathbb{R}^{m}. Then

$$
[T]_{B_{1}^{\prime}, B_{1}}=P_{B_{2}^{\prime} \rightarrow B_{1}^{\prime}}[T]_{B_{2}^{\prime}, B_{2}} P_{B_{2} \rightarrow B_{1}}^{-1}
$$

Since $P_{B_{2} \rightarrow B_{1}}^{-1}=P_{B_{1} \rightarrow B_{2}}$, the right hand side can be thought of as three different operations:
(1) Changing the \mathbb{R}^{n} basis from B_{1} to $B_{2} G P_{B_{2}} \rightarrow B$,

Changing Two Bases for Non-Square Linear Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let B_{1} and B_{2} be bases for \mathbb{R}^{n} and $B_{1}^{\prime}, B_{2}^{\prime}$ be bases for \mathbb{R}^{m}. Then

$$
[T]_{B_{1}^{\prime}, B_{1}}=P_{B_{2}^{\prime} \rightarrow B_{1}^{\prime}}[T]_{B_{2}^{\prime}, B_{2}} P_{B_{2} \rightarrow B_{1}}^{-1}
$$

Since $P_{B_{2} \rightarrow B_{1}}^{-1}=P_{B_{1} \rightarrow B_{2}}$, the right hand side can be thought of as three different operations:
(1) Changing the \mathbb{R}^{n} basis from B_{1} to $B_{2} \leftarrow{P_{B_{2}}^{-1} \rightarrow O_{0}}^{-1}$
(2) Applying T from basis B_{2} into basis B_{2}^{\prime}

$$
\longleftarrow<T)_{B_{2}^{\prime}, B_{2}}
$$

Changing Two Bases for Non-Square Linear Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let B_{1} and B_{2} be bases for \mathbb{R}^{n} and $B_{1}^{\prime}, B_{2}^{\prime}$ be bases for \mathbb{R}^{m}. Then

$$
[T]_{B_{1}^{\prime}, B_{1}}=P_{B_{2}^{\prime} \rightarrow B_{1}^{\prime}}[T]_{B_{2}^{\prime}, B_{2}} P_{B_{2} \rightarrow B_{1}}^{-1}
$$

Since $P_{B_{2} \rightarrow B_{1}}^{-1}=P_{B_{1} \rightarrow B_{2}}$, the right hand side can be thought of as three different operations:
(1) Changing the \mathbb{R}^{n} basis from B_{1} to $B_{2} \Leftarrow P_{B_{2}}^{-1} \rightarrow D_{1}$
(2) Applying T from basis B_{2} into basis B_{2}^{\prime}
(3) Changing the \mathbb{R}^{m} from basis B_{2}^{\prime} to B_{1}^{\prime}

$$
\begin{aligned}
\leftrightarrow & P_{B_{1} \rightarrow D_{1}}^{-1} \\
& \leftarrow C_{B_{1}^{\prime}, B_{2}} \\
& \Leftarrow P_{B_{2}^{*}} \rightarrow B_{1}^{\prime}
\end{aligned}
$$

Changing Two Bases for Non-Square Linear Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let B_{1} and B_{2} be bases for \mathbb{R}^{n} and $B_{1}^{\prime}, B_{2}^{\prime}$ be bases for \mathbb{R}^{m}. Then

$$
[T]_{B_{1}^{\prime}, B_{1}}=P_{B_{2}^{\prime} \rightarrow B_{1}^{\prime}}[T]_{B_{2}^{\prime}, B_{2}} P_{B_{2} \rightarrow B_{1}}^{-1}
$$

Since $P_{B_{2} \rightarrow B_{1}}^{-1}=P_{B_{1} \rightarrow B_{2}}$, the right hand side can be thought of as three different operations:
(1) Changing the \mathbb{R}^{n} basis from B_{1} to B_{2}
(2) Applying T from basis B_{2} into basis B_{2}^{\prime}
(3) Changing the \mathbb{R}^{m} from basis B_{2}^{\prime} to B_{1}^{\prime}

Hence, it makes sense this should be applying T from basis B_{1} to B_{1}^{\prime}.

