SF 1684 Algebra and Geometry Lecture 14

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Orthogonal Projections onto a Line
(2) Orthogonal Projections onto a Subspace
(3) Projection Matrices

Projections

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a}.

Projections

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a}. Moreover, we had the formula

$$
\begin{gathered}
\operatorname{proj}_{\vec{a}} \vec{v}=\frac{\vec{v} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}{ }_{\Gamma} \text { vector } \\
\text { scalar }
\end{gathered}
$$

Projections

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a}. Moreover, we had the formula

$$
\operatorname{proj}_{\vec{a}} \vec{v}=\frac{\vec{v} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Theorem

If \vec{a} is a non-zero vector in \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where \vec{x}_{1} is a scalar multiple of \vec{a} and \vec{x}_{2} is orthogonal to \vec{a} (and hence to \vec{x}_{1}).

Projections

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a}. Moreover, we had the formula

$$
\operatorname{proj}_{\vec{a}} \vec{v}=\frac{\vec{v} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Theorem

If \vec{a} is a non-zero vector in \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where \vec{x}_{1} is a scalar multiple of \vec{a} and \vec{x}_{2} is orthogonal to \vec{a} (and hence to \vec{x}_{1}). In particular, we have

$$
\vec{x}_{1}=\operatorname{proj}_{\vec{a}} \vec{x}_{1}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a} \quad \vec{x}_{2}=\vec{x}-\vec{x}_{1}=\vec{x}-\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Proof

$$
\bar{x}_{1}=c \cdot \vec{a}^{\vec{x}}=\vec{x}_{1}+\vec{x}_{2} \quad \rightarrow \quad \bar{x}_{2}=\vec{x}-\bar{x}_{1}=x-c \cdot \vec{a}
$$

w also reed $\bar{x}_{2} \cdot \bar{a}=0$
That is, need $(\vec{x}-c \cdot \vec{a})-\vec{a}=0$
Export this. $\vec{x} \cdot \bar{a}-C(\bar{a} \cdot \vec{a})=0$
Pecorronging, find $\quad c=\frac{\bar{x}-\bar{a}}{\vec{a} \cdot \vec{a}}=\frac{\bar{x}_{-}-\bar{c}}{(\bar{a})^{2}}$
Hence e conclecte that $\vec{x}_{1}=\frac{\vec{x} \cdot \bar{c}}{\left\|q_{\|}\right\|^{2}} \cdot \vec{s}=\operatorname{prg}_{\vec{c}} \vec{x}$

Orthogonal Projections and Components

While \dot{a} is a veeter $\operatorname{spch}(\vec{a})$ is a sutspace.

Definition

If \vec{a} is a nonzero vector in \mathbb{R}^{n} and if \vec{x} is any vector in \mathbb{R}^{n}, then the orthogonal projection of \vec{x} onto span (\vec{a}) is denoted $\operatorname{proj}_{\vec{a}} \vec{x}$ and defined to be

$$
\operatorname{proj}_{\vec{a}} \vec{x}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Orthogonal Projections and Components

Definition

If \vec{a} is a nonzero vector in \mathbb{R}^{n} and if \vec{x} is any vector in \mathbb{R}^{n}, then the orthogonal projection of \vec{x} onto span(\vec{a}) is denoted $\operatorname{proj}_{\vec{a}} \vec{x}$ and defined to be

$$
\operatorname{proj}_{\vec{a}} \vec{x}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

The vector $\operatorname{proj}_{\vec{a}} \vec{x}$ is also called the vector component of \vec{x} along \vec{a}

Orthogonal Projections and Components

Definition

If \vec{a} is a nonzero vector in \mathbb{R}^{n} and if \vec{x} is any vector in \mathbb{R}^{n}, then the orthogonal projection of \vec{x} onto span(\vec{a}) is denoted $\operatorname{proj}_{\vec{a}} \vec{x}$ and defined to be

$$
\operatorname{proj}_{\vec{a}} \vec{x}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

The vector prof $\vec{a} \vec{x}$ is also called the vector component of \vec{x} along \vec{a} and $\vec{x}-\operatorname{proj}_{\vec{a}} \vec{x}$ is called the vector component of \vec{x} orthogonal to \vec{a}.

$$
\bar{x}=\bar{x}_{1}+\vec{x}_{c}
$$

Example

Let $\vec{x}=(2,-1,3)$ and $\vec{a}=(4,-1,2)$. Find the vector component of \vec{x} along \vec{a} and the vector component of \vec{x} orthogonal to \vec{a}.

$$
\begin{aligned}
& x \cdot 9=2-4+7 x-1+2 x) \\
& =8-116 \\
& =13 \\
& \|a\|^{2}=a \cdot a=4 \times 4+1 \times 1+2 \times 2 \\
& \begin{array}{c}
=16 x+5 \\
=20 \\
\text { orion }
\end{array} \\
& x_{c}=x-x_{1} \\
& =\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)-\left(\begin{array}{l}
13 / 5 \\
-1 / 20 \\
12 / 0
\end{array}\right) \\
& =\left(\begin{array}{c}
-3 / 5 \\
\rightarrow 320 \\
3 / 3 / c
\end{array}\right) \\
& \text { Erercice }
\end{aligned}
$$

Orthogonal Projections as Linear Transformations

For any vector $\vec{a} \in \mathbb{R}^{n}$, we can define the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
T(\vec{x})=\operatorname{proj}_{\vec{a}} \vec{x}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Orthogonal Projections as Linear Transformations

For any vector $\vec{a} \in \mathbb{R}^{n}$, we can define the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
T(\vec{x})=\operatorname{proj}_{\vec{a}} \vec{x}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Exercise

Show that T is a linear transformation.

Orthogonal Projections as Linear Transformations

For any vector $\vec{a} \in \mathbb{R}^{n}$, we can define the map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
T(\vec{x})=\operatorname{proj}_{\vec{a}} \vec{x}=\frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^{2}} \vec{a}
$$

Exercise

Show that T is a linear transformation.
We call this map the orthogonal projection of \mathbb{R}^{n} onto span (\vec{a}).

$$
\begin{gathered}
i \\
\text { Sulspace. }
\end{gathered}
$$

Standard Matrix of Orthogonal Projection

Theorem
If \vec{a} is a nonzero vector in \mathbb{R}^{n}, and if \vec{a} is viewed as an $n \times 1$ matrix, then the standard matrix for the linear operator $T(\vec{x})=\operatorname{proj}_{\vec{a}} \vec{x}$ is

Seder),

$$
P=\frac{1}{\vec{a}^{T} \vec{a}} \rightarrow \vec{a}^{T}-\text { spear matres }
$$

Note: $\vec{a}^{T} \vec{a} \in \mathbb{R}^{1}$ and so is a scalar, whereas \vec{a}^{T} is an $n \times n$ matrix.
proof:

$$
\overrightarrow{a_{1}} \vec{a}^{-1}=\left[\begin{array}{ll}
a \\
a_{2} & a_{2} \\
a_{2} & \theta \\
a_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} a_{1} & a_{2} a_{1} \\
a_{1} a_{1} & c_{2} a_{2} \\
a_{1} a_{n} & a_{2} a_{n}
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
a_{1} & a_{1} \\
a_{1} & a_{2} \\
\vdots \\
a_{n} & a_{n}
\end{array}\right\}
$$

More Work Space

$$
\rho=\frac{1}{a_{T} r_{c}} a_{a} T=\frac{1}{\mid\left(\left.a_{1}\right|^{2}\right.}\left[\begin{array}{cc}
a_{1} a_{1} & -f \\
\vdots & \\
a_{1} a_{1} \\
a_{1} a_{n} & - \\
\vdots \\
c_{1} a_{n}
\end{array}\right]
$$

$T(\vec{x})=\operatorname{proj}_{2} \bar{x}=\frac{a-x}{k_{a n} l^{2}} \cdot a$. fecal: the its calcmen at to staclard matrix at T will lu $T\left(\vec{e}_{\dot{i}}\right)$

$$
\begin{array}{rlrl}
T\left(e_{i}\right) & =\frac{a \cdot e_{i}}{\|a\|^{2}} \cdot \vec{a} \quad a \cdot e_{i} & =a_{1} \times 0 r a_{c} \times 0 \\
& \left.=\frac{a_{i}}{\| a_{\|}} \vec{a}=\frac{a_{c}}{\|\left(s_{1} \|^{1}\right.}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=\frac{1}{\|\left(q^{2} \|^{2}\right.}\left[\begin{array}{c}
a_{c} \\
a_{i} \cdot a_{i} \\
i \\
a_{i} \cdot a_{p}
\end{array}\right]\right)
\end{array}
$$

Example

Find the standard matrix of the linear transformation given by projecting onto $\operatorname{span}\{(4,-1,2)\}$.

$$
\dot{a}=\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)
$$

$$
\begin{aligned}
& \bar{a}_{\boldsymbol{G}} \boldsymbol{G} \dot{c}_{0}=a \cdot a=4 \times 4+-1 \times-1+2 \times 0=16+1+4=21 \\
& a G^{\top}=\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{lll}
4 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
4 \times 4 & -1 \times 4 & 2 \times 4 \\
4 \times-1 & -1 \times-1 & 2 \times-1 \\
4 \times 2 & -1 \times 2 & 2 \times 2
\end{array}\right]=\left[\begin{array}{ccc}
6 & -4 & 8 \\
-4 & 1 & -2 \\
8 & -2 & 4
\end{array}\right] \\
& \operatorname{pro}_{\bar{a}} \vec{x}=\frac{1}{21}\left[\begin{array}{ccc}
6 & -4 & 8 \\
-4 & 1 & 2 \\
8 & -2 & 4
\end{array}\right] \vec{x}
\end{aligned}
$$

Exercise:
chock that this gives the same answer wa the prev ines method.

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$.

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^{n}.

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$.
However, we can do this for an arbitrary subspace of \mathbb{R}^{n}.
Theorem
Let W be a subspace of \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where $\vec{x}_{1} \in W$ and $\vec{x}_{2} \in W^{\perp}$.

$$
\begin{aligned}
& W^{\downarrow}=\left\{v \in \mathbb{R}^{n}: \quad V \cdot w=0 \text { for all } w \in W\right\} \\
& \text { if } W=\operatorname{span}(\bar{\zeta}) \Rightarrow W^{+}=\left\{\operatorname{vaQ^{n}} ; v \cdot \dot{G}_{2}=0\right\}
\end{aligned}
$$

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^{n}.

Theorem

Let W be a subspace of \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where $\vec{x}_{1} \in W$ and $\vec{x}_{2} \in W^{\perp}$.
We call \vec{x}_{1} the orthogonal projection of \vec{x} onto W

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^{n}.

Theorem

Let W be a subspace of \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where $\vec{x}_{1} \in W$ and $\vec{x}_{2} \in W^{\perp}$.
We call \vec{x}_{1} the orthogonal projection of \vec{x} onto W and \vec{x}_{2} the orthogonal projection of \vec{x} on W^{\perp}

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^{n}.

Theorem

Let W be a subspace of \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where $\vec{x}_{1} \in W$ and $\vec{x}_{2} \in W^{\perp}$.
We call \vec{x}_{1} the orthogonal projection of \vec{x} onto W and \vec{x}_{2} the orthogonal projection of \vec{x} on W^{\perp} and denote them

$$
\vec{x}_{1}=\operatorname{proj}_{W} \vec{x} \quad \text { and } \quad \vec{x}_{2}=\operatorname{proj}_{W \perp \vec{x}}
$$

Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by $\operatorname{span}\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^{n}.

Theorem

Let W be a subspace of \mathbb{R}^{n}, then every vector $\vec{x} \in \mathbb{R}^{n}$ can be expressed in exactly one way as

$$
\vec{x}=\vec{x}_{1}+\vec{x}_{2}
$$

where $\vec{x}_{1} \in W$ and $\vec{x}_{2} \in W^{\perp}$.
We call \vec{x}_{1} the orthogonal projection of \vec{x} onto W and \vec{x}_{2} the orthogonal projection of \vec{x} on W^{\perp} and denote them

$$
\vec{x}_{1}=\operatorname{proj}_{W} \vec{x} \quad \text { and } \quad \vec{x}_{2}=\operatorname{proj}_{W^{\perp}} \vec{x}
$$

We can prove this theorem by constructing a value for $\operatorname{proj}_{W} \vec{x}$ that works.

Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of \mathbb{R}^{n}, and if M is any matrix whose column vectors form a basis for W, then setting

$$
\vec{x}_{1}=\operatorname{proj}_{W} \vec{x}=\underline{M\left(M^{T} M\right)^{-1} M^{T} \vec{x}}
$$

satisfies the previous theorem.

If $W=\operatorname{span}\{\bar{s}\} \quad M=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \quad \begin{aligned} & M\left(M^{\top} M\right)^{-1} M^{\top} \\ = & \vec{a}\left(\vec{a}^{\top} \dot{a}\right)^{-1} \tilde{a}^{\top} \\ & =\vec{a}\left(\frac{1}{a^{\top} a}\right) \vec{a} T \\ & =\frac{1}{a_{a}^{\top a}} \vec{a} \vec{a}^{\top}\end{aligned}$

Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of \mathbb{R}^{n}, and if M is any matrix whose column vectors form a basis for W, then setting

$$
\vec{x}_{1}=\operatorname{proj}_{W} \vec{x}=M\left(M^{T} M\right)^{-1} M^{T} \vec{x}
$$

satisfies the previous theorem. In particular,

$$
\operatorname{proj}_{W} \vec{x} \in W \quad \text { and } \quad \vec{x}_{2}=\vec{x}-\vec{x}_{1}=\vec{x}-\operatorname{proj}_{W} \vec{x} \in W^{\perp}
$$

Proof.

Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of \mathbb{R}^{n}, and if M is any matrix whose column vectors form a basis for W, then setting

$$
\vec{x}_{1}=\operatorname{proj}_{W} \vec{x}=M\left(M^{T} M\right)^{-1} M^{T} \vec{x}
$$

satisfies the previous theorem. In particular,

$$
\operatorname{proj}_{W} \vec{x} \in W \quad \text { and } \quad \vec{x}_{2}=\vec{x}-\vec{x}_{1}=\vec{x}-\operatorname{proj}_{W} \vec{x} \in W^{\perp}
$$

Proof.

See page 384 of textbook.

$$
\begin{aligned}
& (x-\text { pros } x) \cdot w=0 \\
& \text { for all veW. }
\end{aligned}
$$

Example

Let $\vec{x}=(1,0,4) \in \mathbb{R}^{3}$. Find the orthogonal projection of \vec{x} onto the plane $P: x-4 y+2 z=0$ as well the orthogonal projection onto P^{\perp}.

Example

Let $\vec{x}=(1,0,4) \in \mathbb{R}^{3}$. Find the orthogonal projection of \vec{x} onto the plane $P: x-4 y+2 z=0$ as well the orthogonal projection onto P^{\perp}.

First, let us find a basis for P : if $\vec{x}=(x, y, z) \in P$ then $x=4 y \overrightarrow{x_{6}} 2 z$

Example

Let $\vec{x}=(1,0,4) \in \mathbb{R}^{3}$. Find the orthogonal projection of \vec{x} onto the plane $P: x-4 y+2 z=0$ as well the orthogonal projection onto P^{\perp}.

First, let us find a basis for P : if $\vec{x}=(x, y, z) \in P$ then $x=4 y+2 z$

$$
\vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Example

Let $\vec{x}=(1,0,4) \in \mathbb{R}^{3}$. Find the orthogonal projection of \vec{x} onto the plane $P: x-4 y+2 z=0$ as well the orthogonal projection onto P^{\perp}.

First, let us find a basis for P : if $\vec{x}=(x, y, z) \in P$ then $x=4 y+2 z$

$$
\begin{aligned}
& y=s \\
& z=t
\end{aligned} \quad \vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 s-\bar{w} 2 t \\
s \\
t
\end{array}\right]
$$

Example

Let $\vec{x}=(1,0,4) \in \mathbb{R}^{3}$. Find the orthogonal projection of \vec{x} onto the plane $P: x-4 y+2 z=0$ as well the orthogonal projection onto P^{\perp}.

First, let us find a basis for P : if $\vec{x}=(x, y, z) \in P$ then $x=4 y+2 z$

$$
\vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 s \bar{\psi} 2 t \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] t
$$

Example

Let $\vec{x}=(1,0,4) \in \mathbb{R}^{3}$. Find the orthogonal projection of \vec{x} onto the plane $P: x-4 y+2 z=0$ as well the orthogonal projection onto P^{\perp}.

First, let us find a basis for P : if $\vec{x}=(x, y, z) \in P$ then $x=4 y \overline{\mathrm{f}} 2 z$

$$
\vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 s \overrightarrow{4} 2 t \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] t
$$

Thus we see a basis for P is

$$
\left\{\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right\}
$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$
M=\left(\begin{array}{rr}
4 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$
M=\left(\begin{array}{rr}
4 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad M^{T}=\left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right)
$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$
M=\left(\begin{array}{rr}
4 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad M^{T}=\left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) \quad M^{T} M=\left(\begin{array}{cc}
17 & -8 \\
-8 & 4
\end{array}\right)
$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$
\begin{gathered}
M=\left(\begin{array}{rr}
4 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad M^{T}=\left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) \quad M^{T} M=\left(\begin{array}{cc}
17 & -8 \\
-8 & 4
\end{array}\right) \\
\left(M^{T} M\right)^{-1}=\left(\begin{array}{cc}
5 / 21 & 8 / 21 \\
8 / 21 & 17 / 21
\end{array}\right)
\end{gathered}
$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$
M=\left(\begin{array}{cc}
4 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad M^{T}=\xlongequal{\left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right)} \quad M^{T} M=\left(\begin{array}{cc}
17 & -8 \\
-8 & 4
\end{array}\right)
$$

$$
\left(M^{T} M\right)^{-1}=\left(\begin{array}{cc}
5 / 21 & 8 / 21 \\
8 / 21 & 17 / 21
\end{array}\right)
$$

Hence the standard matrix for the orthogonal projection onto P will be

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$
\begin{gathered}
M=\left(\begin{array}{cc}
4 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad M^{T}=\left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) \quad M^{T} M=\left(\begin{array}{cc}
17 & -8 \\
-8 & 4
\end{array}\right) \\
\left(M^{T} M\right)^{-1}=\left(\begin{array}{cc}
5 / 21 & 8 / 21 \\
8 / 21 & 17 / 21
\end{array}\right)
\end{gathered}
$$

Hence the standard matrix for the orthogonal projection onto P will be

$$
A=M\left(M^{T} M\right)^{-1} M^{T}=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)
$$

Example Continued

Therefore, the orthogonal projection of $\vec{x}=(1,0,4)$ onto the plane will be

$$
\operatorname{proj}_{P} \vec{x}=A \vec{x}
$$

Example Continued

Therefore, the orthogonal projection of $\vec{x}=(1,0,4)$ onto the plane will be

$$
\operatorname{proj}_{P} \vec{x}=A \vec{x}=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]
$$

Example Continued

Therefore, the orthogonal projection of $\vec{x}=(1,0,4)$ onto the plane will be

$$
\operatorname{proj}_{P} \vec{x}=A \vec{x}=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 / 7 \\
12 / 7 \\
22 / 7
\end{array}\right]
$$

Exercise: crack that $\left(\begin{array}{l}4 r 7 \\ (2 r 7 \\ 4 r y\end{array}\right)$ is an the plane

Example Continued

Therefore, the orthogonal projection of $\vec{x}=(1,0,4)$ onto the plane will be

$$
\operatorname{proj}_{P} \vec{x}=A \vec{x}=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 / 7 \\
12 / 7 \\
22 / 7
\end{array}\right]
$$

Moreover, $\operatorname{proj}_{P \perp} \vec{x}=\vec{x}-\vec{x}_{1}$

$$
\begin{aligned}
& x=x_{c}+\varepsilon_{c} \\
& x_{1}=\operatorname{proj}_{p} x, \quad x_{2}=\operatorname{proj}_{p \neq \infty}
\end{aligned}
$$

Example Continued

Therefore, the orthogonal projection of $\vec{x}=(1,0,4)$ onto the plane will be

$$
\operatorname{proj}_{P} \vec{x}=A \vec{x}=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 / 7 \\
12 / 7 \\
22 / 7
\end{array}\right]
$$

Moreover, $\operatorname{proj}_{P \perp} \vec{x}=\vec{x}-\vec{x}_{1}$ and so

$$
\operatorname{proj}_{P \perp \vec{x}}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]-\left[\begin{array}{c}
4 / 7 \\
12 / 7 \\
22 / 7
\end{array}\right]=\left[\begin{array}{c}
3 / 7 \\
-12 / 7 \\
6 / 7
\end{array}\right] \quad \text { of the plare }
$$

Example Continued

Therefore, the orthogonal projection of $\vec{x}=(1,0,4)$ onto the plane will be

$$
\operatorname{proj}_{P} \vec{x}=A \vec{x}=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 / 7 \\
12 / 7 \\
22 / 7
\end{array}\right]
$$

Moreover, $\operatorname{proj}_{P \perp} \vec{x}=\vec{x}-\vec{x}_{1}$ and so

$$
\operatorname{proj}_{P \perp} \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]-\left[\begin{array}{c}
4 / 7 \\
12 / 7 \\
22 / 7
\end{array}\right]=\left[\begin{array}{c}
3 / 7 \\
-12 / 7 \\
6 / 7
\end{array}\right]
$$

Exercise

Show that $(3 / 7,-12 / 7,6 / 7) \in P^{\perp}$. Hint: enough to choc it is
orthogand with th basis vectors.

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ".

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

$$
x=\begin{aligned}
& x_{4}+x_{L} \\
& \hat{w}
\end{aligned} \hat{\omega}^{+}
$$

unique
of $x \in W \quad \Rightarrow \quad \begin{array}{ll}x+ & 0 \\ \uparrow & 1 \\ w & w+\end{array}$
Since unique got $x=\operatorname{proj}_{w} x$

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

called the orthogonal projection of \mathbb{R}^{n} onto W

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

called the orthogonal projection of \mathbb{R}^{n} onto W and in fact, we get that it's standard matrix will be $M\left(M^{T} M\right)^{-1} M^{T}$.

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

called the orthogonal projection of \mathbb{R}^{n} onto W and in fact, we get that it's standard matrix will be $M\left(M^{T} M\right)^{-1} M^{T}$.

Further, we see that the projection of \mathbb{R}^{n} onto W^{\perp} will then be

$$
S(\vec{x})=\operatorname{proj}_{W^{\perp}} \vec{x}
$$

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

called the orthogonal projection of \mathbb{R}^{n} onto W and in fact, we get that it's standard matrix will be $M\left(M^{T} M\right)^{-1} M^{T}$.

Further, we see that the projection of \mathbb{R}^{n} onto W^{\perp} will then be

$$
S(\vec{x})=\operatorname{proj}_{W} \perp \vec{x}=\vec{x}-\operatorname{proj}_{W} \vec{x}
$$

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

called the orthogonal projection of \mathbb{R}^{n} onto W and in fact, we get that it's standard matrix will be $M\left(M^{T} M\right)^{-1} M^{T}$.

Further, we see that the projection of \mathbb{R}^{n} onto W^{\perp} will then be

$$
\begin{gathered}
S(\vec{x})=\operatorname{proj}_{W} \perp \vec{x}=\vec{x}-\operatorname{proj}_{W} \vec{x}=\left(\underline{I_{n}}-M\left(M^{T} M\right)^{-1} M^{T}\right) \vec{x} \\
\operatorname{In} x=x
\end{gathered}
$$

Some Remarks

We can think of $\operatorname{proj}_{W} \vec{x}$ as the "component of \vec{x} that lies in W ". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_{W} \vec{x}=\vec{x}$.

We see that for any subspace W, we get a linear transformation

$$
T(\vec{x})=\operatorname{proj}_{W} \vec{x}
$$

called the orthogonal projection of \mathbb{R}^{n} onto W and in fact, we get that it's standard matrix will be $M\left(M^{T} M\right)^{-1} M^{T}$.

Further, we see that the projection of \mathbb{R}^{n} onto W^{\perp} will then be

$$
S(\vec{x})=\operatorname{proj}_{W} \pm \vec{x}=\vec{x}-\operatorname{proj}_{W} \vec{x}=\left(I_{n}-M\left(M^{T} M\right)^{-1} M^{T}\right) \vec{x}
$$

and so, its standard matrix will be $I_{n}-M\left(M^{T} M\right)^{-1} M^{T}$

Example Redux

Back to the example before, we saw that the standard matrix for proj_{P} will be

$$
A=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)
$$

Example Redux

Back to the example before, we saw that the standard matrix for proj_{P} will be

$$
A=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)
$$

And so the standard matrix for $\operatorname{proj}_{P \perp}$ would be

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)
$$

Example Redux

Back to the example before, we saw that the standard matrix for proj_{P} will be

$$
A=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)
$$

And so the standard matrix for $\operatorname{proj}_{P \perp}$ would be

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 2 D \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)=\left(\begin{array}{ccc}
1 / 21 & -4 / 21 & 2 / 21 \\
-4 / 21 & 16 / 21 & -8 / 21 \\
2 / 21 & -8 / 21 & 4 / 21
\end{array}\right)
$$

Example Redux

Back to the example before, we saw that the standard matrix for proj_{P} will be

$$
A=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right)
$$

And so the standard matrix for $\operatorname{proj}_{P \perp}$ would be
$B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)-\left(\begin{array}{ccc}20 / 21 & 4 / 21 & -2 / 21 \\ 4 / 21 & 5 / 21 & 8 / 21 \\ -2 / 21 & 8 / 21 & 17 / 21\end{array}\right)=\left(\begin{array}{ccc}1 / 21 & -4 / 21 & 2 / 21 \\ -4 / 21 & 16 / 21 & -8 / 21 \\ 2 / 21 & -8 / 21 & 4 / 21\end{array}\right)$

Exercise

Confirm the previous example by showing that

$$
P^{3}{ }^{j} p L\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]
$$

$$
\left(\begin{array}{ccc}
1 / 21 & -4 / 21 & 2 / 21 \\
-4 / 21 & 16 / 21 & -8 / 21 \\
2 / 21 & -8 / 21 & 4 / 21
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 / 7 \\
-12 / 7 \\
6 / 7
\end{array}\right]
$$

Some More Remarks

In general M will not be an square matrix.

Some More Remarks

$$
M\left(M^{\top} M\right)^{-1} M^{\top}
$$

In general M will not be an square matrix. Thus M^{-1} does not make sense.

Some More Remarks

$$
M\left(M^{\top} M\right)^{-1} M^{\top}
$$

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix

Some More Remarks

$$
M\left(M^{T} M\right)^{-1} M
$$

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix and, it turns out, always invertible.

Some More Remarks

$$
M\left(M^{\top} M\right)^{-1} M^{\top}
$$

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix and, it turns out, always invertible. However, we can not distribute the inverse

$$
\left(M^{T} M\right)^{-1}=M^{-1}\left(M^{T}\right)^{-1}
$$

may ret make sense

Some More Remarks

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix and, it turns out, always invertible.However, we can not distribute the inverse $\left(M^{T} M\right)^{-1}=M^{-1}\left(M^{T}\right)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse

Some More Remarks

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix and, it turns out, always invertible.However, we can not distribute the inverse $\left(M^{T} M\right)^{-1}=M^{-1}\left(M^{T}\right)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse and see that the standard matrix will then be

$$
M\left(M^{T} M\right)^{-1} M^{T}
$$

Some More Remarks

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix and, it turns out, always invertible.However, we can not distribute the inverse $\left(M^{T} M\right)^{-1}=M^{-1}\left(M^{T}\right)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse and see that the standard matrix will then be

$$
M\left(M^{T} M\right)^{-1} M^{T}=M M_{n}^{-1}\left(M^{T}\right)^{-1} M^{T}
$$

Some More Remarks

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, $M^{T} M$ will be a square matrix and, it turns out, always invertible.However, we can not distribute the inverse $\left(M^{T} M\right)^{-1}=M^{-1}\left(M^{T}\right)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse and see that the standard matrix will then be

$$
M\left(M^{T} M\right)^{-1} M^{T}=M M^{-1}\left(M^{T}\right)^{-1} M^{T}=I_{n}
$$

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$
\operatorname{proj}_{W} \vec{x}=I_{n} \vec{x}
$$

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$
\operatorname{proj}_{W} \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W.

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$
\operatorname{proj}_{W} \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\operatorname{dim}(W)=n$

$$
\& w \subseteq \mathbb{R}^{n}
$$

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$
\operatorname{proj}_{W} \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\operatorname{dim}(W)=n$ if and only if $W=\mathbb{R}^{n}$.

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$
\operatorname{proj}_{W} \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\operatorname{dim}(W)=n$ if and only if $W=\mathbb{R}^{n}$.

Hence, $\operatorname{proj}_{W} \vec{x}$ is the "component of \vec{x} lying in $W=\mathbb{R}^{n "}$,

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$
\operatorname{proj}_{W} \vec{x}=I_{n} \vec{x}=\vec{x}
$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\operatorname{dim}(W)=n$ if and only if $W=\mathbb{R}^{n}$.

Hence, $\operatorname{proj}_{W} \vec{x}$ is the "component of \vec{x} lying in $W=\mathbb{R}^{n "}$, which would be just \vec{x} itself.

$$
x \in \mathbb{R}^{n}
$$

Double Perp Theorem

We can use this notion to prove the double perp theorem.

Double Perp Theorem

We can use this notion to prove the double perp theorem.

Theorem (Double Perp Theorem)

If W is a subspace of \mathbb{R}^{n} then $\left(W^{\perp}\right)^{\perp}=W$

Double Perp Theorem

We can use this notion to prove the double perp theorem.
Theorem (Double Perp Theorem)
If W is a subspace of \mathbb{R}^{n} then $\left(W^{\perp}\right)^{\perp}=W$, i.e. "the perp space of the perp space is the original space."

$$
\begin{aligned}
& \text { pris ation } \\
& \begin{array}{l}
\text { antov } \\
X_{1}+X_{2} \quad \text { uniquely } \\
\text { wher } \\
X_{1} \in W \quad x_{L} \in w^{\perp}
\end{array} \\
& \text { inperticuler } \quad x_{1}=\operatorname{pris}_{w} x \quad x_{2}=\operatorname{pri}_{u t} x \\
& \text { projedia-ato } \\
& w^{+} \\
& x=y_{1}+y_{2} \frac{\text { migalul }}{\text { in penticaler }} \\
& \left.y_{1}=p r o j\right)+x \quad y_{2}=p \dot{p}_{(2, t)+} x \\
& =x_{2} \quad=x-y_{1} \\
& =x-x_{1} \\
& =x_{1}
\end{aligned}
$$

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map?

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M.

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$
A^{T}=\left(M\left(M^{T} M\right)^{-1} M^{T}\right)^{T}
$$

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$
A^{T}=(\underbrace{M(M^{T} M \underbrace{-1} M^{T})^{T}=\left(\bar{M}^{\dagger}\right)^{T}\left(M^{T}\left(M^{T}\right)^{T}\right)^{-1} M^{T}}
$$

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$
\begin{gathered}
A^{T}=\left(M\left(M^{T} M\right)^{-1} M^{T}\right)^{T}=\left(M^{T}\right)^{T}\left(M^{T}\left(M^{T}\right)^{T}\right)^{-1} M^{T} \\
=M\left(M^{T} M\right)^{-1} M^{T}
\end{gathered}
$$

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$
\begin{gathered}
A^{T}=\left(M\left(M^{T} M\right)^{-1} M^{T}\right)^{T}=\left(M^{T}\right)^{T}\left(M^{T}\left(M^{T}\right)^{T}\right)^{-1} M^{T} \\
=M\left(M^{T} M\right)^{-1} M^{T}=A
\end{gathered}
$$

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$
\begin{gathered}
A^{T}=\left(M\left(M^{T} M\right)^{-1} M^{T}\right)^{T}=\left(M^{T}\right)^{T}\left(M^{T}\left(M^{T}\right)^{T}\right)^{-1} M^{T} \\
=M\left(M^{T} M\right)^{-1} M^{T}=A
\end{gathered}
$$

Definition

We say a matrix A is symmetric if $A^{T}=A$.

Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$
A=M\left(M^{T} M\right)^{-1} M^{T}
$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$
A^{T}=\left(M\left(M^{T} M\right)^{-1} M^{T}\right)^{T}=\left(M^{T}\right)^{T}\left(M^{T}\left(M^{T}\right)^{T}\right)^{-1} M^{T}
$$

$$
=M\left(M^{T} M\right)^{-1} M^{T}=A
$$

Definition

We say a matrix A is symmetric if $A^{T}=A$. Equivalently, its "upper triangle" is the same as its "lower triangle".

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$.

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$.

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})
$$

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))
$$

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)
$$

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)=\vec{x}_{1}
$$

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)=\vec{x}_{1}=T(\vec{x})
$$

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)=\vec{x}_{1}=T(\vec{x})
$$

In particular, this shows that $T \circ T=T$.

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)=\vec{x}_{1}=T(\vec{x})
$$

In particular, this shows that $T \circ T=T$. Hence, if A is the standard matrix of T, this corresponds to saying
stad mate TOT is A^{2}

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)=\vec{x}_{1}=T(\vec{x})
$$

In particular, this shows that $T \circ T=T$. Hence, if A is the standard matrix of T, this corresponds to saying

$$
A^{2}=A
$$

Projection Matrices are Idempotent

If W is a subspace and T is the projection of \mathbb{R}^{n} onto W, then we know that $T(\vec{x})=\vec{x}_{1} \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w})=\vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$
(T \circ T)(\vec{x})=T(T(\vec{x}))=T\left(\vec{x}_{1}\right)=\vec{x}_{1}=T(\vec{x})
$$

In particular, this shows that $T \circ T=T$. Hence, if A is the standard matrix of T, this corresponds to saying

$$
A^{2}=A
$$

Definition

We say a matrix is idempotent if $A^{2}=A$.

Exercise

Exercise

Show that if $A=M\left(M^{T} M\right)^{-1} M^{T}$ for some matrix M then $A^{2}=A$.

Exercise

Exercise

Show that if $A=M\left(M^{T} M\right)^{-1} M^{T}$ for some matrix M then $A^{2}=A$.

Exercise

Show that the matrices of proj_{p} and $\operatorname{proj}_{p \perp}$ from the previous example are idempotent and symmetric. That is, if

$$
A:=\left(\begin{array}{ccc}
20 / 21 & 4 / 21 & -2 / 21 \\
4 / 21 & 5 / 21 & 8 / 21 \\
-2 / 21 & 8 / 21 & 17 / 21
\end{array}\right) \quad B:=\left(\begin{array}{ccc}
1 / 21 & -4 / 21 & 2 / 21 \\
-4 / 21 & 16 / 21 & -8 / 21 \\
2 / 21 & -8 / 21 & 4 / 21
\end{array}\right)
$$

then $A^{T}=A, B^{T}=B, A^{2}=A$ and $B^{2}=B$.

Projection Matrices Theorem

Theorem
An $n \times n$ matrix A is the standard matrix for an orthogonal projection of \mathbb{R}^{n} onto a k-dimensional subspace of \mathbb{R}^{n} if and only if A is symmetric, idempotent and has rank k. The subspace, W, that A projects onto is then the column space of A.

