SF 1684 Algebra and Geometry Lecture 10

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Linear Transformations
(2) Eigenvalues and Eigenvectors
(3) Orthogonal Transformations

Linear Transformation

Definition

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mathrm{~s}$ called a linear transformation (or linear map) if for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$
(1) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
(2) $T(c \vec{x})=c T(\vec{x})$

Linear Transformation

Definition

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mathrm{~s}$ called a linear transformation (or linear map) if for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$
(1) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
(2) $T(c \vec{x})=c T(\vec{x})$

In general we can define linear transformation between any two vector space V and W in the same way.

Linear Transformation

Definition

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mathrm{~s}$ called a linear transformation (or linear map) if for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$
(1) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
(2) $T(c \vec{x})=c T(\vec{x})$

In general we can define linear transformation between any two vector space V and W in the same way. Then we can think of linear transformation as functions that "preserving the linear structure of V in $W^{\prime \prime}$.

Some Linear Transformations

(1) $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+5 y \\ 2 x-3 y \\ y\end{array}\right]$

Some Linear Transformations

(- $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+5 y \\ 2 x-3 y \\ y\end{array}\right]$
(2) Rotating each vector in \mathbb{R}^{2} by $\pi / 2$
(3) Reflecting each vector in \mathbb{R}^{2} in the line $y=x$
(9) Projecting the vectors onto the x-axis
(6) "Strecthing" by a factor of 2 in the x-direction

Four Basic Linear Transformations

Linear transformations come in four basic categories:

Four Basic Linear Transformations

Linear transformations come in four basic categories:
(1) Rotation about the origin

Four Basic Linear Transformations

Linear transformations come in four basic categories:
(1) Rotation about the origin
(2) Reflection about a line

Four Basic Linear Transformations

Linear transformations come in four basic categories:
(1) Rotation about the origin
(2) Reflection about a line
(3) Projection onto a line

Four Basic Linear Transformations

Linear transformations come in four basic categories:
(1) Rotation about the origin
(2) Reflection about a line
(3) Projection onto a line
(9) Stretching in the direction of a line

Four Basic Linear Transformations

Linear transformations come in four basic categories:
(1) Rotation about the origin
(2) Reflection about a line
(3) Projection onto a line
(4) Stretching in the direction of a line

Fact

All linear transformations can be broken up into components coming from these four basic categories.

Properties of Linear Tansformations

Theorem

Let T be any linear transformation. Then
(1) $T(\overrightarrow{0})=\overrightarrow{0}$
(2) $T(-\vec{v})=-T(\vec{v})$
(3) $T(\vec{u}-\vec{v})=T(\vec{u}-\vec{v})$

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

For example: let

$$
A=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)
$$

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

For example: let

$$
A=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)
$$

then the linear transformation we get from A will be

$$
T_{A}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

For example: let

$$
A=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)
$$

then the linear transformation we get from A will be

$$
T_{A}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

For example: let

$$
A=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)
$$

then the linear transformation we get from A will be

$$
T_{A}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+5 y \\
2 x-3 y \\
y
\end{array}\right]
$$

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

For example: let

$$
A=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)
$$

then the linear transformation we get from A will be

$$
T_{A}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+5 y \\
2 x-3 y \\
y
\end{array}\right]
$$

Notice: this is the same linear transformation as the example on slide 4.

Matrices as Linear Transformations

Any $m \times n$ matrix, A, can define a linear transformation, T, from \mathbb{R}^{n} to \mathbb{R}^{m} by setting

$$
T(\vec{x})=A \vec{x}
$$

We will typically denote this transformation as T_{A}.

For example: let

$$
A=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)
$$

then the linear transformation we get from A will be

$$
T_{A}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left(\begin{array}{cc}
1 & 5 \\
2 & -3 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+5 y \\
2 x-3 y \\
y
\end{array}\right]
$$

Notice: this is the same linear transformation as the example on slide 4.
Can we always find a matrix that defines the linear transformation?

Linear Transformations as Matrices

Theorem
Let T be any linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}.

Linear Transformations as Matrices

Theorem

Let T be any linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. Define the matrix

$$
A=\left(\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{m}\right)
\end{array}\right)
$$

Linear Transformations as Matrices

Theorem

Let T be any linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. Define the matrix

$$
A=\left(\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{m}\right)
\end{array}\right)
$$

Then for all $\vec{x} \in \mathbb{R}^{m}$,

$$
T(\vec{x})=A \vec{x} \quad\left(\text { or } T=T_{A}\right)
$$

This matrix A is often called the standard matrix of T.

Exercise

Find the matrices that correspond to the linear transformations
(1) Rotating each vector in \mathbb{R}^{2} by $\pi / 2$
(2) Reflecting each vector in \mathbb{R}^{2} in the line $y=x$
(3) Projecting the vectors onto the x-axis
(9) Stretching by a factor of 2 in the x-direction

More Work Space

Exercise

Find the matrix that corresponds to the linear transformation of rotating each vector in \mathbb{R}^{2} by an angle θ.

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the transformation that correspond to diagonal matrices are the simplest and easiest as well.

Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the transformation that correspond to diagonal matrices are the simplest and easiest as well. Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the transformation that correspond to diagonal matrices are the simplest and easiest as well. Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

Then the linear transformation that corresponds to D would be

$$
T_{D}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)
$$

Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the transformation that correspond to diagonal matrices are the simplest and easiest as well. Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

Then the linear transformation that corresponds to D would be

$$
T_{D}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the transformation that correspond to diagonal matrices are the simplest and easiest as well. Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

Then the linear transformation that corresponds to D would be

$$
T_{D}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left(\begin{array}{cccc}
\frac{d_{1}}{0} & 0 & \ldots & 0 \\
\vdots & \frac{d_{2}}{\vdots} & \ldots & 0 \\
0 & 0 & \ldots & \vdots \\
d_{n}
\end{array}\right)\left[\begin{array}{c}
\frac{x_{1}}{x_{2}} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\frac{d_{1} x_{1}}{\frac{d_{2} x_{2}}{}} \\
\vdots \\
d_{n} x_{n}
\end{array}\right]
$$

Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the transformation that correspond to diagonal matrices are the simplest and easiest as well. Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

Then the linear transformation that corresponds to D would be

$$
T_{D}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\frac{d_{1} x_{1}}{d_{2} x_{2}} \\
\vdots \\
d_{n} x_{n}
\end{array}\right]
$$

In particular, we see that $\xrightarrow{T_{l_{n}}(\vec{x})=\vec{x} \text { for all } \vec{x} \in \mathbb{R}^{n} \quad I_{n}, \quad d_{c}=1}$

Simplest Action of a Linear Transformation

In particular, we note that

$$
T_{D}\left(\vec{e}_{i}\right)
$$

Simplest Action of a Linear Transformation

In particular, we note that

$$
T_{D}\left(\vec{e}_{i}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]
$$

Simplest Action of a Linear Transformation

In particular, we note that

$$
T_{D}\left(\vec{e}_{-}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \cdot d_{i} & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
d_{i} \\
\vdots \\
0
\end{array}\right]=d_{i} \vec{e}_{i}
$$

Simplest Action of a Linear Transformation

In particular, we note that

$$
T_{D}\left(\vec{e}_{i}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
d_{i} \\
\vdots \\
0
\end{array}\right]=d_{i} \vec{e}_{i}
$$

That is, we see that T_{D} acts on \vec{e}_{i} in the simplest way it can:

Simplest Action of a Linear Transformation

In particular, we note that

$$
T_{D}\left(\vec{e}_{i}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
d_{i} \\
\vdots \\
0
\end{array}\right]=d_{i} \vec{e}_{i}
$$

That is, we see that T_{D} acts on \vec{e}_{i} in the simplest way it can: by just multiplying by d_{i}.

Simplest Action of a Linear Transformation

In particular, we note that

$$
T_{D}\left(\vec{e}_{i}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
d_{i} \\
\vdots \\
0
\end{array}\right]=d_{i} \vec{e}_{i}
$$

That is, we see that T_{D} acts on \vec{e}_{i} in the simplest way it can: by just multiplying by d_{i}.

Can this be extended too other matrices?

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that $\downarrow, \lambda \in \mathbb{R}$

$$
\begin{aligned}
& \text { Matrix } \rightarrow \vec{v}=\lambda \vec{v} . \\
& \hat{\imath} \text { scalar }
\end{aligned}
$$

Moreover, we call such an \vec{v} an eigenvector of A with eigenvalue λ.

$$
\begin{aligned}
& \text { not cosuming tare for } 9(l \vec{v} \\
& \text { joust ore } \vec{v} \text {. }
\end{aligned}
$$

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

Moreover, we call such an \vec{v} an eigenvector of A with eigenvalue λ.
Example:

$$
\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

Moreover, we call such an \vec{v} an eigenvector of A with eigenvalue λ.
Example:

$$
\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

Moreover, we call such an \vec{v} an eigenvector of A with eigenvalue λ.
Example:

$$
\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

Moreover, we call such an \vec{v} an eigenvector of A with eigenvalue λ.
Example:

$$
\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\underset{2}{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

And so we say that 2 is an eigenvalue of $\left(\begin{array}{cc}0 & 1 \\ -6 & 5\end{array}\right)$

Eigenvalues and Eigenvectors

Definition

For any $n \times n$ matrix, A, we define λ to be an eigenvalue of A if there exists an non-zero vector \vec{v} such that

$$
A \vec{o}=\lambda \vec{o}
$$

$$
A \vec{v}=\lambda \vec{v} .
$$

Moreover, we call such an \vec{v} an eigenvector of A with eigenvalue λ.
Example:

$$
\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\leq\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

And so we say that 2 is an eigenvalue of $\left(\begin{array}{cc}0 & 1 \\ -6 & 5\end{array}\right)$ with eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
$\left(\begin{array}{ll}0 & 1\end{array}\right)\binom{1}{0}=\binom{0}{0}$

Geometric Interpretation of Eigenvalues and Eigenvectors

Recall we stated that linear transformation have 4 basic forms
(1) Rotation
(2) Reflection about a line
(3) Projection onto a line
(9) Stretching in the direction of a line

Geometric Interpretation of Eigenvalues and Eigenvectors

Recall we stated that linear transformation have 4 basic forms
(1) Rotation
(2) Reflection about a line
(3) Projection onto a line
(9) Stretching in the direction of a line

Therefore, if \vec{v} is an eigenvector of A with eigenvalues λ, then we can think of the linear transformation T_{A}, that corresponds by A, has a component corresponding to stretching by a factor of λ in the direction of \vec{v}.
V is a eigenvetes of A with eigenucce λ

$$
T_{A}(v)=\lambda v . \quad v \text { gets strectchal by a facer }
$$

Condition for Eigenvalues 1
Theorem
Let A be an $n \times n$ matrix. Then λ is an eigenvalue of A if and only if the matrix

$$
\xrightarrow[n]{A-\lambda I_{n}}
$$

has a non-trivial homogeneous solution. Moreover, all non-trivial homogeneous solutions to $A-\lambda I_{n}$ will be eigenvectors of A with eigenvalue λ.
\Leftrightarrow it λ is on eigquate the then exist, $V \neq 0$ suet that $A v=\lambda v \Rightarrow A v-\lambda_{v}=0=7 \operatorname{lin}_{v \rightarrow 1} A v-\lambda I_{n} v=0$
$\Rightarrow\left(A-\lambda x_{1}\right) \vee=0 \Rightarrow v$ is an homo solution to $A-\lambda I_{1}$.
(G) if v is a nom soltion to $A-\lambda \pm \Rightarrow$

$$
\left(A-\lambda I_{n}\right) v=0 \Longleftrightarrow A V=\lambda V
$$

Condition for Eigenvalues 2

Theorem
Let A be an $n \times n$ matrix. Then the following are equivalent
(1) λ is an eigenvalue of A
(2) $A-\lambda I_{n}$ has a non-trivial homogeneous solution
(3) $A-\lambda I_{n}$ is not invertible
$\operatorname{det}\left(A-\lambda I_{n}\right)=0$
wive sea that $A-\lambda I_{n}$ hus non-thiral home soltion
$\Leftrightarrow A-\lambda I_{n}$ not invertible
$\Leftrightarrow \quad \operatorname{det}\left(A-\lambda I_{n}\right)=0$
Cpolpromial ill λ at dy $n \&$ eigenvalus will be the rout of the polynomial.

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible

- The columns of A are linearly independent
(3) The row vectors of A are linearly independent
(3) $\operatorname{det}(A) \neq 0$

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(0) The columns of A are linearly independent
(3) The row vectors of A are linearly independent
(3) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A
O is on cigureh iff $\sigma=\operatorname{dot}\left(A-O \Phi_{1}\right)=\operatorname{det}(4)$

Example
Find the eigenvalues of eigenvectors of

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)
$$

Find λ such that $\operatorname{dt}\left(A-\lambda x_{n}\right)=0$

$$
\begin{aligned}
& A-\lambda t_{n}=\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-6 & 5 \\
- & 0
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 6 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
-\lambda & 1 \\
-6 & 5-\lambda
\end{array}\right) \\
& \operatorname{dut}\left(1-\lambda f_{1}\right)=\operatorname{dt}(-\lambda)\left(\begin{array}{c}
-\lambda-\lambda) \\
-6 \\
-\lambda
\end{array}\right)=(-\lambda)(s-\lambda)-(x-6) \\
& =\lambda^{2}-5 \lambda+6=0 \\
& =(\lambda-3)(\lambda-2)=0 \\
& \Rightarrow \lambda=3 \quad \& \quad \lambda=2
\end{aligned}
$$

More Work Space
previacy exconple re san $\left(\begin{array}{cc}0 & 1 \\ -6 & 5\end{array}\right)\binom{1}{2}=2\left(\frac{1}{2}\right)$
so (2) is eighrector nith eigurabe 2.
$\lambda=3 ; \quad v$ is an eiguvetor it it is a homogerovs socetic

$$
\begin{aligned}
& \text { to } A-3 I_{n} \\
& A-3 \operatorname{In}=\left(\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right)-\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
-3 & 1 \\
-6 & 2
\end{array}\right) R_{2}-2 R_{1}\left(\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right)^{-r_{3} R_{1}}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & -x_{2} \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{x-1 / 2 y}{0}=\binom{0}{0} \Rightarrow \begin{array}{l}
x=1 / 3 y \\
y=t
\end{array} \\
& \binom{x}{y}=\binom{1 B t}{t}=t\binom{1 / 3}{1}{ }_{\binom{1 \beta}{1} t \text { is an cigenvector }} \\
& \left(\begin{array}{l}
1 \\
\text { with eigenoste } 3 \\
3
\end{array} \text { for all } t\right. \text {. }
\end{aligned}
$$ set $t=3$: (3) is an eigenvetor with eigenceta 3.

Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear operation that corresponds to stretching in a direction.

Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear operation that corresponds to stretching in a direction. But what about the other components?

Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear operation that corresponds to stretching in a direction. But what about the other components?

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if

$$
\|T(\vec{x})\|=\|\vec{x}\|
$$

for all $\vec{x} \in \mathbb{R}^{n}$.

Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear operation that corresponds to stretching in a direction. But what about the other components?

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if

$$
\|T(\vec{x})\|=\|\vec{x}\|
$$

for all $\vec{x} \in \mathbb{R}^{n}$. We sometimes call this property norm preserving

Dot-Product Preserving

Theorem
A linear transformation, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, is orthogonal if and only if $T(\vec{x}) \cdot T(\vec{y})=\vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$.

Hence, we sometimes call orthogonal transformations dot-product preserving.

$$
\begin{array}{rlrl}
T(\vec{x}) \cdot T(\bar{y}) & =\vec{x}-\vec{y} \quad \text { for } & \text { all } \vec{x}_{1} \bar{y} \\
T(\vec{x}) \cdot T(\vec{x}) & =\vec{x} \cdot \bar{x} \\
\| & r \\
\|T(\bar{x})\|^{L} & =\|x-x\|^{2} &
\end{array} \| T(\vec{x} .
$$

Examples of Orthogonal Transformation

For any θ, the linear transformation given by $T(\vec{x})=A \vec{x}$ is orthogonal

$$
A:=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Gean etrically, A corresponds rot anting by on ingle ot θ and so diesnot change ar lengths.

$$
\begin{aligned}
& \underbrace{\text { Ex }}_{\text {Exerisi; }}\left\|\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}\right\|=\|\left(\begin{array}{cc}
(\operatorname{cis} \theta) x & -(\sin \theta) y \\
\operatorname{cin} \theta) x & +(\cos \theta)
\end{array} \|\right. \\
& =\left[((\cos \theta) x-(\sin \theta) y)^{2}+\left[(\sin \cos t(\cos \theta) y)^{2}\right]^{1 / 2}=\cdots=\sqrt{x^{\prime}+y^{\prime}}\right.
\end{aligned}
$$

Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation $T(\vec{x})=A \vec{x}$ is orthogonal.

Theorem

The following statements are equivalent
(1) A is orthogonal

Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation $T(\vec{x})=A \vec{x}$ is orthogonal.

Theorem

The following statements are equivalent
(1) A is orthogonal
(2) $\|A \vec{x}\|=\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$

Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation $T(\vec{x})=A \vec{x}$ is orthogonal.

Theorem

The following statements are equivalent
(1) A is orthogonal
(2) $\|A \vec{x}\|=\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$
(3) $(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$

Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation $T(\vec{x})=A \vec{x}$ is orthogonal.

Theorem

The following statements are equivalent
(1) A is orthogonal
(2) $\|A \vec{x}\|=\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$
(3) $(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$
(9) $A^{T} A=I_{n}$

Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation $T(\vec{x})=A \vec{x}$ is orthogonal.

Theorem

The following statements are equivalent
(1) A is orthogonal
(2) $\|A \vec{x}\|=\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$
(3) $(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$
(1) $A^{T} A=I_{n} \quad$ 广 b_{y} clefinition of A^{-1}
(5) $A^{T}=A^{-1}$

Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation $T(\vec{x})=A \vec{x}$ is orthogonal.

Theorem

The following statements are equivalent
(1) A is orthogonal
(2) $\|A \vec{x}\|=\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$
(3) $(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$
(1) $A^{T} A=I_{n}$
(0) $A^{T}=A^{-1} C D$
(6) Any two column vectors of A are orthogonal and unit vectors

Sketch of Proof
$(3) \Leftrightarrow(4)$

$$
\begin{aligned}
& (A-x) \cdot(A+y)=x-y \quad \text { for al } x, y \\
& (A x)^{\top}(A y)=x^{T} y
\end{aligned}
$$

$$
x^{\top} A^{\top} A y=x^{\top} \text { In } y \text { for all } x_{1} y
$$

$(n) \Leftrightarrow(6) \quad A=\left(\begin{array}{lll}c_{1} & \cdots & c_{n}\end{array}\right) \quad A^{\top}=\left(\begin{array}{c}c_{1}^{\top} \\ \vdots \\ C_{n}^{\top}\end{array}\right)$
$A^{\top} A=\left(\begin{array}{c}c_{i}^{\top} \\ \vdots \\ c_{n}^{\top}\end{array}\right)\left(\begin{array}{lll}c_{1} & \cdots & c_{n}\end{array}\right)=\binom{c_{i} \cdot}{c_{j}}_{i_{i j}}=I_{n}$
if $i \neq j \Rightarrow c_{i}-c_{i}=0 \Rightarrow$ th colon ir ant titi colin
if $i-j \rightarrow \quad c_{i} \cdot c_{i}=1 \quad \Rightarrow\left|c_{i}\right| \mid=1 \quad i^{\text {th }}$ corm is anil.

Properties of Orthogonal Matrices 1

Theorem
If A is an orthogonal matrix that $\operatorname{det}(A)=1$ or -1 .
$A^{\top} A=$ In so taking determinants

$$
\begin{aligned}
& \operatorname{det}\left(A^{\top} A\right)=\operatorname{dat}\left(t_{n}\right)=1 \\
& \operatorname{dt}\left(A^{\top}\right) \operatorname{det}(A)=\operatorname{det}(A)-\operatorname{det}(A)=\operatorname{dot}(A)^{2}=1 \\
& \Rightarrow \operatorname{det}(A)=1 \text { or }-1
\end{aligned}
$$

Properties of Orthogonal Matrices 2

Theorem
(1) The product of two orthogonal matrices is orthogonal
(2) The inverse of an orthogonal matrix is orthogonal
(3) The transpose of an orthogonal matrix is orthogonal
(4) A is orthogonal if and only if it's row vectors are orthonormal
A, B warthog $\Rightarrow A_{B}$ ortho
A orthy $\Rightarrow t^{-1}$
A orth $\Rightarrow A^{\top}$ orth
Exercise prom this
\uparrow orthogonal \&unt.

4 follow
immediately from
3 \& proving than.

