SF 1684 Algebra and Geometry Lecture 9

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Using Determinants to Solve Matrix Equations: Cramer's Rule
(2) Geometric Interpretation of Determinants
(3) Cross Products and Determinants

Solving Matrix Equations

We now know that if A is an invertible matrix then there is always a unique solution to

$$
A \vec{x}=\vec{b}
$$

for every \vec{b}, namely $A^{-1} \vec{b}$.

Solving Matrix Equations

We now know that if A is an invertible matrix then there is always a unique solution to

$$
A \vec{x}=\vec{b}
$$

for every \vec{b}, namely $A^{-1} \vec{b}$.

We have an algorithm for finding the inverse but can we find a formula?

Adjoint of a Matrix

Recall, for a matrix A, we define the (i, j)-th cofactor, $C_{i, j}$ to be the signed determinant of the matrix obtained by removing i-th row and j-th column from A.

Adjoint of a Matrix

Recall, for a matrix A, we define the (i, j)-th cofactor, $C_{i, j}$ to be the signed determinant of the matrix obtained by removing i-th row and j-th column from A.

Definition

For any matrix A, we define the matrix of cofactors of A to be

$$
C=\left(\begin{array}{cccc}
C_{1,1} & C_{1,2} & \ldots & C_{1, n} \\
C_{2,1} & C_{2,2} & \ldots & C_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n, 1} & C_{n, 2} & \ldots & C_{n, n}
\end{array}\right)
$$

Adjoint of a Matrix

Recall, for a matrix A, we define the (i, j)-th cofactor, $C_{i, j}$ to be the signed determinant of the matrix obtained by removing i-th row and j-th column from A.

Definition

For any matrix A, we define the matrix of cofactors of A to be

$$
C=\left(\begin{array}{cccc}
C_{1,1} & C_{1,2} & \ldots & C_{1, n} \\
C_{2,1} & C_{2,2} & \ldots & C_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n, 1} & C_{n, 2} & \ldots & C_{n, n}
\end{array}\right)
$$

We define the adjoint of $A(\operatorname{denoted} \operatorname{adj}(A))$ to be

$$
\operatorname{adj}(A)=C^{T}
$$

Formula for Inverse

Sketch of Proof.

Formula for Inverse

Theorem

If A is an invertible matrix then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Sketch of Proof.

Use the definition of $\operatorname{adj}(A)$ to show that

$$
\frac{1}{\operatorname{det}(A)} A \cdot \operatorname{adj}(A)=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) \cdot A=I_{n}
$$

Example

Let

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right)
$$

Example

Let

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right)
$$

Then

$$
C_{1,1}=12=6 \times 0-(-\infty) \times 3
$$

Example

Let

Then

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & \$ & 3 \\
2 & -4 & 0
\end{array}\right) \quad \begin{gathered}
+ \\
+ \\
+
\end{gathered}+\begin{gathered}
- \\
\hline
\end{gathered}
$$

$$
C_{1,1}=12 \quad C_{1,2}=6=-(1 \times 0-2 \times 2)
$$

Example

Let

Then

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & \phi
\end{array}\right) \quad \begin{array}{ccc}
& - & - \\
t & - \\
t & t
\end{array}
$$

$$
C_{1,1}=12 \quad C_{1,2}=6 \quad C_{1,3}=-16=1 x-4-2 \times 6
$$

Example

Let

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right)
$$

Then

$$
\begin{array}{cll}
C_{1,1}=12 & C_{1,2}=6 & C_{1,3}=-16 \\
C_{2,1}=4 & C_{2,2}=2 & C_{2,3}=16 \\
C_{3,1}=12 & C_{3,2}=-10 & C_{3,3}=16
\end{array}
$$

Example

Let

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right)
$$

Then

$$
\left(\begin{array}{ccc}
C_{1,1}=12 & C_{1,2}=6 & C_{1,3}=-16 \\
C_{2,1}=4 & C_{2,2}=2 & C_{2,3}=16 \\
C_{3,1}=12 & C_{3,2}=-10 & C_{3,3}=16
\end{array}\right.
$$

and so

$$
\begin{array}{rlrl}
\approx \operatorname{det}(A) & =(3 *(12 *(2 * 6)+(-1) *-16)- & 1^{\text {st ror }} \\
& =1 * 4+6 * 2+3 * 16 & 2^{\text {nd rou }} \\
& =2 * 12+(-4) *(-10)+0 * 16 \cdot & 2^{\text {rod }} \text { rer } \\
& =2 * 6+\underline{6} * 2+(-4) *(-10) & & 2^{\text {nd }} \text { coler }
\end{array}
$$

Example Continued

$$
C=\left(\begin{array}{ccc}
12 & 6 & -16 \\
4 & 2 & 16 \\
12 & -10 & 16
\end{array}\right)
$$

Example Continued

$$
\left.C=\left(\begin{array}{c}
12 \\
4 \\
12
\end{array}\right) \begin{array}{cc}
6 & -16 \\
2 & 16 \\
-10 & 16
\end{array}\right) \quad \operatorname{adj}(A)=C^{T}=\left(\begin{array}{ccc}
\frac{12}{6} & 4 & 12 \\
-16 & 16 & -10 \\
-16
\end{array}\right)
$$

Example Continued

$$
C=\left(\begin{array}{ccc}
12 & 6 & -16 \\
4 & 2 & 16 \\
12 & -10 & 16
\end{array}\right) \quad \operatorname{adj}(A)=C^{T}=\left(\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right)
$$

$$
A^{-1}=\frac{1}{64}\left(\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right)
$$

Example Continued

$$
\begin{gathered}
C=\left(\begin{array}{ccc}
12 & 6 & -16 \\
4 & 2 & 16 \\
12 & -10 & 16
\end{array}\right) \quad \operatorname{adj}(A)=C^{T}=\left(\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right) \\
A^{-1}=\frac{1}{64}\left(\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right)
\end{gathered}
$$

Exercise

Check that

$$
\operatorname{adj} A
$$

du $A \xrightarrow{\frac{1}{64}}\left(\begin{array}{ccc}3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0\end{array}\right)\left(\begin{array}{ccc}12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$.

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$. However, it is still fairly computationally taxing as you have to find all the cofactors and so compute n^{2} determinants.

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$. However, it is still fairly computationally taxing as you have to find all the cofactors and so compute n^{2} determinants. So, it begs the question: Can we find a solution without finding the inverse?

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$. However, it is still fairly computationally taxing as you have to find all the cofactors and so compute n^{2} determinants. So, it begs the question: Can we find a solution without finding the inverse?

Theorem (Cramer's Rule)

Let A be an invertible matrix and \vec{b} any vector.

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$. However, it is still fairly computationally taxing as you have to find all the cofactors and so compute n^{2} determinants. So, it begs the question: Can we find a solution without finding the inverse?

Theorem (Cramer's Rule)

Let A be an invertible matrix and \vec{b} any vector. Define A_{j} as the matrix obtained by replacing the j-th column of A by \vec{b}.

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$. However, it is still fairly computationally taxing as you have to find all the cofactors and so compute n^{2} determinants. So, it begs the question: Can we find a solution without finding the inverse?

Theorem (Cramer's Rule)

Let A be an invertible matrix and \vec{b} any vector. Define A_{j} as the matrix obtained by replacing the j-th column of A by \vec{b}. Then the unique solution to $A \vec{x}=\vec{b}$ is given by

$$
x_{1}=\frac{\operatorname{det}\left(A_{\underline{1}}\right)}{\operatorname{det}(A)} \quad x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)} \quad \ldots \quad x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

Cramer's Rule

We now have a formula for finding the inverse and hence for solving $A \vec{x}=\vec{b}$. However, it is still fairly computationally taxing as you have to find all the cofactors and so compute n^{2} determinants. So, it begs the question: Can we find a solution without finding the inverse?

Theorem (Cramer's Rule)

Let A be an invertible matrix and \vec{b} any vector. Define A_{j} as the matrix obtained by replacing the j-th column of A by \vec{b}. Then the unique solution to $A \vec{x}=\vec{b}$ is given by

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)} \quad x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)} \quad \ldots \quad x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

We see here that we can find a solution by only taking $n+1$ determinants!

Example

Solve the system

$$
\begin{gathered}
x_{1}+2 x_{3}=6 \\
-3 x_{1}+4 x_{2}+6 x_{3}=30 \\
-x_{1}-2 x_{2}+3 x_{3}=8
\end{gathered}
$$

Example

Solve the system

$$
\begin{gathered}
x_{1}+2 x_{3}=6 \\
-3 x_{1}+4 x_{2}+6 x_{3}=30 \\
-x_{1}-2 x_{2}+3 x_{3}=8 \\
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-3 & 4 & 6 \\
-1 & -2 & 3
\end{array}\right)
\end{gathered}
$$

Example

Solve the system

$$
\begin{gathered}
x_{1}+2 x_{3}=6 \\
-3 x_{1}+4 x_{2}+6 x_{3}=30 \\
-x_{1}-2 x_{2}+3 x_{3}=8 \\
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-3 & 4 & 6 \\
-1 & -2 & 3
\end{array}\right) \quad \vec{b}=\left[\begin{array}{c}
6 \\
30 \\
8
\end{array}\right]
\end{gathered}
$$

Example

Solve the system

Example

Solve the system

$$
\begin{gathered}
x_{1}+2 x_{3}=6 \\
-3 x_{1}+4 x_{2}+6 x_{3}=30 \\
-x_{1}-2 x_{2}+3 x_{3}=8
\end{gathered}
$$

Example

Solve the system

$$
\begin{gathered}
x_{1}+2 x_{3}=6 \\
-3 x_{1}+4 x_{2}+6 x_{3}=30 \\
-x_{1}-2 x_{2}+3 x_{3}=8
\end{gathered}
$$

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-3 & 4 & 6 \\
-1 & -2 & 3
\end{array}\right)
$$

$$
\vec{b}=\left[\begin{array}{c}
6 \\
30 \\
8
\end{array}\right]
$$

$$
A_{1}=\frac{\left(\begin{array}{ccc}
6 & 0 & 2 \\
30 & 4 & 6 \\
8 & -2 & 3
\end{array}\right)}{=}
$$

$$
A_{2}=\left(\begin{array}{ccc}
1 & 6 & 2 \\
-3 & 30 & 6 \\
-1 & 8 & 3
\end{array}\right)
$$

$$
A_{3}=\left(\begin{array}{ccc}
1 & 0 & 6 \\
-3 & 4 & 30 \\
-1 & -2 & 8
\end{array}\right)
$$

Example Continued

Computing, we find that

$$
\operatorname{det}(A)=44 \quad \operatorname{det}\left(A_{1}\right)=-40 \quad \operatorname{det}\left(A_{2}\right)=72 \quad \operatorname{det}\left(A_{3}\right)=152
$$

Example Continued

Computing, we find that

$$
\operatorname{det}(A)=44 \quad \operatorname{det}\left(A_{1}\right)=-40 \quad \operatorname{det}\left(A_{2}\right)=72 \quad \operatorname{det}\left(A_{3}\right)=152
$$

Hence,

$$
\vec{x}=\left[\begin{array}{l}
\operatorname{det}\left(A_{1}\right) / \operatorname{det}(A) \\
\operatorname{det}\left(A_{2}\right) / \operatorname{det}(A) \\
\operatorname{det}\left(A_{3}\right) / \operatorname{det}(A)
\end{array}\right]
$$

Example Continued

Computing, we find that

$$
\operatorname{det}(A)=44 \quad \operatorname{det}\left(A_{1}\right)=-40 \quad \operatorname{det}\left(A_{2}\right)=72 \quad \operatorname{det}\left(A_{3}\right)=152
$$

Hence, imperdice that A is invertible since we an dividing by the $\operatorname{edt}(A)$

$$
\vec{x}=\left[\begin{array}{l}
\operatorname{det}\left(A_{1}\right) / \operatorname{det}(A) \\
\operatorname{det}\left(A_{2}\right) / \operatorname{det}(A) \\
\operatorname{det}\left(A_{3}\right) / \operatorname{det}(A)
\end{array}\right]=\left[\begin{array}{c}
-40 / 44 \\
72 / 44 \\
152 / 44
\end{array}\right]=\left[\begin{array}{c}
-10 / 11 \\
18 / 11 \\
38 / 11
\end{array}\right]
$$

is the unique solution to the system of linear equations.
A is ut invorith th $\mathbb{R} \mathrm{RE}_{\mathrm{E}}(\mathrm{O}-\mathrm{o}(\underset{\sim}{x})$

Example Continued

Computing, we find that

$$
\operatorname{det}(A)=44 \quad \operatorname{det}\left(A_{1}\right)=-40 \quad \operatorname{det}\left(A_{2}\right)=72 \quad \operatorname{det}\left(A_{3}\right)=152
$$

Hence,

$$
\vec{x}=\left[\begin{array}{l}
\operatorname{det}\left(A_{1}\right) / \operatorname{det}(A) \\
\operatorname{det}\left(A_{2}\right) / \operatorname{det}(A) \\
\operatorname{det}\left(A_{3}\right) / \operatorname{det}(A)
\end{array}\right]=\left[\begin{array}{c}
-40 / 44 \\
72 / 44 \\
152 / 44
\end{array}\right]=\left[\begin{array}{c}
-10 / 11 \\
18 / 11 \\
38 / 11
\end{array}\right]
$$

is the unique solution to the system of linear equations.

Exercise

Prove Cramer's Rule. Hint: use the adjoint formula for the inverse.

Geometric Interpretation of Determinants
Theorem
(1) If A is a 2×2 matrix, then $|\operatorname{det}(A)|$ represents the area of the parallelogram determined by the two column vectors of A.
(2) If A is a 3×3 matrix, then $|\operatorname{det}(A)|$ represents the volume of the parallelepiped determined the by the three columns of A.
(3) In general, $|\operatorname{det}(A)|$ can be thought of as an " n-dimensional volume" of the n-dimensional object determined by the columns of A.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]_{V_{1}} \quad V_{1}=\left[\begin{array}{l}
a \\
c
\end{array}\right) \quad V_{2}=\left[\begin{array}{l}
b \\
d
\end{array}\right] \\
& \\
&
\end{aligned}
$$

More Work Space

$$
\begin{aligned}
& \text { Area of }=(a+b)(c+d) \\
& \text { Area of }=\frac{c e}{2}+\frac{b d}{2}+b c \\
& \text { then at } \#=(a t s) \text { (std) } \\
& \text { - } \left.\frac{a c}{2}+\frac{4 d}{2}+h c\right) \\
& \left.2 \cdots=\frac{a d}{}-\frac{+d}{2}+b x+\frac{k e}{c}\right)
\end{aligned}
$$

Geometric Interpretation of Determinant Zero

Question

What is the geometric interpretation of a matrix having determinant 0 ?

Geometric Interpretation of Determinant Zero
Question
What is the geometric interpretation of a matrix having determinant 0 ?
Answer: the n-dimensional objects determined by the columns of A actually lives in an n - 1-dimensional space and thus has 0 " n-dimensional volume". The columns of a bro matrix with dat O form a ∂-dimensinal plane instead of a 3-din puavelopizes.
That is, the determinant of a 2×2 matrix is 0 if and only if its columns are proportional if and only if the "parallelogram" determined by its columns is a line and hence has 0 area.

Brief Aside to Linear Functions

We can think of an $m \times n$ matrix as a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Indeed:

$$
\begin{aligned}
& \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \vec{x} \mapsto \overrightarrow{A x}
\end{aligned}
$$

Brief Aside to Linear Functions

We can think of an $m \times n$ matrix as a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Indeed:

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
\vec{x} & \mapsto A \vec{x}
\end{aligned}
$$

If A is a square matrix then it is a function from \mathbb{R}^{n} to \mathbb{R}^{n}.

Brief Aside to Linear Functions

We can think of an $m \times n$ matrix as a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Indeed:

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
\vec{x} & \mapsto A \vec{x}
\end{aligned}
$$

If A is a square matrix then it is a function from \mathbb{R}^{n} to \mathbb{R}^{n}. Then the determinant tells us by how much shapes in \mathbb{R}^{n} expand (or shrink if $\operatorname{det}(A)<1)$.

Brief Aside to Linear Functions

We can think of an $m \times n$ matrix as a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Indeed:

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
\vec{x} & \mapsto A \vec{x}
\end{aligned}
$$

If A is a square matrix then it is a function from \mathbb{R}^{n} to \mathbb{R}^{n}. Then the determinant tells us by how much shapes in \mathbb{R}^{n} expand (or shrink if $\operatorname{det}(A)<1$). That is, it would take a shape of "volume" V and map it to a shape of "volume" $|\operatorname{det}(A)| V$.

Brief Aside to Linear Functions

We can think of an $m \times n$ matrix as a function from \mathbb{R}^{n} to \mathbb{R}^{m}. Indeed:

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
\vec{x} & \mapsto A \vec{x}
\end{aligned}
$$

If A is a square matrix then it is a function from \mathbb{R}^{n} to \mathbb{R}^{n}. Then the determinant tells us by how much shapes in \mathbb{R}^{n} expand (or shrink if $\operatorname{det}(A)<1$). That is, it would take a shape of "volume" V and map it to a shape of "volume" $|\operatorname{det}(A)| V$.

Moreover, A would take a shape of "perimeter" L and map it to a shape of "perimeter" $|\operatorname{Tr}(A)| L$.

Cross Product as Determinant

Recall, for vectors in \mathbb{R}^{3}, we define the cross product

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \times\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
\frac{u_{2} v_{3}-u_{3} v_{2}}{u_{3} v_{1}-u_{1} v_{3}}= \\
\underline{u_{1} v_{2}-u_{2} v_{1}}=
\end{array}\right.
$$

$$
A=\left[\begin{array}{l}
a b \\
c d
\end{array}\right] \quad \operatorname{det} A=\operatorname{cod}-b c
$$

Cross Product as Determinant

Recall, for vectors in \mathbb{R}^{3}, we define the cross product

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \times\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

This definition should now evoke notions of determinants.

Cross Product as Determinant

Recall, for vectors in \mathbb{R}^{3}, we define the cross product

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \times\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

This definition should now evoke notions of determinants. Indeed:

$$
\begin{gathered}
\vec{u} \times \vec{v}=\left(\operatorname{det}\left(\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right),-\operatorname{det}\left(\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right), \operatorname{det}\left(\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right)\right) \\
\operatorname{leL}_{3}-u_{3} v_{2} \quad-\left(u_{1} v_{3}-u_{3} v_{1}\right)
\end{gathered}
$$

Cross Product as Determinant

A good way to remember the formula for the cross product is as the determinant of a "formal matrix":

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\operatorname{det}\left(\begin{array}{lll}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)=\begin{array}{c}
\dot{e}_{1}, \vec{e}_{4} \vec{e}_{v} \\
\text { standard batons }
\end{array} \\
& \vec{e}_{r}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cdots \\
& \operatorname{det}\left(\begin{array}{lll}
& y & z \\
y_{i} & a & y_{2} \\
v_{i} & v a & y_{j}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\operatorname{det}\binom{u_{2} v_{3}}{v_{2} v_{3}}, \cdots \operatorname{set}\binom{u_{1} v_{3}}{v_{c} v_{3}}, \operatorname{det}\binom{v_{1} v_{2}}{v_{1} v_{v}}\right) \\
& =\vec{u} \times \vec{u}
\end{aligned}
$$

Example

Use the "formal matrix" to calculate

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{j} \\
1 & 2 & -2 \\
3 & 0 & 1
\end{array}\right)=\overrightarrow{e_{1}} \operatorname{dat}\left(\begin{array}{cc}
2 & -2 \\
0 & 1
\end{array}\right)-\vec{e}_{2} \operatorname{att}\left(\begin{array}{ll}
1 & -2 \\
3 & 1
\end{array}\right)+\vec{e} \operatorname{det}\binom{1}{30} \\
& =\vec{e}_{1}(2 x 1-0 \times-2)-\tilde{e}_{1}\left(10(-3 x-2)+c_{s}(1 \times 0-2 \times 3)\right. \\
& =2 \dot{e}_{1}->\dot{e}_{2}-6 \vec{e}_{3}=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-6\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \\
-7 \\
6
\end{array}\right]
\end{aligned}
$$

Cross Product Theorem
We can now use this notation of cross product to prove many properties of the cross product easily

Theorem
Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^{3} and c and real number. Then

$$
\begin{aligned}
& \text { (1) } \vec{u} \times \vec{v}=-\vec{v} \times \vec{u} \\
& \text { (2) } c(\vec{u} \times \vec{v})=(c \vec{u}) \times \vec{v}=\vec{u} \times(c \vec{v}) \\
& \text { (3) } \vec{u} \times \overrightarrow{0}=\overrightarrow{0} \times \vec{u}=\overrightarrow{0} \\
& \text { (1) } \vec{u} \times \vec{u}=\overrightarrow{0}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\operatorname{det}\left(\begin{array}{lll}
\vec{e}_{i} & \vec{e}_{v} & \vec{e}_{v} \\
u_{1} & u_{2} & u_{1} \\
v_{1} & v_{1} & v_{j}
\end{array}\right) \\
& \dot{v} \times \vec{u}=\operatorname{det}\left(\begin{array}{lll}
\vec{e} & e_{i} & \bar{u} \\
v_{1} & v_{1} & v_{2} \\
u_{1} & u_{2} & u_{3}
\end{array}\right)
\end{aligned}
$$

going between tHese matrices is a raw swap! And we hare seen that a raw swap changes to sign of your determinat.

More Work Space
(v) $(c \vec{u}) \times \vec{v}=\operatorname{det}\left(\begin{array}{ccc}\bar{e}_{1} & \vec{e}_{1} & \vec{e}_{3} \\ c_{1} & c a_{1} & c_{u} \\ v_{1} & v_{1} & v_{3} \\ & u & \end{array}\right)$

(3) $\bar{u} \times \overrightarrow{0}=\operatorname{det}\left(\begin{array}{ccc}e_{1} & e_{2} & \bar{e} \\ u_{1} & u_{1} & u_{0} \\ 0 & 0 & 0\end{array}\right)=0$ becama
(4) $\bar{u} \times \bar{u}=\operatorname{det}\left(\begin{array}{lll}e_{1} & \overline{e_{2}} & \overline{e_{j}} \\ u_{1} & u_{1} & u_{s} \\ u_{1} & u_{2} & u_{s}\end{array}\right)=0 \begin{gathered}\text { bea us } \\ \text { tin sows } \\ \text { an posocrtional }\end{gathered}$

The Standard Basis Vectors i, j, k

Oftein in \mathbb{R}^{3}, we write we write $\vec{e}_{1}=\mathbf{i}, \overrightarrow{e_{2}}=\mathbf{j}$ and $\vec{e}_{3}=\mathbf{k}$.

The Standard Basis Vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$

Oftein in \mathbb{R}^{3}, we write we write $\vec{e}_{1}=\mathbf{i}, \overrightarrow{e_{2}}=\mathbf{j}$ and $\overrightarrow{e_{3}}=\mathbf{k}$. Then it is fairly easy to see that we have the following relations

$$
\begin{aligned}
& \mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j} \\
& {\left[\begin{array}{lll}
e_{1} \times e_{2}=e_{s} & e_{2} \times e_{3}=e_{1} & e_{3} \times e_{4}=e_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

The Standard Basis Vectors i, j, k

Oftein in \mathbb{R}^{3}, we write we write $\vec{e}_{1}=\mathbf{i}, \overrightarrow{e_{2}}=\mathbf{j}$ and $\vec{e}_{3}=\mathbf{k}$. Then it is fairly easy to see that we have the following relations
can also
colculection.

$$
\begin{aligned}
& \text { see this } \quad \rightarrow \underset{\sim}{\mathbf{j}} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i} \quad \underset{\sim}{\mathbf{i} \times \mathbf{k}=-\mathbf{j} \rightarrow \quad \text { swapping }} \\
& \text { straight }
\end{aligned}
$$

The Standard Basis Vectors i, j, k

Oftein in \mathbb{R}^{3}, we write we write $\vec{e}_{1}=\mathbf{i}, \overrightarrow{e_{2}}=\mathbf{j}$ and $\vec{e}_{3}=\mathbf{k}$. Then it is fairly easy to see that we have the following relations

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}
$$

$$
\mathbf{j} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i} \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}
$$

$$
\mathbf{i} \times \mathbf{i}=\overrightarrow{0} \quad \mathbf{j} \times \mathbf{j}=\overrightarrow{0} \quad \mathbf{k} \times \mathbf{k}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \text { from the } \\
& \text { con veter } \\
& \text { crossed with } \\
& \text { iticlf is } 0 \text {. }
\end{aligned}
$$

The Standard Basis Vectors i, j, k

Oftein in \mathbb{R}^{3}, we write we write $\vec{e}_{1}=\mathbf{i}, \overrightarrow{e_{2}}=\mathbf{j}$ and $\vec{e}_{3}=\mathbf{k}$. Then it is fairly easy to see that we have the following relations

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}
$$

$$
\mathbf{j} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i} \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}
$$

$$
\mathbf{i} \times \mathbf{i}=\overrightarrow{0} \quad \mathbf{j} \times \mathbf{j}=\overrightarrow{0} \quad \mathbf{k} \times \mathbf{k}=\overrightarrow{0}
$$

Now, any vector in \mathbb{R}^{3} can be written as linear combination of \vec{e}_{1}, \vec{e}_{2} and \vec{e}_{3} and hence of \mathbf{i}, \mathbf{j} and \mathbf{k}.

The Standard Basis Vectors i, j, k

Oftein in \mathbb{R}^{3}, we write we write $\vec{e}_{1}=\mathbf{i}, \vec{e}_{2}=\mathbf{j}$ and $\vec{e}_{3}=\mathbf{k}$. Then it is fairly easy to see that we have the following relations

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}
$$

$$
\mathbf{j} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i} \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}
$$

$$
\mathbf{i} \times \mathbf{i}=\overrightarrow{0} \quad \mathbf{j} \times \mathbf{j}=\overrightarrow{0} \quad \mathbf{k} \times \mathbf{k}=\overrightarrow{0}
$$

Now, any vector in \mathbb{R}^{3} can be written as linear combination of \vec{e}_{1}, \vec{e}_{2} and \vec{e}_{3} and hence of \mathbf{i}, \mathbf{j} and \mathbf{k}. Therefore, to cross multiply two vectors it is enough to "expand the product":

$$
\vec{u} \times \vec{v}=\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \hat{\mathbf{k}}\right) \times\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\right)
$$

Example

$$
\begin{aligned}
& \text { "Expand the product" to calculate } \\
& {\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right] \times\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-7 \\
-2
\end{array}\right]} \\
& (i+2 j-2 k) \times(3 i+i j+1 k)=3 i x i+0 i_{i}^{j}+1 i \times k \\
& +2 j x_{i}+\quad-\dot{\sigma} x_{j}^{c}+2 j \times n \\
& \text { - 6人x+i ro/bij- 2bxk } 0 \\
& =-j-2 k+2 i-6 j \\
& =\partial i \quad->j-2 k=\left[\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right]
\end{aligned}
$$

Big Caution

Note that:

$$
\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=\mathbf{i} \times \overrightarrow{0}=\overrightarrow{0}
$$

while

$$
(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=\mathbf{k} \times \mathbf{j}=-\mathbf{i} \neq \overrightarrow{0}
$$

Big Caution

Note that:

$$
\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=\mathbf{i} \times \overrightarrow{0}=\overrightarrow{0}
$$

while

$$
(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=\mathbf{k} \times \mathbf{j}=-\mathbf{i} \neq \overrightarrow{0}
$$

Hence, it is not true in general that

$$
(\vec{u} \times \vec{v}) \times \vec{w}=\vec{u} \times(\vec{v} \times \vec{w})
$$

Big Caution

Note that:

$$
\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=\mathbf{i} \times \overrightarrow{0}=\overrightarrow{0}
$$

while

$$
(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=\mathbf{k} \times \mathbf{j}=-\mathbf{i} \neq \overrightarrow{0}
$$

Hence, it is not true in general that

$$
(\vec{u} \times \vec{v}) \times \vec{w}=\vec{u} \times(\vec{v} \times \vec{w})
$$

The cross product is NOT associative.

Big Caution

Note that:

$$
\mathbf{i} \times(\mathbf{j} \times \mathbf{j})=\mathbf{i} \times \overrightarrow{0}=\overrightarrow{0}
$$

while

$$
(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}=\mathbf{k} \times \mathbf{j}=-\mathbf{i} \neq \overrightarrow{0}
$$

Hence, it is not true in general that

$$
(\vec{u} \times \vec{v}) \times \vec{w}=\vec{u} \times(\vec{v} \times \vec{w})
$$

The cross product is NOT associative. So writing something like

$$
u x(v \times w) \quad \stackrel{?}{=} \vec{u} \times \vec{v} \times \vec{w} \quad \stackrel{!}{=} \quad(u \times v) \times w
$$

does NOT make sense as it depends on the order you are (cross) multiplying them in.

Dot Product with i,j,k

We see also that we can get the dot products of \mathbf{i}, \mathbf{j} and \mathbf{k}

Dot Product with i,j,k

We see also that we can get the dot products of \mathbf{i}, \mathbf{j} and \mathbf{k}

$$
\begin{array}{rl}
\mathbf{i} \cdot \mathbf{i}=1 & \mathbf{j} \cdot \mathbf{j}=1 \\
{\left[\begin{array}{l}
1 \\
0 \\
\mathbf{r}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{k} \cdot \mathbf{k}=1 \\
0 \\
0
\end{array}\right]} &
\end{array}
$$

Dot Product with i,j,k

We see also that we can get the dot products of \mathbf{i}, \mathbf{j} and \mathbf{k}

$$
\begin{gathered}
\mathbf{i} \cdot \mathbf{i}=1 \quad \mathbf{j} \cdot \mathbf{j}=1 \quad \mathbf{k} \cdot \mathbf{k}=1 \\
\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=0
\end{gathered}
$$

Dot Product with i,j,k

We see also that we can get the dot products of \mathbf{i}, \mathbf{j} and \mathbf{k}

$$
\begin{gathered}
\mathbf{i} \cdot \mathbf{i}=1 \quad \mathbf{j} \cdot \mathbf{j}=1 \quad \mathbf{k} \cdot \mathbf{k}=1 \\
\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=0
\end{gathered}
$$

Then we can define dot product of two vectors by "expanding the product"

$$
\vec{u} \cdot \vec{v}=\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}\right) \cdot\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\right)
$$

Dot Product with i,j,k

We see also that we can get the dot products of \mathbf{i}, \mathbf{j} and \mathbf{k}

$$
\begin{aligned}
& \stackrel{i}{i}_{\mathrm{i}}^{\mathrm{i}} \quad=\mathbf{i} \cdot \mathbf{i}=1 \quad \mathbf{j} \cdot \mathbf{j}=1 \quad \mathbf{k} \cdot \mathbf{k}=1 \\
& \\
& \\
& \mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=0
\end{aligned}
$$

Then we can define dot product of two vectors by "expanding the product"

$$
\vec{u} \cdot \vec{v}=\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}\right) \cdot\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\right)
$$

Exercise

Use the "expand the product" idea to prove
(1) $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$
(2) $(\vec{u}+\vec{v}) \times \vec{w}=\vec{u} \times \vec{w}+\vec{v} \times \vec{w}$
$\begin{array}{ll}(2) \text { i) u at } \\ \text { implied } & b_{2}(1)\end{array}$
(3) $\vec{u} \cdot(\vec{u} \times \vec{v})=0$ (i.e. \vec{u} is orthogonal to $\vec{u} \times \vec{v}$)
(9) $\vec{v} \cdot(\vec{u} \times \vec{v})=0$ (ie. \vec{v} is orthogonal to $\vec{u} \times \vec{v}$)

Cross Product as an Area

We have already seen that the cross product is related to the determinant, which is related to areas and volumes.

Cross Product as an Area

We have already seen that the cross product is related to the determinant, which is related to areas and volumes. So it makes sense that the cross product of the two vectors would be related to an area.

Theorem

Cross Product as an Area

We have already seen that the cross product is related to the determinant, which is related to areas and volumes. So it makes sense that the cross product of the two vectors would be related to an area.

Theorem

Let \vec{u} and \vec{v} be non-zero vectors in \mathbb{R}^{3} and let θ be the angle between them. Then
(1) $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin (\theta)$

$$
|u \cdot v|=\|u\| \cdot\|v\| \cos \theta
$$

Cross Product as an Area

We have already seen that the cross product is related to the determinant, which is related to areas and volumes. So it makes sense that the cross product of the two vectors would be related to an area.

Theorem
Let \vec{u} and \vec{v} be non-zero vectors in \mathbb{R}^{3} and let θ be the angle between them. Then
pg. 206 at took.
(1) $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin (\theta)$
(2) $\|\vec{u} \times \vec{v}\|$ is the area of the parallelogram that has \vec{u} and \vec{v} as adjacent sides.
prase 2) formula for area of paralllo gran

$$
\text { Avar of parcel gran }=(\text { side lefts } 1) \times(\text { side lepke } 2) \times \sin (\text { cugble })
$$

Proof

More Work Space

