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Topics for Today

1 Determinants

2 Calculating Determinants: Cofactor Expansion and Row Reduction
Formula

3 Determinants and Invertibility
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Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose,
trace.

One of the most important function on matrices is called the determinant.

Definition

The determinent of a square matrix, denoted det(A) or |A|, is the sum of
all signed elementary products of A.
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Elementary Products

Definition

An elementary product of a square matrix is a product of it’s entries with
one entry coming from each row and no two in the same column.

Examples:(
a1,1 a1,2
a2,1 a2,2

)
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


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Parity of Permutations

We note that we can rearrange all of our elementary products to be of the
form

a1,j1a2,j2 · · · an,jn
where the {j1, j2, . . . , jn} is a permutation of {1, 2, . . . , n}.

Definition

We say a permutation {j1, . . . , jn} is even if it requires an even number of
swaps to return to {1, 2, . . . , n}. We say a permutation {j1, . . . , jn} is odd
if it requires an odd number of swaps to return to {1, 2, . . . , n}. We often
call this the parity of the permutation.

{2, 1, 4, 3} is an even permutation

{5, 3, 4, 2, 1} is an odd permutation
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Sign of an Elementary Product

Definition

Given an elementary product

a1,j1a2,j2 · · · an,jn

we define the sign of the product to be “+” if {j1, . . . , jn} is even and
“−” if {j1, . . . , jn} is odd.

The sign of a1,2a2,1a3,4a4,3 is “+” since {2, 1, 4, 3} is an even permutation.

The sign of a1,5a2,3a3,4a4,2a5,1 is “−” since {5, 3, 4, 2, 1} is an odd
permutation.
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Determinant of 2× 2 and 3× 3 Matrices

Definition

The determinent of a square matrix, A, denoted det(A) or |A| is the sum
of all signed elementary products.

(
a1,1 a1,2
a2,1 a2,2

)

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


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Method for Computing 2× 2 Determinants

(
a b
c d

)

Compute the determinant of A =

(
3 5
2 1

)
.
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Method for Computing 3× 3 Determinants

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =⇒
a1,1 a1,2 a1,3 a1,1 a1,2
a2,1 a2,2 a2,3 a2,1 a2,2
a3,1 a3,2 a3,3 a3,1 a3,2
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Exercise

Compute the determinant of

A =

3 0 2
1 −1 3
2 2 0


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Computing Determinants: Cofactors and Minors

Definition

For a square matrix A, we define the (i , j)-th minor, denote Mi ,j to be the
determinant of the matrix obtained by removing the i-th row and j-th
column. The (i , j)-th cofactor, denoted Ci ,j is then (−1)i+jMi ,j

A =

3 0 2
1 −1 3
2 2 0


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Computing Determinant: Cofactor Expansion

Theorem

Let A be a n × n square matrix with entries ai ,j .

Then for any i

det(A) = ai ,1Ci ,1 + ai ,2Ci ,2 + · · ·+ ai ,nCi ,n

= (−1)i+1ai ,1Mi ,1 + (−1)i+2ai ,2Mi ,2 + · · ·+ (−1)i+nai ,nMi ,n

Moreover, for any j

det(A) = a1,jC1,j + a2,jC2,j + · · ·+ an,jCn,j

= (−1)1+ja1,jM1,j + (−1)2+ja2,jM2,j + · · ·+ (−1)n+jan,jMn,j
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Generic Example: 3× 3

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 + − +
− + −
+ − +


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Specific Example: 4× 4

Calculate the determinant of
1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10


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Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a
matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the
diagonal entries.

Note that diagonal matrices are also upper triangular and so

det(D) = det



d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


 = d1d2 · · · dn

Further, the identity matrix In, is the diagonal matrix with
d1 = d2 = · · · = dn = 1 and so we may conclude det(In) = 1.
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we
can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an n × n matrix and let B be a matrix obtained from A by one
row operation. Then

1 If the row operation is interchanging two rows then
det(B) = − det(A).

2 If the row operation is multiplying a row by c ∈ R, then
det(B) = c det(A)

3 If the row operation is adding one row to another then
det(B) = det(A).
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Sketch of Proof
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Exercise

Row reduce A to REF and then calculate the determinate

A =


1 2 3 4
1 0 1 0
2 −1 −2 0
1 1 1 1


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More Work Space
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Properties of Determinants

Theorem

Let A be an n × n matrix

1 det(AT ) = det(A)

2 If A has a row or column of 0’s then det(A) = 0

3 If A has two proportional rows, then det(A) = 0

4 If A has two proportional columns, then det(A) = 0

5 det(cA) = cn det(A).
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Big Theorem

Theorem

An n × n matrix A is invertible if and only if det(A) 6= 0.
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Major Theorem

Theorem

Let A be an n × n matrix. The the following are equivalent

1 A~x = ~b has a unique solution for every ~b

2 A~x = 0 has a unique solution

3 rk(A) = n

4 The RREF of A is In
5 A is invertible

6 The columns of A are linearly independent

7 det(A) 6= 0

8 The row vectors of A are linearly independent
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Properties of Determinants 2

Theorem
1 det(AB) = det(A) det(B)

2 det(A−1) = 1
det(A) , provided A−1 exists.
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More Work Space

Patrick Meisner (KTH) Lecture 8 24 / 23


