SF 1684 Algebra and Geometry Lecture 8

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Determinants
(2) Calculating Determinants: Cofactor Expansion and Row Reduction Formula
(3) Determinants and Invertibility

Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose, trace.

Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose, trace.

One of the most important function on matrices is called the determinant.

Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose, trace.

One of the most important function on matrices is called the determinant.

Definition

The determinent of a square matrix, denoted $\operatorname{det}(A)$ or $|A|$, is the sum of all signed elementary products of A.

Elementary Products

Definition

An elementary product of a square matrix is a product of it's entries with one entry coming from each row and no two in the same column.

Elementary Products

Definition
An elementary product of a square matrix is a product of it's entries with one entry coming from each row and no two in the same column.

Examples:

Parity of Permutations

We note that we can rearrange all of our elementary products to be of the form

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

where the $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ is a permutation of $\{1,2, \ldots, n\}$.

Parity of Permutations

We note that we can rearrange all of our elementary products to be of the form

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

where the $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ is a permutation of $\{1,2, \ldots, n\}$.

Definition

We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is even if it requires an even number of swaps to return to $\{1,2, \ldots, n\}$.

Parity of Permutations

We note that we can rearrange all of our elementary products to be of the form

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

where the $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ is a permutation of $\{1,2, \ldots, n\}$.

Definition

We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is even if it requires an even number of swaps to return to $\{1,2, \ldots, n\}$. We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is odd if it requires an odd number of swaps to return to $\{1,2, \ldots, n\}$.

Parity of Permutations

We note that we can rearrange all of our elementary products to be of the form

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

where the $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ is a permutation of $\{1,2, \ldots, n\}$.

Definition

We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is even if it requires an even number of swaps to return to $\{1,2, \ldots, n\}$. We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is odd if it requires an odd number of swaps to return to $\{1,2, \ldots, n\}$. We often call this the parity of the permutation.

Parity of Permutations

We note that we can rearrange all of our elementary products to be of the form

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

where the $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ is a permutation of $\{1,2, \ldots, n\}$.

Definition

We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is even if it requires an even number of swaps to return to $\{1,2, \ldots, n\}$. We say a permutation $\left\{j_{1}, \ldots, j_{n}\right\}$ is odd if it requires an odd number of swaps to return to $\{1,2, \ldots, n\}$. We often call this the parity of the permutation.

$$
\{\underset{\sim}{\partial}(1,4,3) \rightarrow(1,2,4,3) \rightarrow(1,2,5,4\}
$$

$\{2,1,4,3\}$ is an even permutation

$$
(\underbrace{s, 3,4,5,}) \xrightarrow[1]{ }\{1, \underbrace{3,4,2}, 5)
$$

$\{5,3,4,2,1\}$ is an odd permutation

$$
\overrightarrow{2}\{(, 2,4,\}, 5) \underset{3}{a}\{1,2,34,5\}
$$

Sign of an Elementary Product

Definition

Given an elementary product

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

we define the sign of the product to be " + " if $\left\{j_{1}, \ldots, j_{n}\right\}$ is even and "-" if $\left\{j_{1}, \ldots, j_{n}\right\}$ is odd.

Sign of an Elementary Product

Definition

Given an elementary product

$$
a_{1, j_{1}} a_{2, j_{2}} \cdots a_{n, j_{n}}
$$

we define the sign of the product to be " + " if $\left\{j_{1}, \ldots, j_{n}\right\}$ is even and "-" if $\left\{j_{1}, \ldots, j_{n}\right\}$ is odd.

The sign of $a_{1,2} a_{2,1} a_{3,4} a_{4,3}$ is " + " since $\{2,1,4,3\}$ is an even permutation.
The sign of $a_{1,5} a_{2,3} a_{3,4} a_{4,2} a_{5,1}$ is "-" since $\{5,3,4,2,1\}$ is an odd permutation.

Determinant of 2×2 and 3×3 Matrices

Definition

The determinent of a square matrix, A, $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$ is the sum of all signed elementary products.

Determinant of 2×2 and 3×3 Matrices
Definition
The determinent of a square matrix, A, $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$ is the sum of all signed elementary products.

$$
\begin{aligned}
& \begin{array}{ll}
a a_{1,1} & a_{1,2} \\
a a_{2,1} & a_{2,2} \\
\hline
\end{array} \\
& +a_{11} a_{22}-a_{12} a_{21} \\
& \operatorname{det}\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{12} & a_{11}
\end{array}\right)=a_{11} a_{22}-a_{12} a_{21} \\
& \operatorname{det}\left(\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right)\right)=\begin{array}{l}
+a_{11} a_{2} a_{33}-a_{11} a_{23} a_{32} \\
\\
+a_{12} a_{2,} a_{31}-a_{11} a_{41} a_{33} \\
\\
+a_{12} a_{21} a_{33}-a_{15} a_{21} a_{31}
\end{array}
\end{aligned}
$$

Method for Computing 2×2 Determinants

$$
\begin{aligned}
& a d-b c=\operatorname{det}\binom{a b}{c d} \\
& a d-\underline{c}=a d-\underline{b}
\end{aligned}
$$

Compute the determinant of A

Method for Computing 3×3 Determinants

$$
\begin{aligned}
&\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right) \Longrightarrow \begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{22}, 2 & a_{2,2} \\
a_{3,1} & a_{3,2} & a_{3,3} \\
a_{3,1} & a_{3,2}
\end{array} \\
&=a_{11} a_{12} a_{13}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& a_{13} a_{22} a_{31}-a_{11} a_{23} a_{31}-a_{12} a_{21} a_{33}
\end{aligned}
$$

WARNINGS This generalizes only to the 3×3 ! car nat de a similar conotivetion for hist dimesiass

Exercise
Compute the determinant of

$$
3 x+1 \times 0+0 \times 3 \times 2+2 \times 1 \times 2-0 \times 1 \times 0-3 \times 3 \times 2-2 \times-1 \times 2
$$

$$
0+0+4-0-18+4=-10
$$

Computing Determinants: Cofactors and Minors
Definition
For a square matrix A, we define the (i, j)-th minor, denote $M_{i, j}$ to be the determinant of the matrix obtained by removing the i-th row and j-th column. The (i, j)-th cofactor, denoted $C_{i, j}$ is then $(-1)^{i+j} M_{i, j}$

$$
\begin{aligned}
& M_{31}=\operatorname{det}\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right)=0 \times 3-2 x-1 \\
& C_{41}=2
\end{aligned} \quad \begin{aligned}
M_{1,1}=\operatorname{det}\left(\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right)=(-1) \times 0-3 \times 2=-6 \rightarrow C_{1,1} & =(-1)^{1+1} M_{1,1} \\
& =1 \times-62-6 \\
M_{2,1}=\operatorname{det}\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)=0 \times 0-2 x 1=-4 \rightarrow C_{21} & =(-1)^{2+1} M_{21} \\
& =(-1) \times(-4) \\
M_{3,2}=\operatorname{det}\left(\begin{array}{ll}
3 & 2 \\
1 & 3
\end{array}\right)=3 \times 1-2 \times x=9-7=7 & =4
\end{aligned}
$$

Computing Determinant: Cofactor Expansion

Theorem
Let A be a $n \times n$ square matrix with entries $a_{i, j}$.

Computing Determinant: Cofactor Expansion
Theorem
Let A be a $n \times n$ square matrix with entries $a_{i, j}$. Then for any i

$$
\operatorname{det}(A)=a_{i, 1} C_{i, 1}+a_{i, 2} C_{i, 2}+\cdots+a_{i, n} C_{i, n}
$$

Expanding the determinant along the its row

$$
\begin{aligned}
& a_{i 1} C_{i 1}+a_{i i 2} c_{i 12}+\cdots+a_{i n} C_{i n} \\
& \| \\
& \operatorname{det}(A)
\end{aligned}
$$

Computing Determinant: Cofactor Expansion

Theorem

Let A be a $n \times n$ square matrix with entries $a_{i, j}$. Then for any i

$$
\begin{gathered}
\operatorname{det}(A)=a_{i, 1} \underline{C} C_{i, 1}+a_{i, 2} \xrightarrow{C_{i, 2}}+\cdots+a_{i, n} C_{i, n} \\
=(-1)^{i+1} a_{i, 1} M_{i, 1}+(-1)^{i+2} a_{i, 2} M_{i, 2}+\cdots+\left(\underline{-1)^{i+n}} a_{i, n} M_{i, n}\right.
\end{gathered}
$$

Moreover, for any j

$$
\operatorname{det}(A)=a_{1, j} C_{1, j}+a_{2, j} C_{2, j}+\cdots+a_{n, j} C_{n, j}
$$

Expandirg along th \hat{v} th column

Computing Determinant: Cofactor Expansion

Theorem

Let A be a $n \times n$ square matrix with entries $a_{i, j}$. Then for any i

$$
\begin{gathered}
\operatorname{det}(A)=a_{i, 1} C_{i, 1}+a_{i, 2} C_{i, 2}+\cdots+a_{i, n} C_{i, n} \\
=(-1)^{i+1} a_{i, 1} M_{i, 1}+(-1)^{i+2} a_{i, 2} M_{i, 2}+\cdots+(-1)^{i+n} a_{i, n} M_{i, n}
\end{gathered}
$$

Moreover, for any j

$$
\begin{gathered}
\operatorname{det}(A)=a_{1, j} C_{1, j}+a_{2, j} C_{2, j}+\cdots+a_{n, j} C_{n, j} \\
=(-1)^{1+j} a_{1, j} M_{1, j}+(-1)^{2+j} a_{2, j} M_{2, j}+\cdots+(-1)^{n+j} a_{n, j} M_{n, j}
\end{gathered}
$$

Computing Determinant: Cofactor Expansion

Theorem

Let A be a $n \times n$ square matrix with entries $a_{i, j}$. Then for any i

$$
\begin{gathered}
\operatorname{det}(A)=a_{i, 1} C_{i, 1}+a_{i, 2} C_{i, 2}+\cdots+a_{i, n} C_{i, n} \\
=(-1)^{i+1} a_{i, 1} M_{i, 1}+(-1)^{i+2} a_{i, 2} M_{i, 2}+\cdots+(-1)^{i+n} a_{i, n} M_{i, n}
\end{gathered}
$$

Moreover, for any j

$$
\begin{gathered}
\operatorname{det}(A)=a_{1, j} C_{1, j}+a_{2, j} C_{2, j}+\cdots+a_{n, j} C_{n, j} \\
=(-1)^{1+j} a_{1, j} M_{1, j}+(-1)^{2+j} a_{2, j} M_{2, j}+\cdots+(-1)^{n+j} a_{n, j} M_{n, j}
\end{gathered}
$$

Generic Example: 3×3

$$
A=\left(\begin{array}{lll}
a_{1,1} & a_{1}+2 & a_{1,3} \\
a_{2,1} & a_{2}+2 & a_{2,3} \\
a_{3,1} & a_{3,2}, 2 & a_{3,3}
\end{array}\right) \quad\left(\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right)
$$

Exprual alone the $1^{\text {st }}$ rom, $\operatorname{det}(A)=$

$$
+a_{11} \operatorname{det}\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{31} & a_{33}
\end{array}\right)-a_{12} \operatorname{dot}\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{30}
\end{array}\right)+a_{13} \operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

Expand dong the $2^{\text {nd }}$ column, $\operatorname{det}(A)=$

$$
-q_{12} \operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{21} & a_{23}
\end{array}\right)+a_{21} \operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right)-a_{32} \operatorname{dtf}\left(\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{3}
\end{array}\right)
$$

Specific Example: 4×4
Calculate the determinant of

$$
\begin{aligned}
& +-7 \\
& -+ \\
& 1 \quad\left(\begin{array}{lllc}
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \operatorname{det}\left[\begin{array}{lll}
5 & 6 & 7 \\
0 & 8 & 9 \\
0 & 0 & 10
\end{array}\right] \\
& -0 \operatorname{det}\left[\begin{array}{l}
234 \\
089 \\
0010
\end{array}\right]+0 \operatorname{det}\left[\begin{array}{l}
224 \\
567 \\
0010
\end{array}\right] \\
& \text { +o } \operatorname{det}\binom{67}{84}-0 \operatorname{det}\binom{57}{09}+10 \cdot \operatorname{dt}\binom{56}{08}-0 \operatorname{det}\left(\begin{array}{c}
284 \\
567 \\
084
\end{array}\right) \\
& \operatorname{ett}(A)=\left(0 \cdot \operatorname{det}\binom{5.6}{\phi 8}=10(5 \times 8-0.6)=400\right. \\
& U O O=1 \times 5 \times 8 \times 0
\end{aligned}
$$

Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a matrix with all zeroes below the diagonal.

Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the diagonal entries.

Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the diagonal entries.

Note that diagonal matrices are also upper triangular and so

$$
\operatorname{det}(D)=\operatorname{det}\left(\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\right)=d_{1} d_{2} \cdots d_{n}
$$

Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the diagonal entries.

Note that diagonal matrices are also upper triangular and so

$$
\operatorname{det}(D)=\operatorname{det}\left(\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\right)=d_{1} d_{2} \cdots d_{n}
$$

Further, the identity matrix I_{n}, is the diagonal matrix with $d_{1}=d_{2}=\cdots=d_{n}=1$ and so we may conclude $\operatorname{det}\left(I_{n}\right)=1$.

Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be an upper triangular matrix and thus the determinant is easily calculated.

Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we can reduce the matrix to REF and easily compute the determinant.

Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an $n \times n$ matrix and let B be a matrix obtained from A by one row operation.

Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an $n \times n$ matrix and let B be a matrix obtained from A by one row operation. Then
(1) If the row operation is interchanging two rows then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an $n \times n$ matrix and let B be a matrix obtained from A by one row operation. Then
(1) If the row operation is interchanging two rows then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(2) If the row operation is multiplying a row by $c \in \mathbb{R}$, then $\operatorname{det}(B)=c \operatorname{det}(A)$

Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an $n \times n$ matrix and let B be a matrix obtained from A by one row operation. Then
(1) If the row operation is interchanging two rows then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(2) If the row operation is multiplying a row by $c \in \mathbb{R}$, then $\operatorname{det}(B)=c \operatorname{det}(A)$
(3) If the row operation is adding one row to another then $\operatorname{det}(B)=\operatorname{det}(A)$.
(1) $+\cdots+\cdots+$
$-\quad+\quad+\cdots$
$t-+-+$.
expand ulong first row sel + - t pattern
suaf first an secand Mow and expond aloug the seend row

$$
-+-+\cdots \text { putfe }
$$

(2) $A=\left(\begin{array}{ccc}a_{11} & q_{12} & \cdots \\ \vdots & c_{12} \\ \vdots & \end{array}\right) \quad B=\left(\begin{array}{cccc}c c_{1,} & c c_{11} & \cdots & c c_{12} \\ \vdots & & \end{array}\right)$
expond B chong frost rev $\leq a_{1}$ det $) \cdots+C_{2}$ dell)

$$
\begin{aligned}
& =c\left(d _ { 1 } \operatorname { d e t } \left(1 \ldots \cdots+c_{M} \operatorname{det}()\right.\right. \\
& =c(\operatorname{det})
\end{aligned}
$$

(3) i) Use part I to sher thet if two rons coro the some
ii) if $A=\left(\begin{array}{lll}r_{1} \\ 1 \\ r_{n}\end{array}\right) \quad B=\left(\begin{array}{c}n_{1}+r_{i} \\ \vdots \\ r_{n}\end{array}\right) \Rightarrow \operatorname{det} B=\operatorname{dec}\left(\begin{array}{c}n_{1} \\ \vdots \\ r_{n}\end{array}\right)+\operatorname{det}\left(\begin{array}{c}r_{2} \\ r_{2} \\ r_{n} \\ r_{2}\end{array}\right)$

Exercise

Row reduce A to REF and then calculate the determinate

$$
-\operatorname{cht}\left(41^{\prime \prime}\right.
$$

$$
=\frac{-1}{2} \operatorname{det}(A)
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
(2) & -1 & -2 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \begin{array}{lll}
& R_{2}-R_{2} & \\
R_{3}-2 h & -\operatorname{dd}(4) \\
R_{2}-h & "
\end{array} \\
& =\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
0 & -2 & -2 & -4 \\
0 & -5 & -8 & -8 \\
0 & -1 & -2 & -3
\end{array}\right] R \leftrightarrow B=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & - \\
0 & -5 & -8 & -8 \\
0 & -2 & -2 & -4
\end{array}\right] R_{1}-S R_{1} \\
& =\left[\begin{array}{cccc}
1 & 2 & B & 4 \\
0 & -1 & -2 & -7 \\
0 & 0 & 2 & 7 \\
0 & 0 & 2 & 2
\end{array}\right] \frac{1}{2} \& \quad\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
c & -1 & -2 & -3 \\
0 & 0 & 1 & >/ 2 \\
0 & 0 & 2 & 2
\end{array}\right]
\end{aligned}
$$

More Work Space

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 1 & 2 \sqrt{2} \\
0 & 0 & 2 & 2
\end{array}\right] f_{42}-2 f_{3}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 1 & >\sqrt{2} \\
0 & 0 & 0 & -5
\end{array}\right]=13} \\
\frac{-1}{2} \operatorname{atf}\left(4 A^{\prime \prime}\right.
\end{array}\right] \begin{gathered}
-\frac{1}{2} \text { let } A=\operatorname{alt}(B)=1 \times-1 \times 1 \times-5 \\
\\
=10
\end{gathered}
$$

Properties of Determinants
Theorem
Let A be an $n \times n$ matrix

$$
B=A^{\top} \Rightarrow \operatorname{det}(B)=\operatorname{dt}(A)
$$

(1) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$

Expand ing the dat erminont of 1 along a column is He sum e as expanding the determent of A^{T} along a row

Properties of Determinants
Theorem
Let A be an $n \times n$ matrix
(1) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(2) If A has a row or column of 0 's then $\operatorname{det}(A)=0$
if A has a row of zeros then
expounding along this res give
$\operatorname{det} A=0 \cdot \operatorname{let}(1-0 \operatorname{det}()+\cdots+0 \cdot \operatorname{det}(1=0$
likenia of a column is cell cols.

Properties of Determinants

Theorem

Let A be an $n \times n$ matrix
(1) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(2) If A has a row or column of 0 's then $\operatorname{det}(A)=0$
(3) If A has two proportional rows, then $\operatorname{det}(A)=0$
if A has fur proportional Mows then
ut B be the matrix obtashed from subtraction the two rows So B has a row of zeros and by previas theorem $\operatorname{det}(A)=\operatorname{det}(B)=0$

Properties of Determinants
Theorem
Let A be an $n \times n$ matrix
(1) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(2) If A has a row or column of 0 's then $\operatorname{det}(A)=0$
(3) If A has two proportional rows, then $\operatorname{det}(A)=0$
(4) If A has two proportional columns, then $\operatorname{det}(A)=0$

If A has two pooportional columns then
At has fund proportional reals. and
so $\operatorname{det}\left(A^{\top}\right)=0$ and $8 v \quad \operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)=0$

Properties of Determinants
Theorem
Let A be an $n \times n$ matrix
(1) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(2) If A has a row or column of 0 's then $\operatorname{det}(A)=0$
(3) If A has two proportional rows, then $\operatorname{det}(A)=0$
(4) If A has two proportional columns, then $\operatorname{det}(A)=0$
$\operatorname{det}(c A)=c^{n}-\operatorname{det}(A)$.
CA con he thought of multiplying
each row by c. Ard by previous tum each time re multiply u row, we obtein an extra -

Big Theorem

Theorem
An $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.
Proof: A is invertible if ana only if
A has $\mathbb{R R E F}$ of I_{n}.
which means that then is a sequence of nor operctions that reduce A to I_{n}
each row operation will either mu Itiply by a non zee constant (with - being om option l or nut change the aet erminont. $\frac{T}{T}$
A is invertible $\Longleftrightarrow \operatorname{let}(A)=\square^{\top} \operatorname{det}\left(I_{n}\right)=C \neq 0$

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(0) The columns of A are linearly independent

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(0) The columns of A are linearly independent
(3) $\operatorname{det}(A) \neq 0$

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(6) A is invertible
(0) The columns of A are linearly independent
(3) $\operatorname{det}(A) \neq 0$
A is invertible
$\Leftrightarrow \quad \operatorname{det}(A) \neq 0$
$\Leftrightarrow \operatorname{alt}\left(A^{\top}\right) \neq 0$
\Leftrightarrow columns af A^{\top}
ar lin, ind
\Leftrightarrow row of A are lin ind.
(3) The row vectors of A are linearly independent

Properties of Determinants 2
Theorem
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$, provided A^{-1} exists. \qquad

1) If A is not insatible ther $A B$ is also not montk and $\operatorname{det}(A B)=0>\operatorname{det} A \operatorname{det} B$
of A is inrertible, the write it as a product of elementars matrice and the result follons by haw elementars mor opertions afteet 3 .
2) $A A^{-1}=I_{n} \Rightarrow 1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{let}(A) \operatorname{dt}\left(I_{1}\right)$

$$
\operatorname{dnt}(A) \cdot \operatorname{det}\left(A^{-1}\right)=1 \quad \Rightarrow \quad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{lot}(A)}
$$

More Work Space

