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Topics for Today

@ Determinants

@ Calculating Determinants: Cofactor Expansion and Row Reduction
Formula

© Determinants and Invertibility
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Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose,
trace.
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Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose,
trace.

One of the most important function on matrices is called the determinant.
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Another Function on Matrices: the Determinant

We have already seen a few functions of matrices: inverse, transpose,
trace.

One of the most important function on matrices is called the determinant.

Definition

The determinent of a square matrix, denoted det(A) or |A|, is the sum of
all signed elementary products of A.
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Elementary Products

Definition

An elementary product of a square matrix is a product of it's entries with
one entry coming from each row and no two in the same column.
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Elementary Products

Definition
An elementary product of a square matrix is a product of it's entries with
one entry coming from each row and no two in the same column.
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Parity of Permutations

We note that we can rearrange all of our elementary products to be of the
form

91,4192, " " 9nja

where the {j1,j2,...,jn} is a permutation of {1,2,..., n}.
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Parity of Permutations

We note that we can rearrange all of our elementary products to be of the
form

91,4192, " " 9nja

where the {j1,j2,...,jn} is a permutation of {1,2,..., n}.

Definition
We say a permutation {ji,...,jn} is even if it requires an even number of
swaps to return to {1,2,...,n}.
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Parity of Permutations

We note that we can rearrange all of our elementary products to be of the
form

91,4192, " " 9nja

where the {j1,j2,...,jn} is a permutation of {1,2,..., n}.

Definition

We say a permutation {ji,...,jn} is even if it requires an even number of
swaps to return to {1,2,...,n}. We say a permutation {ji,...,jn} is odd
if it requires an odd number of swaps to return to {1,2,...,n}. We often

call this the parity of the permutation.
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Parity of Permutations

We note that we can rearrange all of our elementary products to be of the
form

91,4192, " " 9nja

where the {j1,j2,...,jn} is a permutation of {1,2,..., n}.

Definition

We say a permutation {ji,...,jn} is even if it requires an even number of
swaps to return to {1,2,...,n}. We say a permutation {ji,...,jn} is odd
if it requires an odd number of swaps to return to {1,2,...,n}. We often

call this the parity of the permutation.
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Sign of an Elementary Product

Definition

Given an elementary product
91,192, " " dnyj

we define the sign of the product to be “+" if {j1,...,/n} is even and
“—"if {J1,...,Jn} is odd.
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Sign of an Elementary Product

Definition

Given an elementary product

91,1922 " " 4nji

we define the sign of the product to be “+" if {j1,...,/n} is even and
“—"if {J1,...,Jn} is odd.

The sign of aj 2a21a34a43 is "+ since {2,1,4,3} is an even permutation.

The sign of a1 532333 4a4 2351 is “—" since {5,3,4,2,1} is an odd
permutation.

Patrick Meisner (KTH) Lecture 8 6/23



Determinant of 2 x 2 and 3 x 3 Matrices

Definition

The determinent of a square matrix, A, denoted det(A) or |A| is the sum
of all signed elementary products.
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Determinant of 2 x 2 and 3 x 3 Matrices

Definition

The determinent of a square matrix, A, denoted det(A) or |A| is the sum
of all signed elementary products.
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Method for Computing 2 x 2 Determinants
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Compute the determinant of A =
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Method for Computing 3 x 3 Determinants
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Exercise

Compute the determinant of

3 0 2
A=11 -1 3
2 2 0
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Computing Determinants: Cofactors and Minors

Definition

For a square matrix A, we define the (i, j)-th minor, denote M; ; to be the
determinant of the matrix obtained by removing the i-th row and j-th
column. The (i, /)-th cofactor, denoted C;; is then (—1)"*/M;
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Computing Determinant: Cofactor Expansion

Let A be a n X n square matrix with entries a ;.
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Computing Determinant: Cofactor Expansion

Theorem
Let A be a n X n square matrix with entries a; ;. Then for any i

det(A) = a;1Ci1 + ai2Cio+ -+ ajnCin
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Computing Determinant: Cofactor Expansion

Let A be a n X n square matrix with entries a; ;. Then for any i

det(A) =aj1 C,-71 + ai2 Ci,z qeoe e ai,nC‘

= (—1)i+lai,1l\ﬁl.,'_,'1 -+ (—1)i+2a,',2M,',2 S (—1)"+”a,~’,,M,~’,,
Moreover, for any j
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det(A):alJC1J+agJC2J+---+anJC,,J
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Computing Determinant: Cofactor Expansion

Let A be a n X n square matrix with entries a; ;. Then for any i

det(A) =aj1 C,-71 + ai2 C,'72 qeoe e ai,nC‘

= (=) a1 M1+ (=1) 28 oMo + -+ (=1)"a; M
Moreover, for any j

det(A):alJC1J+agJC2J+---+anJC,,J

= (~1)"May My + (-1 Pap iMoj + -+ (=1)"H ap My
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Computing Determinant: Cofactor Expansion

Let A be a n X n square matrix with entries a; ;. Then for any i
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Generic Example: 3 x 3
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Specific Example: 4 x 4

Calculate the determinant of
+ -3

(
- [0

Yoo=  Lrerge
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Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a
matrix with all zeroes below the diagonal.
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Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a
matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the
diagonal entries.
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Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a
matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the
diagonal entries.

Note that diagonal matrices are also upper triangular and so

d 0 ... 0
0 do
det(D) =det | | . = didy - - dp
0 0 ... dp
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Upper Triangular matrices

The above example was an instance of an upper triangular matrix: a
matrix with all zeroes below the diagonal.

Finding the determinant of these are easy: you just multiply all the
diagonal entries.

Note that diagonal matrices are also upper triangular and so

d 0 ... 0
0 o

det(D) = det o = didz- - dp
0 0 ... dp

Further, the identity matrix /,, is the diagonal matrix with
di =dp =---=d, =1 and so we may conclude det(/,) = 1.
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we
can reduce the matrix to REF and easily compute the determinant.
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we
can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an n X n matrix and let B be a matrix obtained from A by one
row operation.
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we
can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an n X n matrix and let B be a matrix obtained from A by one
row operation. Then

@ If the row operation is interchanging two rows then
det(B) = — det(A).
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we
can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an n X n matrix and let B be a matrix obtained from A by one
row operation. Then

@ If the row operation is interchanging two rows then
det(B) = — det(A).

@ If the row operation is multiplying a row by ¢ € R, then
det(B) = cdet(A)
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Row Operations and Determinants

We see that if a matrix is in Row Echelon Form, then it will necessarily be
an upper triangular matrix and thus the determinant is easily calculated.

Therefore, if we know how row operations affect the determinant then we
can reduce the matrix to REF and easily compute the determinant.

Theorem

Let A be an n X n matrix and let B be a matrix obtained from A by one
row operation. Then

@ If the row operation is interchanging two rows then
det(B) = — det(A).

@ If the row operation is multiplying a row by c € R, then
det(B) = cdet(A)

© If the row operation is adding one row to another then
det(B) = det(A).
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Exercise

Row reduce A to REF and then calculate the determinate
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More Work Space
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Properties of Determinants

Let A be an n X n matrix 0o 4’T = kb (B = %f@)

@ det(AT) = det(A)
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Properties of Determinants

Let A be an n x n matrix
Q det(AT) = det(A)
@ If A has a row or column of Q’s then det(A) =0
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Properties of Determinants

Let A be an n X n matrix

@ det(AT) = det(A)
@ If A has a row or column of Q’s then det(A) =0

@ If A has two proportional rows, then det(A) =0
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Properties of Determinants

Let A be an n x n matrix
@ det(AT) = det(A)
@ If A has a row or column of Q’s then det(A) =0
@ If A has two proportional rows, then det(A) =0

Q If A has two proportional columns, then det(A) =0
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Properties of Determinants

Theorem

@ If A has a row or column of Q’s then det(A) =0
@ If A has two proportional rows, then det(A) =0

Q If A has two proportional columns, then det(A) =0
@ det(cA) = cdet(A).
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Big Theorem
An n x n matrix A is invertible if and only if det(A) # 0. l
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Major Theorem

Q AX=b has a unique solution for every b

@ AX =0 has a unique solution
@ rk(A)=n

© The RREF of Ais I,

© A is invertible

Let A be an n x n matrix. The the following are equivalent
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Major Theorem

Let A be an n x n matrix. The the following are equivalent
Q AX=b has a unique solution for every b
@ AX =0 has a unique solution
@ rk(A)=n
© The RREF of A is I,
© A is invertible

@ The columns of A are linearly independent
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Major Theorem

Let A be an n x n matrix. The the following are equivalent
Q AX=b has a unique solution for every b
@ AX =0 has a unique solution
@ rk(A)=n
© The RREF of A is I,
© A is invertible
@ The columns of A are linearly independent

@ det(A) £0
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Major Theorem

Let A be an n x n matrix. The the following are equivalent

Q@ AX=b has a unique solution for every b b i bl
& ak Yy 7o

e ([N %o

& columy - AT
(& 1(',4, incdo

= owg o A
LIy §

@ AX =0 has a unique solution

@ rk(A)=n

© The RREF of A is I,

© A is invertible

@ The columns of A are linearly independent
@ det(A) #0

© The row vectors of A are linearly independent
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Properties of Determinants 2

Q det(AB) = det(A) det(B)
@ det(A™") = ggizy, provided A" exists. ——
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More Work Space
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