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Topics for Today

1 Matrices as Vector Space: Addition and Scalar Multiplication

2 Multiplying Matrices by Vectors

3 Multiplying Two Matrices
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Row and Column Vectors

Recall we say that

A =

a1,1 a1,2 . . . a1,n
...

...
. . .

...
am,1 am,2 . . . am,n


is an m × n matrix.

We will denote
~ri :=

(
ai ,1 ai ,2 . . . ai ,n

)
as the i-th row vector of A and consider it as a “1× n matrix”. Further,
we will denote

~cj :=


a1,j
a2,j

...
am,j


as the j-th column vector of A and consider it as a “m × 1 matrix”.
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Shorthand Notations

We can then created three differing shorthand notations for the matrix A:

A = (ai ,j)i=1,...,m
j=1,...,n

=


~r1
~r2
...
~rm

 =
(
~c1 ~c2 . . . ~cn

)

To save space, and if it can be inferred from context, we will write just

(ai ,j)i ,j or (ai ,j) instead of (ai ,j)i=1,...,m
j=1,...,n
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Matrices as Vector Spaces

Theorem

The set of m × n matrices form a vector space

with

1 The zero matrix being 0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


2 Addition being done “coordinate-wise”

(ai ,j)i ,j + (bi ,j)i ,j = (ai ,j + bi ,j)i ,j

3 Scalar multiplication also being done “coordinate-wise”

c(ai ,j)i ,j = (cai ,j)i ,j
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Examples

A =

(
1 3 7
2 5 11

)
B =

(
5 −2 0
−9 2 2

)

A + B =

(
6 1 7
−7 7 13

)
2A =

(
2 6 14
4 10 22

)

A− 2B =

(
−9 7 7
20 1 7

)
1

2
B =

(
2.5 −1 0
−4.5 1 1

)

CAUTION!!!!!!

You can only add matrices of the same dimension! That is, if

C =

1 3 3
2 5 −2
7 11 21


then it does not even make sense to consider things like A+C or 2C + 5B!
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Multiplication of Matrices

We have defined addition of matrices “coordinate-wise”, so it is tempting
to define multiplication of matrices the same way.

That is, if A and B are
m × n matrices, then it is tempting to define

A ∗ B = (ai ,j)i ,j ∗ (bi ,j)i ,j = (ai ,jbi ,j)i ,j

However, we must remember that we are interested in matrices in relation
to solving systems of linear equations.

As it turns out defining the multiplication of matrices in this way does not
help us understand this.
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Multiplying 1× 1 Matrices

A 1× 1 matrix would be something of the form

A =
(
a
)
, a ∈ R

That is, a 1× 1 matrix is, essentially, just an element of R, a scalar.

Therefore, there is no real way to multiply them except for the naive way.

That is, if A =
(
a
)

and X =
(
x
)

it must be that

A ∗ X =
(
ax
)
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Multiplying 1× 1 Matrices 2

However, since X =
(
x
)

is essentially just an element of R = R1, we can
view it as vector: X = ~x =

[
x
]
.

Thus we can define how to multiply a 1× 1 matrix A =
(
a
)

with a vector
in R1, ~x =

[
x
]
:

A ∗ ~x =
[
ax
]

We want to relate this back to solving linear equations. So if ~b =
[
b
]
, is a

vector in R1, then we see that ~x =
[
x
]

solves to the 1× 2 augmented

matrix (A|~b) = (a|b) if and only if ax = b.

Conclusion

If A is a 1× 1 matrix and ~b is a vector in R1, then a vector ~x in R1 solves
the augmented matrix (A|~b) if and only

A ∗ ~x = ~b

Patrick Meisner (KTH) Lecture 5 9 / 28



Multiplying 1× 1 Matrices 2

However, since X =
(
x
)

is essentially just an element of R = R1, we can
view it as vector: X = ~x =

[
x
]
.

Thus we can define how to multiply a 1× 1 matrix A =
(
a
)

with a vector
in R1, ~x =

[
x
]
:

A ∗ ~x =
[
ax
]

We want to relate this back to solving linear equations. So if ~b =
[
b
]
, is a

vector in R1, then we see that ~x =
[
x
]

solves to the 1× 2 augmented

matrix (A|~b) = (a|b) if and only if ax = b.

Conclusion

If A is a 1× 1 matrix and ~b is a vector in R1, then a vector ~x in R1 solves
the augmented matrix (A|~b) if and only

A ∗ ~x = ~b

Patrick Meisner (KTH) Lecture 5 9 / 28



Multiplying 1× 1 Matrices 2

However, since X =
(
x
)

is essentially just an element of R = R1, we can
view it as vector: X = ~x =

[
x
]
.

Thus we can define how to multiply a 1× 1 matrix A =
(
a
)

with a vector
in R1, ~x =

[
x
]
:

A ∗ ~x =
[
ax
]

We want to relate this back to solving linear equations.

So if ~b =
[
b
]
, is a

vector in R1, then we see that ~x =
[
x
]

solves to the 1× 2 augmented

matrix (A|~b) = (a|b) if and only if ax = b.

Conclusion

If A is a 1× 1 matrix and ~b is a vector in R1, then a vector ~x in R1 solves
the augmented matrix (A|~b) if and only

A ∗ ~x = ~b

Patrick Meisner (KTH) Lecture 5 9 / 28



Multiplying 1× 1 Matrices 2

However, since X =
(
x
)

is essentially just an element of R = R1, we can
view it as vector: X = ~x =

[
x
]
.

Thus we can define how to multiply a 1× 1 matrix A =
(
a
)

with a vector
in R1, ~x =

[
x
]
:

A ∗ ~x =
[
ax
]

We want to relate this back to solving linear equations. So if ~b =
[
b
]
, is a

vector in R1, then we see that ~x =
[
x
]

solves to the 1× 2 augmented

matrix (A|~b) = (a|b) if and only if ax = b.

Conclusion

If A is a 1× 1 matrix and ~b is a vector in R1, then a vector ~x in R1 solves
the augmented matrix (A|~b) if and only

A ∗ ~x = ~b

Patrick Meisner (KTH) Lecture 5 9 / 28



Multiplying 1× 1 Matrices 2

However, since X =
(
x
)

is essentially just an element of R = R1, we can
view it as vector: X = ~x =

[
x
]
.

Thus we can define how to multiply a 1× 1 matrix A =
(
a
)

with a vector
in R1, ~x =

[
x
]
:

A ∗ ~x =
[
ax
]

We want to relate this back to solving linear equations. So if ~b =
[
b
]
, is a

vector in R1, then we see that ~x =
[
x
]

solves to the 1× 2 augmented

matrix (A|~b) = (a|b) if and only if ax = b.

Conclusion

If A is a 1× 1 matrix and ~b is a vector in R1, then a vector ~x in R1 solves
the augmented matrix (A|~b) if and only

A ∗ ~x = ~b

Patrick Meisner (KTH) Lecture 5 9 / 28



Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.

Want

For any matrix A and any vector ~x , we want to define A ∗ ~x such that ~x
solves the augmented matrix (A|~b) if and only if A ∗ ~x = ~b.

CAUTION!!!!!!

If A is an m × n matrix then it corresponds to a system of linear equations
in n variables. Thus, in order for ~x to solve the augmented matrix (A|~b), ~x
must be in Rn!

So, we would NOT be able to define the multiplication of a 3× 2 matrix
by a vector in R5 in this way.
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Multiplying Matrices by Vectors 2

So, given an augmented matrix

(A|~b) :=


a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2

...
...

. . .
...

...
am,1 am,2 . . . am,n bm



we recall that a vector ~x =

x1...
xn

 in Rn solves the augmented matrix if

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...

am,1x1 + am,2x2 + . . . am,nxn = bm
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Multiplying Matrices by Vectors Definition

Definition

Given an m × n matrix and a vector in Rn

A :=


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 ~x =


x1
x2
...
xn


we define A ∗ ~x to be

A ∗ ~x =


a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
am,1x1 + am,2x2 + . . . am,nxn



Patrick Meisner (KTH) Lecture 5 12 / 28



Multiplying Matrices by Vectors Definition

Definition

Given an m × n matrix and a vector in Rn

A :=


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 ~x =


x1
x2
...
xn


we define A ∗ ~x to be

A ∗ ~x =


a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
am,1x1 + am,2x2 + . . . am,nxn


Patrick Meisner (KTH) Lecture 5 12 / 28



Multiplying Matrices by Vectors Theorem

Theorem

Given an m × n matrix A and a vector ~b in Rm, then a vector ~x in Rn

solves the augmented matrix (A|b) if and only if

A ∗ ~x = ~b

Proof.

By construction.

Notation: from now on we will just write A~x instead of A ∗ ~x to indicate
the multiplication of a matrix by a vector in this way.
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Notation: from now on we will just write A~x instead of A ∗ ~x to indicate
the multiplication of a matrix by a vector in this way.
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Exercise

Exercise

Calculate A~x in the following and interpret the result in terms of a solution
to a system of linear equations

1 A =

[
1 2
3 4

]
, ~x =

[
2
−1

]

2 A =

[
1 0 1
0 1 0

]
, ~x =

−1
0
1


3 A =

 2 3
−2 1
5 10

, ~x =

2
3
4
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Extra Work Space
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Remarks

1 If A is an m × n matrix then A~x only makes sense if ~x is in Rn.

2 If A is an m × n matrix and ~x is in Rn then A~x is a vector in Rm.

3 We may have A~x = ~0 even if A is not the zero matrix and ~x 6= ~0.

Theorem

~x is a homogeneous solution to A if and only if A~x = ~0.
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Multiplying Matrices by Vectors: Row Vectors Dot Product

Theorem

Recall that if A = (ai ,j) is an m × n matrix then the row vectors,
~ri =

(
ai ,1 ai ,2 . . . ai ,n

)
, are vectors in Rn.

Then for any vectors ~x in
Rn, we get

A~x =


~r1 · ~x
~r2 · ~x
...

~rm · ~x
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Linearity Properties

Theorem (Linearity Properties)

If A is an m × n matrix, ~x and ~y vectors in Rn and c a scalar then

1 A(c~x) = cA~x

2 A(~x + ~y) = A~x + A~y
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Homogeneous Solutions are a Vector Space: Reproof

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector
space. Equivalently, the following holds

1 ~0 is a homogeneous solution

2 If ~x is a homogeneous solution and c ∈ R then c~x is also a
homogeneous solution

3 If ~x and ~y are homogeneous solutions than so is ~x + ~y
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Multiplication of Matrices

Suppose A is an m × n matrix and B is a n × ` matrix.

We can write

B =
(
~c1 ~c2 . . . ~c`

)
where the ~ci are the column vectors of B and so are vectors in Rn. Hence,
we know how to multiply each ~ci by A. We now can think of multiplying
B by A by distributing it:

Definition

Let A be an m × n matrix and B be a n × ` matrix with column vectors
~c1, ~c2, . . . , ~c`, then we define

AB = A
(
~c1 ~c2 . . . ~c`

)
=
(
A~c1 A~c2 . . . A~c`

)

Patrick Meisner (KTH) Lecture 5 20 / 28



Multiplication of Matrices

Suppose A is an m × n matrix and B is a n × ` matrix. We can write

B =
(
~c1 ~c2 . . . ~c`

)
where the ~ci are the column vectors of B and so are vectors in Rn.

Hence,
we know how to multiply each ~ci by A. We now can think of multiplying
B by A by distributing it:

Definition

Let A be an m × n matrix and B be a n × ` matrix with column vectors
~c1, ~c2, . . . , ~c`, then we define

AB = A
(
~c1 ~c2 . . . ~c`

)
=
(
A~c1 A~c2 . . . A~c`

)

Patrick Meisner (KTH) Lecture 5 20 / 28



Multiplication of Matrices

Suppose A is an m × n matrix and B is a n × ` matrix. We can write

B =
(
~c1 ~c2 . . . ~c`

)
where the ~ci are the column vectors of B and so are vectors in Rn. Hence,
we know how to multiply each ~ci by A.

We now can think of multiplying
B by A by distributing it:

Definition

Let A be an m × n matrix and B be a n × ` matrix with column vectors
~c1, ~c2, . . . , ~c`, then we define

AB = A
(
~c1 ~c2 . . . ~c`

)
=
(
A~c1 A~c2 . . . A~c`

)

Patrick Meisner (KTH) Lecture 5 20 / 28



Multiplication of Matrices

Suppose A is an m × n matrix and B is a n × ` matrix. We can write

B =
(
~c1 ~c2 . . . ~c`

)
where the ~ci are the column vectors of B and so are vectors in Rn. Hence,
we know how to multiply each ~ci by A. We now can think of multiplying
B by A by distributing it:

Definition

Let A be an m × n matrix and B be a n × ` matrix with column vectors
~c1, ~c2, . . . , ~c`, then we define

AB = A
(
~c1 ~c2 . . . ~c`

)
=
(
A~c1 A~c2 . . . A~c`

)

Patrick Meisner (KTH) Lecture 5 20 / 28



Remarks on Multiplication of Matrices

AB = A
(
~c1 ~c2 . . . ~c`

)
=
(
A~c1 A~c2 . . . A~c`

)

1 If A is a m × n matrix and B is a k × ` matrix then the ~ci are in Rk

and hence AB only makes sense if n = k (i.e. the number of columns
of A must be equal to the number of rows of B).

2 It is very possible that AB makes sense while BA does not even make
sense!

3 Since ~ci are vectors in Rn, the A~ci are vectors in Rm and so AB is an
m × ` matrix.
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Exercise

Exercise

A =

2 1
1 0
0 0

 B =

(
1 0 1
−1 2 1

)
C =

(
2 1

)
Computer AB,AC ,BA,BC ,CA and CB or state that they don’t make
sense
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Extra Work Space
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Multiplying Matrices: Row Vector, Column Vector Dot
Product

Theorem

Let A be an m × n matrix with row vectors ~r1, ~r2, . . . , ~rm and B be an
n × ` matrix with column vectors ~c1, ~c2, . . . , ~c`. Then

AB =


~r1
~r2
...
~rm

(~c1 ~c2 . . . ~c`
)

= (~ri · ~cj)i=1,...,m
j=1,...,`

.

That is, the (i , j)-th entry of the m × ` matrix AB is ~ri · ~cj .

Proof.

Follows from the similar theorem about matrices multiplied by vectors and
the definition of matrix multiplication.
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Diagonal Matrices

Definition

We call an n × n matrix D = (di ,j) diagonal if di ,j = 0 whenever i 6= j :

D =


d1,1 0 . . . 0

0 d2,2 . . . 0
...

...
. . .

...
0 0 . . . dn,n
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Multiplying a Matrix by a Diagonal Matrix on the Right

Let

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


and A is an m × n matrix with entries ai ,j ,

then

AD =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n



d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



=


d1a1,1 d2a1,2 . . . dna1,n
d1a2,1 d2a2,2 . . . dna2,n

...
...

. . .
...

d1am,1 d2am,2 . . . dnam,n
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Multiplying a Matrix by a Diagonal Matrix on the Left

Let

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dm


and A is an n ×m matrix with entries ai ,j ,

then

DA =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
...

. . .
...

an,1 an,2 . . . an,m



=


d1a1,1 d1a1,2 . . . d1a1,m
d2a2,1 d2a2,2 . . . d2a2,m

...
...

. . .
...

dnan,1 dnan,2 . . . dnan,m
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Multiplying Two Diagonal Matrices

Let

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 and E =


e1 0 . . . 0
0 e2 . . . 0
...

...
. . .

...
0 0 . . . en



then

DE =


d1e1 0 . . . 0

0 d2e2 . . . 0
...

...
. . .

...
0 0 . . . dnen

 =


e1d1 0 . . . 0

0 e2d2 . . . 0
...

...
. . .

...
0 0 . . . endn

 = ED
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