SF 1684 Algebra and Geometry Lecture 4

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Solving Augmented Matrices
(2) Reduced Row Echcelon Form

Last Class

(1) Showed that solving a system of linear equations is equivalent to finding a solution to an augmented matrix.
(2) Showed that this can be done using equation operation on the equations or row operations on the rows of the augmented matrix.

Ideal Situation

Ideally, for a system of linear equations we would want to perform equation operations to reduce it

$$
\left(\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}=b_{2} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}=b_{m}
\end{array}\right) \Longrightarrow \begin{gathered}
x_{1}=c_{1} \\
x_{2}=c_{2} \\
\vdots \\
\\
\\
x_{n}=c_{n}
\end{gathered}
$$

Ideal Situation

Ideally, for a system of linear equations we would want to perform equation operations to reduce it

$$
\left(\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}=b_{2} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}=b_{m}
\end{array}\right) \Longrightarrow \begin{gathered}
x_{1}=c_{1} \\
x_{2}=c_{2} \\
\vdots \\
x_{n}=c_{n}
\end{gathered}
$$

For matrices this would correspond to performing row operations to reduce it

$$
\left(\begin{array}{cccc|c}
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n}
\end{array} b_{1}\right. \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n} & b_{m}
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc|c}
1 & 0 & \ldots & 0 & c_{1} \\
0 & 1 & \ldots & 0 & c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & c_{n}
\end{array}\right)
$$

Non-Ideal Situation

However, the ideal situation does not always happen...
Exercise
Find all solutions to the system of linear equations

$$
x+4 y+z=2 \quad \text { is a line. }
$$

$$
2 x+3 z=2
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 4 & 1 & 2 \\
2 & 0 & - & 2
\end{array}\right] R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 4 & 1 & 2 \\
0 & -8 & 1 & -2
\end{array}\right]-\frac{1}{8} R_{2}} \\
& {\left[\begin{array}{ccc|c}
1 & \frac{4}{2} & \frac{1}{-1} & \frac{2}{\frac{1}{4}} \\
0 & \frac{1}{4} & -\frac{1}{8} & R_{1}-4 R_{2}
\end{array} \begin{array}{ccc|c}
1 & 0 & 3 / 2 & 1 \\
0 & 1 & -\frac{1}{8} & \frac{1}{4}
\end{array}\right]}
\end{aligned}
$$

More Work Space

Ex: $z=8: \quad x+12=1 \rightarrow x=-4 \quad$ Solution: (x, y, z)

$$
\begin{equation*}
y-1=4 \quad y=5 \tag{-11,5,8}
\end{equation*}
$$

Let $z=t$, a parameter, $\quad x+\frac{2}{2} t=1 \rightarrow \begin{aligned} & x=1-\frac{3}{2} t\end{aligned}$

$$
y-\frac{1}{8} z=4 \rightarrow y=4+\frac{1}{8} t
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1-\frac{1}{z} t \\
4+\frac{1}{8} t \\
0+z
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
0
\end{array}\right]+\left[\begin{array}{c}
-r_{2} \\
1 / 8 \\
1
\end{array}\right] t, \begin{gathered}
z=t,
\end{gathered} \quad \text { for } \quad a_{1 /} \quad t \in \mathbb{R}
$$ parametric equation of aline.

Geometric Reasoning for Our Solution

We know that both formulas $x+4 y+z=2$ and $2 x+3 z=2$ describe a plane in \mathbb{R}^{3}.

$$
\begin{aligned}
& \text { Point-nopmal formulas } \\
& \overrightarrow{n \cdot \dot{x}}=\overrightarrow{\vec{b}} \cdot \overrightarrow{\mathrm{~b}} \\
& \text { planes. }
\end{aligned}
$$

Geometric Reasoning for Our Solution

We know that both formulas $x+4 y+z=2$ and $2 x+3 z=2$ describe a plane in \mathbb{R}^{3}. Hence, finding the set of points (x, y, z) that satisfy both equations is the same as finding the set of points that are on both planes,

Geometric Reasoning for Our Solution

We know that both formulas $x+4 y+z=2$ and $2 x+3 z=2$ describe a plane in \mathbb{R}^{3}. Hence, finding the set of points (x, y, z) that satisfy both equations is the same as finding the set of points that are on both planes, or finding the intersection of the planes.

Geometric Reasoning for Our Solution

We know that both formulas $x+4 y+z=2$ and $2 x+3 z=2$ describe a plane in \mathbb{R}^{3}. Hence, finding the set of points (x, y, z) that satisfy both equations is the same as finding the set of points that are on both planes, or finding the intersection of the planes. Therefore, it makes geometric sense that our answer was a line in \mathbb{R}^{3}.

Reducing Matrices

We note that in the previous example, we reduced the augmented matrix as much as possible

$$
\left(\begin{array}{lll|l}
1 & 4 & 1 & 2 \\
2 & 0 & 3 & 2
\end{array}\right) \Longrightarrow \xlongequal{\left(\begin{array}{ccc|c}
1 & 0 & \frac{3}{2} & 1 \\
0 & 1 & -\frac{1}{8} & \frac{1}{4}
\end{array}\right)}
$$

Reducing Matrices

We note that in the previous example, we reduced the augmented matrix as much as possible

$$
\left(\begin{array}{lll|l}
1 & 4 & 1 & 2 \\
2 & 0 & 3 & 2
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & \frac{3}{2} & 1 \\
0 & 1 & -\frac{1}{8} & \frac{1}{4}
\end{array}\right)
$$

This is an example of reduced row echelon form.

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:
(1) If a row does not consist entirely of zeros, then the first nonzero number is a 1 , called a leading 1

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 2 & 5 \\
1 & 6 & \cdots \\
1 & 3 & 5 & 5 & ? &
\end{array}\right]
$$

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:
(1) If a row does not consist entirely of zeros, then the first nonzero number is a 1 , called a leading 1
(2) If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & \cdots & \\
0 & 0 & 1 & \cdots \\
0 & \cdots & 0 \\
0 & \cdots & \cdots & 0 \\
00 & \cdots & 0
\end{array}\right]
$$

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:
(1) If a row does not consist entirely of zeros, then the first nonzero number is a 1 , called a leading 1
(2) If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix
(3) In any two successive rows that do not consist entirely of zeroes, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:
(1) If a row does not consist entirely of zeros, then the first nonzero number is a 1 , called a leading 1
(2) If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix
(3) In any two successive rows that do not consist entirely of zeroes, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.
(1) Each column that contains a leading 1 has zero everywhere else.

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:
(1) If a row does not consist entirely of zeros, then the first nonzero number is a 1 , called a leading 1
(2) If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix
(3) In any two successive rows that do not consist entirely of zeroes, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.
(9) Each column that contains a leading 1 has zero everywhere else. If the first three properties hold, we say the matrix is in Row Echelon Form (REF).

Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the following holds:
(1) If a row does not consist entirely of zeros, then the first nonzero number is a 1 , called a leading 1
(2) If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix
(3) In any two successive rows that do not consist entirely of zeroes, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.
(9) Each column that contains a leading 1 has zero everywhere else.

If the first three properties hold, we say the matrix is in Row Echelon Form (REF).

The process of transforming a matrix into RREF is often called "reducing".

Examples of RREF and REF

Reduced Row Echelon Form:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & -1
\end{array}\right) \quad\left[\left(\begin{array}{ccccc}
0 & \frac{1}{0} & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\right] \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}
$$

Examples of RREF and REF

Reduced Row Echelon Form:

$$
\left[\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 1 & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right.
$$

Row Echelon Form:

Examples of RREF and REF

Reduced Row Echelon Form:

$$
\underline{\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 1 & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}
$$

Row Echelon Form:

$$
\left(\begin{array}{cccc}
1 & 4 & -3 & 7 \\
0 & 1 & 6 & 2 \\
0 & 0 & 1 & 5
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 1 & 2 & 6 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Neither form:

Examples of RREF and REF

Reduced Row Echelon Form:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 1 & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Row Echelon Form:

$$
\left(\begin{array}{cccc}
1 & 4 & -3 & 7 \\
0 & 1 & 6 & 2 \\
0 & 0 & 1 & 5
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 1 & 2 & 6 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Neither form:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 4 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Definitions and Terminology

Definition

(1) The positions that have a leading 1 in REF or RREF are sometimes referred to as pivot positions and their columns as pivot columns.

Definitions and Terminology

Definition
(1) The positions that have a leading 1 in REF or RREF are sometimes referred to as pivot positions and their columns as pivot columns.
(2) The rank of a matrix A is the number of leading 1 s when it is reduced to REF or RREF. We denote this as $\operatorname{rk}(A)$.

Definitions and Terminology

Definition

(1) The positions that have a leading 1 in REF or RREF are sometimes referred to as pivot positions and their columns as pivot columns.
(2) The rank of a matrix A is the number of leading 1 s when it is reduced to REF or RREF. We denote this as $\operatorname{rk}(A)$.
(3) The parameter t we saw in the example is referred to as a free variable. They correspond to columns that aren't pivot columns. Note, it is possible to have multiple free variables!

Definitions and Terminology

Definition

(1) The positions that have a leading 1 in REF or RREF are sometimes referred to as pivot positions and their columns as pivot columns.
(2) The rank of a matrix A is the number of leading 1 s when it is reduced to REF or RREF. We denote this as $\operatorname{rk}(A)$.
(3) The parameter t we saw in the example is referred to as a free variable. They correspond to columns that aren't pivot columns. Note, it is possible to have multiple free variables!

Facts

Fact
(1) $\#$ columns $=\#$ variables $=r k(A)+\#$ free variables

Pk $=H$ of pivot columns
free varibles $=$ Hat non $p i$ vat column

Facts

Fact
(1) $\#$ columns $=\#$ variables $=r k(A)+\#$ free variables
(2) If $r k(A)=\#$ variables, then there is a unique solution to A honogenerns
if $\operatorname{ma}(A)=\nexists$ variables then me haw

$$
\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
j & 0 & & 1 & \vdots \\
0 & \cdots & 0 & \\
0 & \cdots & 0 & 0
\end{array}\right] \rightarrow \begin{aligned}
& \\
& x_{1}=b_{1} \\
& x_{2}=b_{2}
\end{aligned} \cdots
$$

Facts

Fact
(1) $\#$ columns $=\#$ variables $=r k(A)+\#$ free variables
(2) If $r k(A)=\#$ variables, then there is a unique hangeferuito to A
(3) If $r k(A)<\#$ variables, then there are infinitely many homogeneous solutions to A.

If $\operatorname{rk}(A)<H$ variables then we have a free variable and so
the solctions will be somtting like $\in U$ tan be any real number.

Solving Augmented Matrices in REF and RREF
Exercise
Find all the solutions to following augmented matrices

$$
\begin{aligned}
& (A \mid \vec{a})=\left(\begin{array}{ccccc|c}
x_{1} & x_{2} & x_{2} & x_{4} & x_{5} & \vec{a} \\
1 & 0 & 2 & 0 & 2 & 3 \\
0 & 1 & 4 & 0 & -5 & 7 \\
0 & 0 & 0 & 1 & 0 & -3
\end{array}\right) \\
& \text { prut columbus } \underset{\substack{\text { free } \\
\text { variates }}}{ }(C \mid \vec{c})=\left(\begin{array}{ll|l}
x & y & 1 \\
1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right) \rightarrow \begin{array}{c}
x \\
0 x+0 y=1
\end{array}
\end{aligned}
$$

Extra Work Space

$$
\begin{aligned}
& \begin{array}{l}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{1} \\
x_{y} \\
x_{j}
\end{array}\right]=\left[\begin{array}{c}
3-2 t-2 s \\
2-4 t+S S \\
t \\
-3 \\
s
\end{array}\right]=\left[\begin{array}{c}
3 \\
7 \\
0 \\
-3 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 \\
-4 \\
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
5 \\
0 \\
0 \\
1
\end{array}\right] 5
\end{array} \\
& {\left[\begin{array}{ccc|c}
0 & 2 \sigma & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 \\
x_{1} & x_{2} & x_{1} x_{4}
\end{array}\right] \Longleftrightarrow \begin{array}{c}
x_{2}+2 x_{3}+6 x_{4}=0 \\
x_{1}-x_{4}=0 \\
0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4}=0
\end{array}} \\
& \text { 介个 } \uparrow 入 \\
& x_{1}=5 \\
& \Rightarrow \quad x_{2}=-2 x_{3}-6 t \\
& -x_{3}=t \\
& x_{4}=t \\
& x_{1}=S \\
& \rightarrow \quad x_{2}=-2 t-6 t=-8 t \\
& x_{j}=t \\
& x_{4}=t \\
& \text { Plane in } \mathbb{R}^{\varphi} \text { ! }
\end{aligned}
$$

Consistent

Definition

We say an augmented matrix is consistent if there exists a solution and inconsistent otherwise.

Consistent

Definition

We say an augmented matrix is consistent if there exists a solution and inconsistent otherwise. Ex: $(A \mid \vec{a})$ was consistent but $(C \mid \vec{c})$ was inconsistent

Consistent

Definition

We say an augmented matrix is consistent if there exists a solution and inconsistent otherwise. Ex: $(A \mid \vec{a})$ was consistent but $(C \mid \vec{c})$ was inconsistent

Theorem

If an augmented matrix $(A \mid \vec{b})$ has a row of the form

$$
\left(\begin{array}{llll|l}
0 & 0 & \ldots & 0 & c
\end{array}\right)
$$

when brought to RREF,

Consistent

Definition

We say an augmented matrix is consistent if there exists a solution and inconsistent otherwise. Ex: $(A \mid \vec{a})$ was consistent but $(C \mid \vec{c})$ was inconsistent

Theorem

If an augmented matrix $(A \mid \vec{b})$ has a row of the form

$$
\left(\begin{array}{llll|l}
0 & 0 & \ldots & 0 & c
\end{array}\right)
$$

when brought to $R R E F$, then $(A \mid \vec{b})$ is consistent if $c=0$

Consistent

Definition

We say an augmented matrix is consistent if there exists a solution and inconsistent otherwise. Ex: $(A \mid \vec{a})$ was consistent but $(C \mid \vec{c})$ was inconsistent

Theorem

If an augmented matrix $(A \mid \vec{b})$ has a row of the form

$$
\left(\begin{array}{llll|l}
0 & 0 & \ldots & 0 & c
\end{array}\right) \rightarrow O x_{1}+\mathrm{OX}_{\mathrm{a}}+-=C
$$

when brought to RREF, then $(A \mid \vec{b})$ is consistent if $c=0$ and inconsistent if $c \neq 0$.

Exercise

Exercise

For which values of a is the following system consistent:

$$
\begin{gathered}
x_{1}+x_{2}+q \nmid \beta \ell+4 x_{4}=1 \\
2 x_{1}+4 x_{2}+x_{4}=1 \\
x_{1}-x_{2}+11 x_{4}=a
\end{gathered}
$$

$$
\left[\begin{array}{cccc|c}
1 & 1 & 0 & 4 & 1 \\
24 & 0 & 1 & 1 \\
1 & -1 & 0 & 11 & a
\end{array}\right] \begin{array}{ccc|c}
R_{2}-R_{1} \\
R_{3} R_{1}
\end{array}\left[\begin{array}{cccc}
1 & 1 & 0 & 4 \\
0 & 2 & 0 & -7 \\
0 & -2 & 0 & 7 \\
-1 \\
a-1
\end{array}\right] R_{0}+R_{2}
$$

$$
\left[\begin{array}{cccc|c}
1 & 1 & 0 & 4 & 1 \\
0 & 2 & 0 & -7 & -1 \\
0 & 0 & 0 & 0 & a-2
\end{array}\right] \quad \begin{array}{ccc}
\text { cosusitant } & \text { andy it } a-2=0 \\
\text { only } & \text { if } a=2
\end{array}
$$

Extra Work Space

Row Equivalence

Definition

Two matrices are row equivalent if there is a sequence of row operations that transforms one into the other.

Row Equivalence

Definition

Two matrices are row equivalent if there is a sequence of row operations that transforms one into the other.

Theorem

For any matrix A, there exists a unique matrix S that is in RREF that is row equivalent to A.

Proof by Gauss-Jordan Elimination

(1) Locate the leftmost column that does not consist entirely of zeros

Proof by Gauss-Jordan Elimination

(1) Locate the leftmost column that does not consist entirely of zeros
(2) Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1

Proof by Gauss-Jordan Elimination

(1) Locate the leftmost column that does not consist entirely of zeros
(2) Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1
(3) If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by $\frac{1}{a}$ in order to introduce a leading 1

Proof by Gauss-Jordan Elimination

(1) Locate the leftmost column that does not consist entirely of zeros
(2) Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1
(3) If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by $\frac{1}{a}$ in order to introduce a leading 1
(1) Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.

Proof by Gauss-Jordan Elimination

(1) Locate the leftmost column that does not consist entirely of zeros
(2) Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1
(3) If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by $\frac{1}{a}$ in order to introduce a leading 1
(9) Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.
(5) Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix the remains. (Will create REF)

Proof by Gauss-Jordan Elimination

(1) Locate the leftmost column that does not consist entirely of zeros
(2) Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1
(3) If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by $\frac{1}{a}$ in order to introduce a leading 1
(9) Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.
(5) Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix the remains. (Will create REF)
(0) Beginning with the last nonzero row and working upward, add suitable multiples of each row to the rows above to introduce zeros above the leading 1 s . (Will create RREF)

Exercise

Exercise

Use Gauss-Jordan elimination to put the matrix in RREF

$$
\left(\begin{array}{cccccc}
0 & 0 & -2 & 0 & 7 & 12 \\
2 & 4 & -10 & 6 & 12 & 28 \\
2 & 4 & -5 & 6 & -5 & -1
\end{array}\right)
$$

and use it to find all homogeneous solutions.
See page 52 of textbook.

