SF 1684 Algebra and Geometry Lecture 3

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Systems of Linear Equations
(2) Matrices: Definition and Row Operations

Linear Equations

Definition

An equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ where $a_{i} \in \mathbb{R}, b \in \mathbb{R}$ and the x_{i} are variables is called a linear equation.

Linear Equations

Definition

An equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ where $a_{i} \in \mathbb{R}, b \in \mathbb{R}$ and the x_{i} are variables is called a linear equation.

If $b=0$, the equation is then called homogeneous.

Linear Equations

Definition

An equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ where $a_{i} \in \mathbb{R}, b \in \mathbb{R}$ and the x_{i} are variables is called a linear equation.

If $b=0$, the equation is then called homogeneous. If $b \neq 0$, it is called non-homogeneous.

Linear Equations

Definition

An equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ where $a_{i} \in \mathbb{R}, b \in \mathbb{R}$ and the x_{i} are variables is called a linear equation.

If $b=0$, the equation is then called homogeneous. If $b \neq 0$, it is called non-homogeneous.

Example:

$$
n=2 \quad a_{1}=2 \quad x_{1}=x \quad b=3
$$

$$
2 x+y=3 \text { is a linear equation } \quad q_{L}=1 \quad x_{L}=y
$$

Linear Equations

Definition

An equation of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ where $a_{i} \in \mathbb{R}, b \in \mathbb{R}$ and the x_{i} are variables is called a linear equation.

If $b=0$, the equation is then called homogeneous. If $b \neq 0$, it is called non-homogeneous.

Example:

$$
2 x+y=3 \text { is a linear equation }
$$

$x^{2}+3 y=1$ is not a linear equation
power of twro makes it not linear

System of Linear Equations

Definition

Having multiple linear equations

$$
q_{i, j} \in \mathbb{R}
$$

$$
m \text {-equation }\left\{\begin{array}{c}
a_{1,1} x_{1}+\underline{a_{1,2}} x_{2}+\cdots+a_{\underline{1, n}} x_{n}=\underline{b_{1}} \\
a_{2,1} x_{1}+\underline{a_{2,2}} x_{2}+\cdots+\underline{a_{2, n}} x_{n}=\underline{b_{2}} \\
\vdots
\end{array} \quad b_{j} \in \mathbb{R}\right.
$$

$$
a_{\underline{m, 1}} x_{1}+a_{\underline{m, 2}} x_{2}+\cdots+\underline{a_{m, n}} x_{n}=b_{m}
$$

is called an $m \times n$ system of linear equations.

System of Linear Equations

Definition

Having multiple linear equations

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}=b_{1}=0 \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}=b_{2}=0 \Rightarrow \text { homogeneans } \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}=b_{m} \rightleftharpoons 0
\end{gathered}
$$

is called an $m \times n$ system of linear equations. If all the $b_{j}=0$, then the system is called homogeneous.

System of Linear Equations

Definition

Having multiple linear equations

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}=b_{2} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}=b_{m}
\end{gathered}
$$

is called an $m \times n$ system of linear equations. If all the $b_{j}=0$, then the system is called homogeneous. If any of $b_{j} \neq 0$, the system is called non-homogeneous.

System of Linear Equations

Definition

Having multiple linear equations

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}=b_{2} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}=b_{m}
\end{gathered}
$$

is called an $m \times n$ system of linear equations. If all the $b_{j}=0$, then the system is called homogeneous. If any of $b_{j} \neq 0$, the system is called non-homogeneous.

Determining the solutions (if any) of systems of linear equations is the main motivation behind this whole course.

Example of Problems Using a System of Linear Equations

Example of Problems Using a System of Linear Equations

Question

Give two lines, L_{1} and L_{2}, is there a point that lies on both lines?

Example of Problems Using a System of Linear Equations

Question

Give two lines, L_{1} and L_{2}, is there a point that lies on both lines? If so, what is it?

Example of Problems Using a System of Linear Equations

Question

Give two lines, L_{1} and L_{2}, is there a point that lies on both lines? If so, what is it?

Example: If line L_{1} is given by the equation

$$
L_{1}: 2 x+3 y=1
$$

Example of Problems Using a System of Linear Equations

Question

Give two lines, L_{1} and L_{2}, is there a point that lies on both lines? If so, what is it?

Example: If line L_{1} is given by the equation

$$
L_{1}: 2 x+3 y=1
$$

and L_{2} is given by the equation

$$
L_{2}: 4 x+6 y=1
$$

Example of Problems Using a System of Linear Equations

Question

Give two lines, L_{1} and L_{2}, is there a point that lies on both lines? If so, what is it?

Example: If line L_{1} is given by the equation

$$
L_{1}: 2 x+3 y=1
$$

and L_{2} is given by the equation

$$
L_{2}: 4 x+6 y=1
$$

then determining the solutions (if any) to the 2×2 system of linear equations:

$$
2 \text { cquatiq- }\left\{\begin{array}{l}
2 x+3 y=1 \\
4 x+6 y=1
\end{array}\right.
$$

would answer our question.

Example of Problems Using a System of Linear Equations

Example of Problems Using a System of Linear Equations

Question

Given a set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$, can a new vector \vec{w} be written as a linear combination of the \vec{v}_{i} ?

Example of Problems Using a System of Linear Equations

Question

Given a set of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \vec{v}_{m}$, can a new vector \vec{w} be written as a linear combination of the \vec{v}_{i} ? If so, what linear combination(s)?

Example of Problems Using a System of Linear Equations

Question

Given a set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$, can a new vector \vec{w} be written as a linear combination of the \vec{v}_{i} ? If so, what linear combination(s)?

Example: Let

$$
\overrightarrow{v_{1}}=(1,2,3), \overrightarrow{v_{2}}=(1,0,0), \overrightarrow{v_{3}}=(0,1,1), \vec{w}=(1,5,3)
$$

Example of Problems Using a System of Linear Equations

Question

Given a set of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \vec{v}_{m}$, can a new vector \vec{w} be written as a linear combination of the \vec{v}_{i} ? If so, what linear combination(s)?

Example: Let

$$
\overrightarrow{v_{1}}=(1,2,3), \overrightarrow{v_{2}}=(1,0,0), \overrightarrow{v_{3}}=(0,1,1), \vec{w}=(1,5,3)
$$

The question is now, does there exist an A, B, C such that

$$
(1,5,3)=A(1,2,3)+B(1,0,0)+C(0,1,1)
$$

Example of Problems Using a System of Linear Equations

Question

Given a set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$, can a new vector \vec{w} be written as a linear combination of the \vec{v}_{i} ? If so, what linear combination(s)?

Example: Let

$$
\overrightarrow{v_{1}}=(1,2,3), \overrightarrow{v_{2}}=(1,0,0), \overrightarrow{v_{3}}=(0,1,1), \vec{w}=(1,5,3)
$$

The question is now, does there exist an A, B, C such that

$$
(1,5,3)=A(1,2,3)+B(1,0,0)+C(0,1,1)=(A+B, 2 A+C, 3 A+C)
$$

Example of Problems Using a System of Linear Equations

Question

Given a set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$, can a new vector \vec{w} be written as a linear combination of the \vec{v}_{i} ? If so, what linear combination(s)?

Example: Let

$$
\overrightarrow{v_{1}}=(1,2,3), \overrightarrow{v_{2}}=(1,0,0), \overrightarrow{v_{3}}=(0,1,1), \vec{w}=(1,5,3)
$$

The question is now, does there exist an A, B, C such that

$$
(1,5,3)=A(1,2,3)+B(1,0,0)+C(0,1,1)=(A+B, 2 A+C, 3 A+C)
$$

Thus solving the 3×3 system of linear equations

$$
3 \text { equation }\left\{\begin{array}{llll}
A+B=1 & \text { a no } & C \\
2 A+C=5 \\
3 A+C=3 & \text { a no } B \\
\text { no } & B
\end{array}\right.
$$

would answer our question.

Matrix Representation of a Linear System

Given a system of linear equations

$$
\begin{aligned}
& a_{1,1}\left(\text { ® }_{1}\right)+a_{1,2} \times_{3}^{2} \pm \cdots \pm a_{1, n \times 2}=x_{1} \\
& a_{2,1} \not \pm a_{2,2} \text { (}+\cdots \pm a_{2, n \times n)}=b_{2} \\
& a_{m, 1 \times 2} \pm a_{m, 2} \otimes_{2} \pm \ldots+a_{m, n} \bigotimes_{D}=b_{m}
\end{aligned}
$$

the only relevant information are the coefficients $a_{1,1}, a_{1,2}, \ldots$ and the b_{1}, b_{2}, \ldots.

Matrix Representation of a Linear System

Given a system of linear equations

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}=b_{2} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots a_{m, n} x_{n}=b_{m}
\end{gathered}
$$

the only relevant information are the coefficients $a_{1,1}, a_{1,2}, \ldots$ and the b_{1}, b_{2}, \ldots. Thus we condense this information into the matrix of coefficients and the \vec{b}-vector

$$
\left.\underset{\sim}{\mathcal{V}}:=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right)\right] \text { and } \vec{b}:=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Augmented Matrix of a Linear System

We also care about how the matrix of coefficients behave with the \vec{b}-vector and so we also consider the augmented matrix:

$$
(A \mid \vec{b}):=\left(\begin{array}{cccc|c}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} & b_{1} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n} & b_{m}
\end{array}\right)
$$

Example

Consider the system of linear equations:

$$
\left.\begin{array}{c}
-2 x+2 y+3 z=1 \\
3 x+y+5 z=7 \\
x+y+z=1
\end{array}\right\}
$$

Then the matrix of coefficients, \vec{b}-vector and augmented matrix, respectively, would be:

$$
A=\left[\begin{array}{ccc}
-2 & 2 & 3 \\
3 & 1 & 5 \\
1 & 1 & 1
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
1 \\
? \\
1
\end{array}\right] \quad(A \mid \vec{b})=\left[\begin{array}{ccc|c}
-2 & 2 & 3 & 1 \\
3 & 1 & 5 & ? \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Exercise
Exercise
Given the augmented matrices

$$
(A \mid \vec{b})=\left(\begin{array}{ccc|c}
x & y & z & z \\
2 & 5 & 5 & 1 \\
3 & 9 & 6 & 3 \\
1 & 4 & 5 & 7
\end{array}\right) \quad(B \mid \vec{b})=\left(\begin{array}{ccc|c}
x_{1} & x_{2} & x_{1} & \\
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right)
$$

write down the corresponding system of linear equations.

$$
\begin{array}{r}
2 x+5 y+5 z=1 \\
3 x+9 y+6 z=3 \\
x+4 y+5 z=7
\end{array} \quad\left\{\begin{array}{l}
1 x_{1}+0 x_{2}+0 x_{3}=3 \Rightarrow x_{1}=3 \\
0 x_{y}+1 x_{1}+0 x_{3}=4 \Rightarrow x_{2}=4 \\
0 x_{1}+0 x_{2}+1 x_{1}=5 \Rightarrow x_{3}=5
\end{array}\right]
$$

Terminology

$$
A:=\overbrace{\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)}^{n c o l v m n s}\} \text { mows. }
$$

A is called an $m \times n$ matrix.

Terminology

$$
A:=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right)
$$

A is called an $m \times n$ matrix.
$m=$ number of rows (equations)

Terminology

$$
A:=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right)
$$

A is called an $m \times n$ matrix.
$m=$ number of rows (equations)
$n=$ number of columns (variable) -

Terminology

$$
\begin{gathered}
\text { j pqsition } \\
A:=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & \overrightarrow{a_{2,2}} & \ldots & a_{2, n} \\
\vdots & \vdots & a_{i j} \cdot & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right) \text { ipositiav }
\end{gathered}
$$

A is called an $m \times n$ matrix.
$m=$ number of rows (equations)
$n=$ number of columns (variable)
$a_{i, j}$ is the number in the $i^{t h}$ row and $j^{t h}$ column.

Terminology

$$
A:=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right) \quad \text { } \quad 3 \nless 3
$$

A is called an $m \times n$ matrix. $m=$ number of rows (equations) $n=$ number of columns (variable) $a_{i, j}$ is the number in the $i^{t h}$ row and $j^{t h}$ column.

Terminology 2

Given an augmented matrix

$$
(A \mid \vec{b}):=\left(\begin{array}{cccc|c}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} & b_{1} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} & b_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n} & b_{m}
\end{array}\right)
$$

we will say a vector

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

solves the augmented matrix if it is a solution to the corresponding system of linear equations.

Example

We say the vector $\vec{x}=(x, y, z)=\left(-\frac{33}{4}, \frac{9}{4}, \frac{5}{4}\right)$ solves the augmented matrix

$$
(A \mid \vec{b})=\left(\begin{array}{lll|l}
2 & 5 & 5 & 1 \\
3 & 9 & 6 & 3 \\
1 & 4 & 5 & 7
\end{array}\right)
$$

since

$$
\begin{gathered}
=2 x+5 y+5 z=2\left(-\frac{33}{4}\right)+5\left(\frac{9}{4}\right)+5\left(\frac{5}{4}\right)=1 \\
=3 x+9 y+6 z=3\left(-\frac{33}{4}\right)+9\left(\frac{9}{4}\right)+3\left(\frac{5}{4}\right)=3 \\
x+4 y+5 z=\left(-\frac{33}{4}\right)+4\left(\frac{9}{4}\right)+5\left(\frac{5}{4}\right)=7
\end{gathered}
$$

Main Motivation

As we stated before one of the main motivations behind this whole course is to find all the solutions (if any) of a given system of linear equations.

Main Motivation

As we stated before one of the main motivations behind this whole course is to find all the solutions (if any) of a given system of linear equations. We can now rephrase this in terms of matrices:

Main Motivation

As we stated before one of the main motivations behind this whole course is to find all the solutions (if any) of a given system of linear equations.
We can now rephrase this in terms of matrices:

Question

Given an augmented matrix $(A \mid \vec{b})$ determine all vectors \vec{x} that solve it or show that there are no solutions.

Main Motivation

As we stated before one of the main motivations behind this whole course is to find all the solutions (if any) of a given system of linear equations.
We can now rephrase this in terms of matrices:

Question

Given an augmented matrix $(A \mid \vec{b})$ determine all vectors \vec{x} that solve it or show that there are no solutions.

Exercise

Find the solutions to the augmented matrix

$$
\left(\begin{array}{ccc|c}
-1 & 2 & 0 & 2 \\
2 & 1 & 2 & 21 \\
2 & -3 & 2 & 1
\end{array}\right)
$$

Exercise Solution

$$
2 x+2(-x)=2 x-2 x=0 x=0
$$

$$
\rightarrow \quad x=8, \quad y=5, z=0
$$

$$
\ddot{x}=\left[\begin{array}{l}
8 \\
5 \\
0
\end{array}\right] \quad \text { solves the }
$$ matrix.

Equation Operations

We see that to solve the system of linear equations, we performed certain operations to transform

$$
\begin{gathered}
-x+2 y=2 \\
2 x+y+2 z=21 \\
2 x-3 y+2 z=1
\end{gathered} \quad \Longrightarrow \cdots \Longrightarrow \quad \begin{aligned}
& x=8 \\
& y=5 \\
& z=0
\end{aligned}
$$

Equation Operations

We see that to solve the system of linear equations, we performed certain operations to transform

$$
\begin{aligned}
& -x+2 y=2 \\
& 2 x+y+2 z=21 \\
& 2 x-3 y+2 z=1
\end{aligned} \Longrightarrow \cdots \Longrightarrow \quad \begin{aligned}
& x=8 \\
& y=5 \\
& z=0
\end{aligned}
$$

We performed three different types of operations on the equations:

Equation Operations

We see that to solve the system of linear equations, we performed certain operations to transform

$$
\begin{aligned}
& -x+2 y=2 \\
& 2 x+y+2 z=21 \\
& 2 x-3 y+2 z=1
\end{aligned} \Longrightarrow \cdots \Longrightarrow \begin{aligned}
& x=8 \\
& y=5 \\
& z=0
\end{aligned}
$$

We performed three different types of operations on the equations:
(1) Added a multiple of one equation to the other

Equation Operations

We see that to solve the system of linear equations, we performed certain operations to transform

$$
\begin{aligned}
& -x+2 y=2 \\
& 2 x+y+2 z=21 \\
& 2 x-3 y+2 z=1
\end{aligned} \Longrightarrow \cdots \Longrightarrow \quad \begin{aligned}
& x=8 \\
& y=5 \\
& z=0
\end{aligned}
$$

We performed three different types of operations on the equations:
(1) Added a multiple of one equation to the other
(2) Interchanged two equations

Equation Operations

We see that to solve the system of linear equations, we performed certain operations to transform

$$
\begin{gathered}
-x+2 y=2 \\
2 x+y+2 z=21 \\
2 x-3 y+2 z=1
\end{gathered} \quad \Longrightarrow \cdots \Longrightarrow \quad \begin{aligned}
& x=8 \\
& y=5 \\
& z=0
\end{aligned}
$$

We performed three different types of operations on the equations:
(1) Added a multiple of one equation to the other
(2) Interchanged two equations =
(3) Multiplied an equation by a non-zero constant -

Translate to Matrices
How do these equation operations translate to matrices:
(1) Add a multiple of one equation to the other

$$
\begin{aligned}
& {\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
E_{1} \\
E_{1} \\
\vdots \\
E_{n}
\end{array} \quad \rightarrow \frac{E_{1}+2 G_{1}}{\vdots} \rightarrow\left[\begin{array}{c}
R_{1} \\
R_{2}+2 R_{1} \\
\vdots \\
R_{n}
\end{array}\right]\right.} \\
& \text { (3) Interchange two equations } \\
& \left.\left[\begin{array}{c}
R_{1} \\
\vdots \\
R_{n}
\end{array}\right] \rightarrow \begin{array}{ccc}
E_{1} & C E_{1} \\
\vdots & & \rightarrow \\
E_{n}
\end{array} \quad \begin{array}{ll}
E_{n}
\end{array}\right]\left[\begin{array}{c}
C_{2} R_{1} \\
R_{2} \\
R_{n}
\end{array}\right]
\end{aligned}
$$

Row Operations

Definition
 Row Operations

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

CAUTION!!!!!!

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

CAUTION!!!!!

These are row operations.

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

CAUTION!!!!!

These are row operations. We can NOT do the same the things to the columns!

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

CAUTION!!!!!

These are row operations. We can NOT do the same the things to the columns!

Can NOT add a multiple of one column to the other!

Row Operations

Definition

Row Operations
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

CAUTION!!!!!

These are row operations. We can NOT do the same the things to the columns!

Can NOT add a multiple of one column to the other! Can NOT interchange two columns!

Row Operations

Definition

Row Operations

(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

CAUTION!!!!!

These are row operations. We can NOT do the same the things to the columns!

Can NOT add a multiple of one column to the other! Can NOT interchange two columns!
Can NOT multiply a column by a non-zero constant!

Exercise

Exercise

Use matrices and row operations to find the solution to the system of linear equations

$$
\begin{gathered}
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{gathered} \quad \Longrightarrow\left[\begin{array}{l}
x=c \\
y=b \\
z=c
\end{array}\right]
$$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right] \underset{\substack{\text { paw } \\
\text { operations }}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c
\end{array}\right]
$$

Extra Work Space

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
-1 & 1_{1}^{\prime} & 2 \\
24 & 9 \\
24 & -3 & 1 \\
36 & -5 & 0
\end{array}\right] \begin{array}{ccc|c}
R_{-}-2 R_{1} \\
R_{3}-3 R_{1}
\end{array}\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
0 & 3 & -11 & -27
\end{array}\right] \frac{\frac{1}{2} E_{2}}{}\left[\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -3.5 & -9.5 \\
0 & 3 & -4 & -27
\end{array}\right]} \\
& R_{1}-R_{2}\left[\begin{array}{ccc|c}
1 & 0 & 5.5 & 18.5 \\
0 & 1 & -3.5 & -9.5 \\
0 & 0 & 0.5 & 1.5
\end{array}\right] 2 R_{3}\left[\begin{array}{ccc|c}
1 & 0 & 5.5 & 18.5 \\
0 & 1 & -3.5 & -9.5 \\
0 & 0 & 1 & 3
\end{array}\right] \\
& \begin{array}{l}
R_{1}-S . S R_{3} \\
R_{1}+3 . S R_{3}
\end{array}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow \begin{array}{c}
\\
\\
0+0 y+0 z=2 \\
0 x+1 y+0 z=1 \\
0 x+0 y+(z=3
\end{array} \\
& 112 \\
& \begin{array}{ll}
021 \\
0 & 1
\end{array} \\
& \rightarrow x=2, y=1, z=3
\end{aligned}
$$

Homogeneous Solutions

Definition

Given a matrix A, we say that \vec{x} is a homogeneous solution of A if it solves the augmented matrix $(A \mid \overrightarrow{0})$.

Homogeneous Solutions

Definition

Given a matrix A, we say that \vec{x} is a homogeneous solution of A if it solves the augmented matrix $(A \mid \overrightarrow{0})$.

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector space.

Homogeneous Solutions

Definition

Given a matrix A, we say that \vec{x} is a homogeneous solution of A if it solves the augmented matrix $(A \mid \overrightarrow{0})$.

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector space. Equivalently, the following holds

Homogeneous Solutions

Definition

Given a matrix A, we say that \vec{x} is a homogeneous solution of A if it solves the augmented matrix $(A \mid \overrightarrow{0})$.

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector space. Equivalently, the following holds
(1) $\overrightarrow{0}$ is a homogeneous solution

Homogeneous Solutions

Definition

Given a matrix A, we say that \vec{x} is a homogeneous solution of A if it solves the augmented matrix $(A \mid \overrightarrow{0})$.

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector space. Equivalently, the following holds
(1) $\overrightarrow{0}$ is a homogeneous solution
(2) If \vec{x} is a homogeneous solution and $c \in \mathbb{R}$ then $c \vec{x}$ is also a homogeneous solution

Homogeneous Solutions

Definition

Given a matrix A, we say that \vec{x} is a homogeneous solution of A if it solves the augmented matrix $(A \mid \overrightarrow{0})$.

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector space. Equivalently, the following holds
(1) $\overrightarrow{0}$ is a homogeneous solution, $\overrightarrow{0}$ is called the trivial
(2) If \vec{x} is a homogeneous solution and $c \in \hat{R}^{\text {homgen }}$ thens) \vec{x} is is alion a homogeneous solution
(3) If \vec{x} and \vec{y} are homogeneous solutions than so is $\vec{x}+\vec{y}$

Proof

1) \vec{O} is a momagens solution

$$
-a_{11} x_{1}+\cdots+\xi_{n} x_{1}=0
$$

茄:
Ye, \vec{O} is a solotion

$$
a_{m 1} x_{1} \vdash-+a_{m n} x_{n}=0
$$

2) \bar{x} is a homogerivs then $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ and salve) **), $C \in \mathbb{R}$
$c \vec{x}=\left[x_{1}\right]$

$$
\begin{aligned}
& \left.C \vec{x}=\left[\begin{array}{c}
c x_{1} \\
\vdots \\
x_{1}
\end{array}\right], \quad \begin{array}{rl}
a_{11}\left(c x_{1}\right)+\cdots+a_{1 n}\left(c x_{1}\right) & =c\left(a_{11} x_{1}+\cdots+q_{1 n} x_{1}\right) \\
\Rightarrow \quad c \vec{x} \text { is a homngenenus } & =c-0=0
\end{array}\right) . \quad \text { olction }
\end{aligned}
$$

3) \vec{x}, \bar{y} an homogeneous soltions. $\quad \dot{x}=\left[\begin{array}{c}x_{1} \\ x_{1}\end{array}\right], y=\left[\begin{array}{l}x_{1} \\ \vdots \\ y_{n}\end{array}\right]$

$$
\begin{aligned}
& \hat{x}+\vec{y}=\left[\begin{array}{l}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{1}
\end{array}\right], \begin{array}{c}
a_{11}\left(x_{1}+y_{1}\right)+\cdots+a_{1 n}\left(x_{n}+y_{n}\right) \\
-\underbrace{a_{11} x_{1}+\ldots a_{1 n} x_{n}}_{=c}+\underbrace{a_{11} y_{1}+-a_{1 n} y_{n}}_{=c}=0+c=0
\end{array}=0 \text { homogenean sqution. }
\end{aligned}
$$

Theorem
Given an augmented matrix $(A \mid \vec{b})$ and any vector \vec{x}_{0} that solves the augmented matrix, then all vectors that solve the matrix will be of the form

$$
\vec{x}+\vec{x}_{0}
$$

where \vec{x} is a homogeneous solution of A.
Proof Suppose $(A \mid \vec{b}) \longrightarrow$

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{3}=b_{1} \\
\vdots \\
a_{n} x_{1} \ldots a_{m n} x_{n}=b_{n}
\end{gathered}
$$

\vec{y} is a solution to $(\mathbb{R} \mid \vec{b})$. Want to show that

$$
\left[\begin{array}{l}
\ddot{y} \\
\vdots \\
\dot{x}
\end{array}\right] \quad \begin{aligned}
& \vec{y}=\vec{x}+\vec{x}_{0} \text { where } \vec{x} \text { is a homage emus. } \\
& \text { Enough to show } \vec{x}=\vec{y}-\vec{x}_{0} \text { is a homage }
\end{aligned}
$$

Extra Work Space

$$
\Rightarrow \quad \bar{y}-\vec{x}_{0}=\bar{x} \text { is a homogeneous } \Rightarrow \vec{y}=\vec{x}+\vec{x}_{0}
$$

$$
\begin{aligned}
& \text { So if } \vec{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
x_{0}
\end{array}\right] \text { \& } \vec{x}_{0}=\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{1}
\end{array}\right] \text { is a gif } \begin{array}{l}
\text { solution. }
\end{array} \\
& =a_{11} y_{1}+\cdots+a_{1 n} y_{n}=b_{1} \quad-a_{11} z_{1}+\cdots+a_{n} z_{n}=b_{1} \\
& a_{m 1} y_{1} \ldots a_{m n} y_{n}=b_{n} \quad a_{m n} z_{1}+\ldots a_{m}, z_{m_{n}}=b_{m} \\
& \vec{y}-\vec{x}_{2}=\left[\begin{array}{c}
y_{1}-z_{1} \\
\vdots \\
y_{n}-z_{n}
\end{array}\right] \\
& a_{11}\left(y_{1}-z_{1}\right)+\cdots+a_{n n}\left(y_{n}-z_{n}\right)=a_{11} y_{1}+\cdots a_{n n} y_{n}-\left(a_{1}, z_{1}+\cdots a_{n}, z_{n}\right) \\
& =b_{1}-b_{1}=0
\end{aligned}
$$

0,1 , or ∞ Solution

Theorem

Any augmented matrix $(A \mid \vec{b})$ either has
(1) No solutions
(2) Exactly 1 solution
(3) Infinitely many solutions

Extra Work Space

