SF 1684 Algebra and Geometry Lecture 2

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Lines in \mathbb{R}^{n}
(2) Planes in \mathbb{R}^{3}
(3) Distance between point and line

Lines in \mathbb{R}^{2}

Recall that a line in \mathbb{R}^{2} can be given by the set of solution to the formula

$$
L: A x+B y+C=0
$$

for some values of A, B, C.

Lines in \mathbb{R}^{2}

Recall that a line in \mathbb{R}^{2} can be given by the set of solution to the formula

$$
L: A x+B y+C=0
$$

$$
\begin{aligned}
\rightarrow B y & =-A x-c \\
y & =\frac{-4}{13} x-\frac{c}{13}
\end{aligned}
$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$
L: y=m x+b
$$

Lines in \mathbb{R}^{2}

Recall that a line in \mathbb{R}^{2} can be given by the set of solution to the formula

$$
L: A x+B y+C=0
$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$
L: y=m x+b
$$

Now, if we were to write the points on the line as vectors then we would get

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
m x+b
\end{array}\right]
$$

Lines in \mathbb{R}^{2}

Recall that a line in \mathbb{R}^{2} can be given by the set of solution to the formula

$$
L: A x+B y+C=0
$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$
L: y=m x+b
$$

Now, if we were to write the points on the line as vectors then we would get
scalar

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
m x+b
\end{array}\right]=\left[\begin{array}{c}
1 \\
m
\end{array}\right] \stackrel{\stackrel{\rightharpoonup}{x}}{x}+\left[\begin{array}{l}
0 \\
b
\end{array}\right] \Longleftarrow \text { lineor conalination }
$$

Lines in \mathbb{R}^{2}

Recall that a line in \mathbb{R}^{2} can be given by the set of solution to the formula

$$
L: A x+B y+C=0
$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$
L: y=m x+b
$$

Now, if we were to write the points on the line as vectors then we would get

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
m x+b
\end{array}\right]=\left[\begin{array}{c}
1 \\
m
\end{array}\right] x+\left[\begin{array}{l}
0 \\
b
\end{array}\right]
$$

That is, we can write every point as a linear combination of the two vectors $\left[\begin{array}{l}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$.

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors.

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

then I can write the equation of a line in parametric form by:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\vec{v} t+\vec{x}_{0}
$$

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

then I can write the equation of a line in parametric form by:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\vec{v} t+\vec{x}_{0}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] t+\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

then I can write the equation of a line in parametric form by:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\vec{v} t+\vec{x}_{0}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] t+\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
v_{1} t+x_{0} \\
v_{2} t+y_{0}
\end{array}\right], t \in \mathbb{R}
$$

Parametric Lines in \mathbb{R}^{2}

The vectors $\left[\begin{array}{c}1 \\ m\end{array}\right]$ and $\left[\begin{array}{l}0 \\ b\end{array}\right]$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

then I can write the equation of a line in parametric form by:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\vec{v} t+\vec{x}_{0}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] t+\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
v_{1} t+x_{0} \\
v_{2} t+y_{0}
\end{array}\right], t \in \mathbb{R}
$$

\vec{v} is called a direction vector, t is the parameter and \vec{x}_{0} is any point on the line.

Parallel and Perpendicular Lines in \mathbb{R}^{2}

Definition

Two lines in \mathbb{R}^{2} are parallel if and only if their direction vectors are parallel.

Definition

Two lines in \mathbb{R}^{2} are orthogonal if and only if their direction vectors are orthogonal.

$$
\hat{\vec{u}} \Rightarrow \vec{u} \quad \Rightarrow \vec{u} \cdot \vec{v}=0
$$

Parametric Lines in \mathbb{R}^{n}

Of course, there is nothing stopping us from taking vectors not in \mathbb{R}^{2}. Indeed, for any vectors $\vec{v}, \vec{x}_{0} \in \mathbb{R}^{n}$, we can write the equation of a line in \mathbb{R}^{n} in parametric form by:

$$
\begin{gathered}
\vec{x}=\vec{v} t+\vec{x}_{0} \longleftrightarrow \text { a point in } \mathbb{R}^{n} \\
\hat{L} \text { a real number }
\end{gathered}
$$

Parametric Lines in \mathbb{R}^{n}

Of course, there is nothing stopping us from taking vectors not in \mathbb{R}^{2}. Indeed, for any vectors $\vec{v}, \vec{x}_{0} \in \mathbb{R}^{n}$, we can write the equation of a line in \mathbb{R}^{n} in parametric form by:

$$
\vec{x}=\vec{v} t+\vec{x}_{0}
$$

Again, \vec{v} is a direction vector, t is the parameter and \vec{x}_{0} is any point on the line.

Parametric Lines in \mathbb{R}^{n}

Of course, there is nothing stopping us from taking vectors not in \mathbb{R}^{2}. Indeed, for any vectors $\vec{v}, \vec{x}_{0} \in \mathbb{R}^{n}$, we can write the equation of a line in \mathbb{R}^{n} in parametric form by:

$$
\vec{x}=\vec{v} t+\vec{x}_{0}
$$

Again, \vec{v} is a direction vector, t is the parameter and \vec{x}_{0} is any point on the line.

Example:

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=} \\
\underset{\uparrow}{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right]=}=\left[\begin{array}{c}
t+2 \\
2 t \\
-t+5
\end{array}\right] \\
\underset{\imath}{\stackrel{\rightharpoonup}{v}} \stackrel{\rightharpoonup}{0}
\end{gathered}
$$

Non-unique Direction Vector

Note that, by it's name, the direction vector \vec{v} only depends on the it's direction. So we may shrink or stretch it as we please and still get the same line.

Non-unique Direction Vector

Note that, by it's name, the direction vector \vec{v} only depends on the it's direction. So we may shrink or stretch it as we please and still get the same line. Indeed the lines

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right] \quad t=2:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \cdot 2+\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] t^{v^{\prime}}+\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right] \quad t^{\prime}=1 \quad\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \cdot 1+\left[\begin{array}{c}
2 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]
$$

contain the same points as for any value of t, we can just set $t^{\prime}=t / 2$.
V\&V' are parallel so hare the same direction.

Exercise

Exercise
Find the parametric equation for the line going through the points

$$
x_{0}\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \quad \text { and } \quad x_{1}\left[\begin{array}{c}
3 \\
0 \\
-5
\end{array}\right] \quad \begin{aligned}
\vec{v} & =\tilde{x}_{1}-\bar{x}_{0} \\
& =\left[\begin{array}{c}
2 \\
2 \\
-8
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{0}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \\
& \vec{v}=\vec{x}_{0}-\vec{x}_{1} \\
&=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]-\left[\begin{array}{c}
3 \\
0 \\
-5
\end{array}\right] \\
&=\left[\begin{array}{c}
-2 \\
-2 \\
8
\end{array}\right]
\end{aligned}
$$

Calculating Direction Vector

In fact, any line passing through the points \vec{x}_{1} and \vec{x}_{2} will have a direction vector

$$
\vec{v}=\vec{x}_{2}-\vec{x}_{1}
$$

$\begin{aligned} L: \vec{x} & =\vec{V} t+\vec{x}_{1} \\ \vec{x} & =\vec{V} t+\vec{x}_{2}\end{aligned}$

Normal Vector in \mathbb{R}^{2}

Definition

For any line L with a direction vector \vec{v}, we say a vector \vec{n} is normal to L if \vec{n} is orthogonal to \vec{v}.

Since a direction vector can always be given by $\vec{v}=\vec{x}_{2}-\vec{x}_{1}$ where \vec{x}_{1}, \vec{x}_{2} are two point on the line, then we see that

$$
\vec{n} \cdot \vec{v}=\vec{n} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)=0 .
$$

In fact, this is an equivalent way to define the equation of the line.

Point-Normal Formula in \mathbb{R}^{2}

Definition

Given a point on a line in $\mathbb{R}^{2}, \vec{x}_{0}$, and a normal vector \vec{n}, then the equation of the line can be given

$$
\vec{n} \cdot\left(\stackrel{\rightharpoonup}{x}-\vec{x}_{0}\right)=0
$$

Point-Normal Formula in \mathbb{R}^{2}

Definition

Given a point on a line in $\mathbb{R}^{2}, \vec{x}_{0}$, and a normal vector \vec{n}, then the equation of the line can be given

$$
\vec{n} \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

or

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0
$$

Point-Normal Formula in \mathbb{R}^{2}

Definition

Given a point on a line in $\mathbb{R}^{2}, \vec{x}_{0}$, and a normal vector \vec{n}, then the equation of the line can be given

$$
\vec{n} \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

or

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 \quad \text { or } \quad \vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{x}_{0}
$$

Point-Normal Formula in \mathbb{R}^{2}

Definition

Given a point on a line in $\mathbb{R}^{2}, \vec{x}_{0}$, and a normal vector \vec{n}, then the equation of the line can be given

$$
\vec{n} \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

or

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 \quad \text { or } \quad \vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{x}_{0}
$$

If we write $\vec{n}=\left(n_{1}, n_{2}\right)$ and $\vec{x}=(x, y)$ then we see that $\vec{n} \cdot \vec{x}=n_{1} x+n_{2} y$.

Point-Normal Formula in \mathbb{R}^{2}

Definition

Given a point on a line in $\mathbb{R}^{2}, \vec{x}_{0}$, and a normal vector \vec{n}, then the equation of the line can be given

$$
\vec{n} \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

or

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 \quad \text { or } \quad \vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{x}_{0}
$$

If we write $\vec{n}=\left(n_{1}, n_{2}\right)$ and $\vec{x}=(x, y)$ then we see that $\vec{n} \cdot \vec{x}=n_{1} x+n_{2} y$. Hence, if we are given the equation of a line in the form

Point-Normal Formula in \mathbb{R}^{2}

Definition

Given a point on a line in $\mathbb{R}^{2}, \vec{x}_{0}$, and a normal vector \vec{n}, then the equation of the line can be given

$$
\vec{n} \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

or

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 \quad \text { or } \quad \vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{x}_{0}
$$

If we write $\vec{n}=\left(n_{1}, n_{2}\right)$ and $\vec{x}=(x, y)$ then we see that $\vec{n} \cdot \vec{x}=n_{1} x+n_{2} y$. Hence, if we are given the equation of a line in the form

$$
A x+B y+C=0 \in \text { point normal formula }
$$

then we can read off a normal for the line as:

$$
\vec{n}=\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

Parallel and Perpendicular Lines in $\mathbb{R}^{2} 2$

Theorem

Two lines in \mathbb{R}^{2} are parallel if and only if their normals are parallel.

Theorem

Two lines in \mathbb{R}^{2} are orthogonal if and only if their normals are orthogonal.

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ?

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ? Given an $\vec{n}=(A, B, C)$, and an $\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, what are the solutions to

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 ?
$$

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ? Given an $\vec{n}=(A, B, C)$, and an $\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, what are the solutions to

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 ?
$$

Expanding out, we find

$$
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}
$$

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ? Given an $\vec{n}=(A, B, C)$, and an $\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, what are the solutions to

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 ?
$$

Expanding out, we find

$$
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=(A, B, C) \cdot(x, y, z)-(A, B, C) \cdot\left(x_{0}, y_{0}, z_{0}\right)
$$

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ? Given an $\vec{n}=(A, B, C)$, and an $\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, what are the solutions to

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 ?
$$

Expanding out, we find

$$
\begin{gathered}
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=(A, B, C) \cdot(x, y, z)-(A, B, C) \cdot\left(x_{0}, y_{0}, z_{0}\right) \\
=A x+B y+C z+\left(-A x_{0}-B y_{0}-C z_{0}\right)
\end{gathered}
$$

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ? Given an $\vec{n}=(A, B, C)$, and an $\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, what are the solutions to

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 ?
$$

Expanding out, we find

$$
\begin{gathered}
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=(A, B, C) \cdot(x, y, z)-(A, B, C) \cdot\left(x_{0}, y_{0}, z_{0}\right) \\
=A x+B y+C z+\left(-A x_{0}-B y_{0}-C z_{0}\right)
\end{gathered}
$$

That is, the point normal formula gives us an equation of the form

$$
\begin{array}{ll}
\mathbb{R}^{3}: & A x+B y+C z+D=0 \\
\mathbb{R}^{2}: & A x+B y+C=0
\end{array}
$$

Point-Normal Formula in \mathbb{R}^{3}

What happens if we try this construction in \mathbb{R}^{3} ? Given an $\vec{n}=(A, B, C)$, and an $\vec{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, what are the solutions to

$$
\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=0 ?
$$

Expanding out, we find

$$
\begin{gathered}
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=(A, B, C) \cdot(x, y, z)-(A, B, C) \cdot\left(x_{0}, y_{0}, z_{0}\right) \\
=A x+B y+C z+\left(-A x_{0}-B y_{0}-C z_{0}\right)
\end{gathered}
$$

That is, the point normal formula gives us an equation of the form

$$
A x+B y+C z+D=0
$$

What is the geometry of these solutions? Do they form a line?

Plane in \mathbb{R}^{3}
The solutions to the equation $F_{i} x z=z_{0} \Rightarrow A x+B y+C z_{0}+D=0$

$$
A x+B y+C z+D=0 \Rightarrow A x+13 y+C^{\prime}=0
$$

form a plane in \mathbb{R}^{3}. Moreover, the normal $\vec{n}=(A, B, C)$ is orthogonal to every vector in the plane.
$\mathbb{R}^{2}: A x+B y+C=0$

$$
\mathbb{R}^{3}: \quad A \times+B y+C z+D=0
$$

Parallel and Orthogonal Planes in \mathbb{R}^{3}

Definition

Two planes in \mathbb{R}^{3} are parallel if and only if their normals are parallel.
Two planes in \mathbb{R}^{3} are orthogonal if and only if their normals are orthogonal.

Point-Normal Formula in \mathbb{R}^{n}

In general, given an $\vec{n}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and an $\vec{x}_{0}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the point-normal formula gives

$$
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=A_{1} x_{1}+A_{2} x_{2}+\ldots A_{n} x_{n}+A_{n+1}
$$

Point-Normal Formula in \mathbb{R}^{n}

In general, given an $\vec{n}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and an $\vec{x}_{0}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the point-normal formula gives

$$
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=A_{1} x_{1}+A_{2} x_{2}+\ldots A_{n} x_{n}+A_{n+1}
$$

The set of solutions of this equation form what is called an ($n-1$)-dimensional hyperplane.
$R^{\prime} \rightarrow p t$

$\mathbb{R}^{4} \rightarrow$
something
that
$R^{2} \rightarrow$ line

"looks like"
R^{2}
$R^{\prime} \rightarrow$ plane $R^{\prime / 2}$

Point-Normal Formula in \mathbb{R}^{n}

In general, given an $\vec{n}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and an $\vec{x}_{0}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the point-normal formula gives

$$
0=\vec{n} \cdot \vec{x}-\vec{n} \cdot \vec{x}_{0}=A_{1} x_{1}+A_{2} x_{2}+\ldots A_{n} x_{n}+A_{n+1}
$$

The set of solutions of this equation form what is called an ($n-1$)-dimensional hyperplane.

That is, in \mathbb{R}^{n}, the solution set "looks like" \mathbb{R}^{n-1}.

Parametric Equation of Plane in \mathbb{R}^{3}

Recall, every point in \mathbb{R}^{2} can be written as a linear combination of the standard unit vectors $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Now, since a plane in \mathbb{R}^{3} "looks like" \mathbb{R}^{2} we can write it as a linear combination of two non-parallel vectors.
$p t=s \tilde{u}+\vec{v} t$

Definition of Parametric Equation of Plane in \mathbb{R}^{3}

Definition

Given any two non-parallel vectors $\vec{u}, \vec{v} \in \mathbb{R}^{3}$ and a point $\vec{x}_{0} \in \mathbb{R}^{3}$, the parametric equation of a plane is

$$
\vec{x}=\underline{\vec{u} \cdot s+\vec{v} \cdot t}+\vec{x}_{0}, s, t \in \mathbb{R}
$$

Definition of Parametric Equation of Plane in \mathbb{R}^{3}

Definition

Given any two non-parallel vectors $\vec{u}, \vec{v} \in \mathbb{R}^{3}$ and a point $\vec{x}_{0} \in \mathbb{R}^{3}$, the parametric equation of a plane is

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}, s, t \in \mathbb{R}
$$

\vec{u} and \vec{v} are called direction vectors, s, t are called the parameters and \vec{x}_{0} is a point on the plane.

Definition of Parametric Equation of Plane in \mathbb{R}^{3}

Definition

Given any two non-parallel vectors $\vec{u}, \vec{v} \in \mathbb{R}^{3}$ and a point $\vec{x}_{0} \in \mathbb{R}^{3}$, the parametric equation of a plane is

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}, s, t \in \mathbb{R}
$$

\vec{u} and \vec{v} are called direction vectors, s, t are called the parameters and \vec{x}_{0} is a point on the plane.

Questions:

- Unique of $\vec{u}, \vec{v}, \vec{x}_{0}$? No!
- Why must \vec{u}, \vec{v} be non-parallel?

$$
\begin{aligned}
& \vec{u}=c \vec{v} \\
& \vec{u} s+\vec{v} t=c \vec{v} s+\vec{v} t \\
& =\vec{v}(c s+t)
\end{aligned}
$$

Example of Parametric Equation of Plane in \mathbb{R}^{3}

Given

$$
\vec{u}=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
3 \\
-5 \\
0
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

the plane with direction vectors \vec{u}, \vec{v} and going through the point \vec{x}_{0} is given by

Example of Parametric Equation of Plane in \mathbb{R}^{3}

Given

$$
\vec{u}=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
3 \\
-5 \\
0
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

the plane with direction vectors \vec{u}, \vec{v} and going through the point \vec{x}_{0} is given by

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}
$$

Example of Parametric Equation of Plane in \mathbb{R}^{3}

Given

$$
\vec{u}=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
3 \\
-5 \\
0
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

the plane with direction vectors \vec{u}, \vec{v} and going through the point \vec{x}_{0} is given by

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] s+\left[\begin{array}{c}
3 \\
-5 \\
0
\end{array}\right] t+\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

Example of Parametric Equation of Plane in \mathbb{R}^{3}

Given

$$
\vec{u}=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
3 \\
-5 \\
0
\end{array}\right] \quad \vec{x}_{0}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

the plane with direction vectors \vec{u}, \vec{v} and going through the point \vec{x}_{0} is given by

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] s+\left[\begin{array}{c}
3 \\
-5 \\
0
\end{array}\right] t+\left[\begin{array}{l}
0 \\
2 \\
2 \\
3
\end{array}\right]} \\
=\left[\begin{array}{c}
2 s+3 t \\
4 s-5 t+2 \\
-2 s+3
\end{array}\right]
\end{gathered}
$$

Exercise

FACT: Any three point in \mathbb{R}^{3} that don't all lie on the same line describe a unique plane

Exercise
FACT: Any three point in \mathbb{R}^{3} that don't all lie on the same line describe a unique plane

Exercise
Find the parametric equation of the plane going through the three points $(3,8,0),(8,4,5)$ and $(5,0,9)$

$$
\begin{aligned}
& \vec{u}=\vec{x}_{c}-\bar{x}_{0}=\left(\begin{array}{l}
8 \\
y \\
5
\end{array}\right)-\left(\begin{array}{l}
3 \\
\partial \\
\partial
\end{array}\right)=\left(\begin{array}{c}
5 \\
4 \\
5
\end{array}\right) \\
& \vec{v}=\vec{x}_{2}-\bar{x}_{x}=\left(\begin{array}{l}
5 \\
0 \\
9
\end{array}\right)-\left(\begin{array}{l}
8 \\
y \\
v
\end{array}\right)=\left(\begin{array}{c}
-3 \\
-4 \\
4
\end{array}\right)
\end{aligned}
$$

$\vec{u} \& \vec{v}$ are non-parellul

$$
\text { Planè: } \quad \vec{x}=\left(\begin{array}{c}
5 \\
-4 \\
5
\end{array}\right) s+\left(\begin{array}{c}
-3 \\
-4 \\
4
\end{array}\right) t+\left(\begin{array}{l}
3 \\
8 \\
0
\end{array}\right)
$$

From Point-Normal Form to Parametric Equation

Given a plane given by the point-normal equation $A x+B y+C z+D=0$. How does one find it's parametric equation?

From Point-Normal Form to Parametric Equation

Given a plane given by the point-normal equation $A x+B y+C z+D=0$. How does one find it's parametric equation?
(1) Find three points $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ that satisfy your point-normal equation.

From Point-Normal Form to Parametric Equation

Given a plane given by the point-normal equation $A x+B y+C z+D=0$. How does one find it's parametric equation?
(1) Find three points $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ that satisfy your point-normal equation.
(2) Compute the vectors $\vec{u}=\vec{x}_{2}-\vec{x}_{1}, \vec{v}=\vec{x}_{3}-\vec{x}_{1}$.

From Point-Normal Form to Parametric Equation

Given a plane given by the point-normal equation $A x+B y+C z+D=0$. How does one find it's parametric equation?
(1) Find three points $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}$ that satisfy your point-normal equation.
(2) Compute the vectors $\vec{u}=\vec{x}_{2}-\vec{x}_{1}, \vec{v}=\vec{x}_{3}-\vec{x}_{1}$.
(3) If \vec{u} and \vec{v} are parallel, go back to step 1 .

From Point-Normal Form to Parametric Equation

Given a plane given by the point-normal equation $A x+B y+C z+D=0$. How does one find it's parametric equation?
(1) Find three points $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}$ that satisfy your point-normal equation.
(2) Compute the vectors $\vec{u}=\vec{x}_{2}-\vec{x}_{1}, \vec{v}=\vec{x}_{3}-\vec{x}_{1}$.
(3) If \vec{u} and \vec{v} are parallel, go back to step 1 .
(9) If \vec{u} and \vec{v} are not parallel, then a parametric equation for your plane will be:

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{1}
$$

From Parametric to Point-Normal Form

Given a plane with parametric equation

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}, \quad s, t \in \mathbb{R}
$$

How do you find the point-normal equation?

From Parametric to Point-Normal Form

Given a plane with parametric equation

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}, \quad s, t \in \mathbb{R}
$$

How do you find the point-normal equation?

First step: find a normal to the plane. That is, find a vector that is orthogonal to every vector on the plane.

From Parametric to Point-Normal Form

Given a plane with parametric equation

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}, \quad s, t \in \mathbb{R}
$$

How do you find the point-normal equation?

First step: find a normal to the plane. That is, find a vector that is orthogonal to every vector on the plane.

Every vector on the plane will be of the form

$$
\vec{u} \cdot s+\vec{v} \cdot t, \quad s, t \in \mathbb{R}
$$

So it is enough to find a vector that is orthogonal to both \vec{u} and \vec{v}. (Exercise: show both of these statements)

Cross Product

Definition

Given two vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define the cross product of \vec{u} and \vec{v} as

Cross Product

Definition

Given two vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define the cross product of \vec{u} and \vec{v} as

$$
\vec{u} \times \vec{v}
$$

Cross Product

Definition

Given two vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define the cross product of \vec{u} and \vec{v} as

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
u_{2} v_{3}-u_{3} v_{2} \\
-\left(u_{1} v_{3}-u_{3} v_{1}\right) \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

Cross Product

Definition

Given two vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define the cross product of \vec{u} and \vec{v} as

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
u_{2} v_{3}-u_{3} v_{2} \\
-\left(u_{1} v_{3}-u_{3} v_{1}\right) \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

Theorem

For any two vectors \vec{u} and $\vec{v}, \vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.

Cross Product

Definition

Given two vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define the cross product of \vec{u} and \vec{v} as

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
u_{2} v_{3}-u_{3} v_{2} \\
-\left(u_{1} v_{3}-u_{3} v_{1}\right) \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

Theorem

For any two vectors \vec{u} and $\vec{v}, \vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.

CAUTION!!!!!!!!

Cross Product

Definition

Given two vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define the cross product of \vec{u} and \vec{v} as

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
u_{2} v_{3}-u_{3} v_{2} \\
-\left(u_{1} v_{3}-u_{3} v_{1}\right) \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

Theorem

For any two vectors \vec{u} and $\vec{v}, \vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.

CAUTION!!!!!!!

The cross product ONLY works in \mathbb{R}^{3}. This method CANNOT be extended to \mathbb{R}^{n} for any n except $n=7$. But even then, the geometry behaves differently.

From Parametric to Point-Normal Form 2

Given a plane in \mathbb{R}^{3} of the form

$$
\vec{x}=\vec{u} \cdot s+\vec{v} \cdot t+\vec{x}_{0}
$$

Calculate a normal of the plane

$$
\vec{n}=\vec{u} \times \vec{v}
$$

Then the point-normal equation of your plane will be

$$
\vec{n} \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

Exercise

Exercise
Find the point-normal equation of the plane going through the three point $(3,8,0),(8,4,5)$ and $(5,0,9)$

$$
\bar{u}=\vec{x}_{1}-\bar{x}_{0}=\left(\begin{array}{l}
8 \\
4 \\
5
\end{array}\right)-\left(\begin{array}{l}
x_{2} \\
8 \\
8 \\
0
\end{array}\right)=\left(\begin{array}{c}
5 \\
-4 \\
5
\end{array}\right) u_{1} u_{1} \quad \vec{v}=\bar{x}_{2}-\dot{x}_{1}=\left(\begin{array}{l}
5 \\
0 \\
9
\end{array}\right)-\left(\begin{array}{l}
8 \\
4 \\
5
\end{array}\right)\left(\begin{array}{c}
-3 \\
-4 \\
4
\end{array}\right) v_{,}
$$

cheek: UAV are not parallel!!

$$
\begin{aligned}
& \vec{v}=\vec{u} \times \vec{v}=\left[\begin{array}{c}
u_{2} v_{3}-u_{3} v_{2} \\
-\left(u_{1} v_{3}-u_{1} v_{1}\right) \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]=\left[\begin{array}{c}
-4 \cdot 4-s \cdot-4 \\
-(s \cdot 4-s \cdot-5) \\
s \cdot-4-(-4(-))
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 s \\
-32
\end{array}\right] \begin{array}{c}
A . \\
B . \\
C .
\end{array} \\
& \vec{n} \cdot \vec{x}-\vec{n} \cdot \tilde{x}_{0}=4 x-35 y-32 z-(4.3-35.8-32.0)=0 \\
& 4 x-35 y-32 z+268=0
\end{aligned}
$$

Shortest Distance Between a Point and a Line in \mathbb{R}^{2}

Given a point $\left(x_{0}, y_{0}\right)$ and a line that goes through the origin $L: \vec{x}=\vec{v} t$, what is the shortest distance between the point and the line?

Orthogonal Projection

Definition (Informal)

The orthogonal projection of a vector \vec{u} onto a vector \vec{v} is the "shadow" of \vec{u} on \vec{v}.

Definition (Formal)

The orthogonal projection of a vector \vec{u} onto a vector \vec{v} is

$$
\underline{\operatorname{proj}} \overrightarrow{\vec{v}}^{\vec{u}}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}} \vec{v} \quad \begin{array}{r}
\tilde{u} \cdot \vec{v} \text { is a } \\
\|\bar{v}\|^{\text {numben }} \text { is also a nerber! }
\end{array}
$$

-Exercise: Show that these definitions are same. Hint: $\operatorname{proj}_{\vec{v}} \vec{u}$ must be parallel to \vec{v} but $\vec{u}-\operatorname{proj}_{\vec{v}} \vec{u}$ must be orthogonal to \vec{v}.

Shortest Distance Between a Point and a Line in $\mathbb{R}^{2} 2$
Theorem
The shortest distance between a point $\vec{u}=\left(u_{1}, u_{2}\right)$ and the line passing through the origin $L: \vec{x}=\vec{v} t$ will be

$$
\sqrt{\|\vec{u}\|^{2}-\left\|\operatorname{proj}_{\vec{v}} \vec{u}\right\|^{2}}
$$

Shortest Distance Between a Point and a Line in $\mathbb{R}^{2} 3$

Theorem

The shortest distance between a point $\vec{u}=\left(u_{1}, u_{2}\right)$ and the line $L: \vec{x}=\vec{v} t+\vec{x}_{0}$ will be the same as the shortest distance between the point $\vec{w}=\vec{u}-\vec{x}_{0}=\left(u_{1}-x_{0}, u_{2}-y_{0}\right)$ and the line passing through the origin $L^{\prime}: \vec{x}=\vec{v} t$:

$$
\sqrt{\|\vec{w}\|^{2}-\left\|\operatorname{proj}_{\vec{v}} \vec{w}\right\|^{2}}
$$

