# SF 1684 Algebra and Geometry Lecture 1 

Patrick Meisner<br>KTH Royal Institute of Technology

## Course Outline

Structure of the course: FFÖFÖS

## Course Outline

Structure of the course: FFÖFÖS

Seminar problems:

- Posted on Mondays
- Hand in answers following Monday during the seminar
- Get solutions from TA there (no physical solutions will be given)


## Course Outline

Structure of the course: FFÖFÖS

Seminar problems:

- Posted on Mondays
- Hand in answers following Monday during the seminar
- Get solutions from TA there (no physical solutions will be given)

Bonus points:

- 1 random question on each seminar will be graded
- The clarity and readability of your solution will also be graded
- 1 bonus point will be awarded for correct seminar assignment (total of 6)
- Bonus points can be used only for the first question on the exam


## Topics for Today

- Vectors
- Vector Spaces: Axioms, $\mathbb{R}^{n}$
- Relations on $\mathbb{R}^{n}$ : Norm, dot product, orthogonality


## Vectors

## Definition

A vector is a quantity that is described by a numerical value (length) and a direction. We will typically denote them $\vec{u}$ or $\mathbf{u}$.

## Vectors

## Definition

A vector is a quantity that is described by a numerical value (length) and a direction. We will typically denote them $\vec{u}$ or $\mathbf{u}$.

$$
5 \mathrm{~km} / \mathrm{h} \text { north }
$$

An example of a vector would be velocity: a speed with a direction.

## Vectors

## Definition

A vector is a quantity that is described by a numerical value (length) and a direction. We will typically denote them $\vec{u}$ or $\mathbf{u}$.
Skn/h North

An example of a vector would be velocity: a speed with a direction.

Another example would be an arrow on the cartesian plane. These can be represented by the end point of the arrow $(x, y)$ or $\left[\begin{array}{l}x \\ y\end{array}\right]$.
talle values
in our fíld

## Scalars

We usually talk about a vector space defined over a field. That is, in our example above, what values $x$ and $y$ can be.

## Scalars

We usually talk about a vector space defined over a field. That is, in our example above, what values $x$ and $y$ can be.

Some examples: $\mathbb{Q}$ (rationals),

## Scalars

We usually talk about a vector space defined over a field. That is, in our example above, what values $x$ and $y$ can be.

Some examples: $\mathbb{Q}$ (rationals), $\mathbb{R}$ (reals)

Scalars

We usually talk about a vector space defined over a field. That is, in our example above, what values $x$ and $y$ can be.

Some examples: $\mathbb{Q}$ (rationals), $\underset{\lambda}{\mathbb{R}}$ (reals) or $\mathbb{C}$ (complex numbers).
in this course only consider reals.

## Scalars

We usually talk about a vector space defined over a field. That is, in our example above, what values $x$ and $y$ can be.

Some examples: $\mathbb{Q}$ (rationals), $\mathbb{R}$ (reals) or $\mathbb{C}$ (complex numbers).

## Definition

The elements of the field over which our vector space is defined are called scalars.

$$
\begin{aligned}
& \text { In this source, the scalars are alcuays rest } \\
& \text { numbers. }
\end{aligned}
$$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ $\left\{\begin{array}{l}\text { addition exists } \\ \text { and makes } \\ \text { sense. }\end{array}\right.$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(0) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(0) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$

$$
c \in \mathbb{R}
$$

(6) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(0) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
(0) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$
(1) (Identity) For every $\vec{u} \in V, 1 \cdot \vec{u}=\vec{u}$

## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$

* we can multiply by our base field $(\mathbb{R})$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ in a way that
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(9) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
$\int 0$ (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$
(1) (Identity) For every $\vec{u} \in V, 1 \cdot \vec{u}=\vec{u}$
(3) (Associativity) For ever $c, d \in F$ and every $\vec{u} \in V, c \cdot(d \cdot \vec{u})=(c d) \cdot \vec{u}$


## Vector Space

A vector space $V$ over a field $F$ is a set of vectors that satisfy these 9 axioms
(1) (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$
(2) (Commutativity) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) (Associativity) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ * vector coldition and scalar multiplication mokes sense.
(9) (Identity) There exists $\overrightarrow{0}$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$
(0) (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u}+\vec{v}=\overrightarrow{0}$. We denote such a $\vec{v}=-\vec{u}$
(0) (Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V, c \cdot \vec{u} \in V$
(1) (Identity) For every $\vec{u} \in V, 1 \cdot \vec{u}=\vec{u}$
(8) (Associativity) For ever $c, d \in F$ and every $\vec{u} \in V, c \cdot(d \cdot \vec{u})=(c d) \cdot \vec{u}$

* (0) (Distributivity) For every $c, d \in F$ and every $\vec{u}, \vec{v} \in V$, $(c+d) \cdot \vec{u}=c \cdot \vec{u}+d \cdot \vec{v}$ and $c \cdot(\vec{u}+\vec{v})=c \cdot \vec{u}+c \cdot \vec{v}$

Vector in $\mathbb{R}^{n}$

We denote the set of vectors
$\rightarrow$ set of ordered tuple, of length

$$
\mathbb{R}^{n}=\left\{\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], x_{i} \in \mathbb{R}\right\}
$$ $n$ in $\mathbb{R}$.

If $n=2$ : points on the cartesion
plane.
of $n=3$ : points in 3 at space.

## Vector in $\mathbb{R}^{n}$

We denote the set of vectors

$$
\mathbb{R}^{n}=\left\{\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], x_{i} \in \mathbb{R}\right\} .
$$

To make this a vector space, we need to define how to add them and multiply them by scalars:

## Vector in $\mathbb{R}^{n}$

We denote the set of vectors

$$
\mathbb{R}^{n}=\left\{\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], x_{i} \in \mathbb{R}\right\} .
$$

To make this a vector space, we need to define how to add them and multiply them by scalars:

$$
\vec{x}+\vec{y}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

## Vector in $\mathbb{R}^{n}$

We denote the set of vectors

$$
\mathbb{R}^{n}=\left\{\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], x_{i} \in \mathbb{R}\right\}
$$

To make this a vector space, we need to define how to add them and multiply them by scalars:

$$
\vec{x}+\vec{y}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\otimes_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
女_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right]
$$

## Vector in $\mathbb{R}^{n}$

We denote the set of vectors

$$
\mathbb{R}^{n}=\left\{\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], x_{i} \in \mathbb{R}\right\}
$$

To make this a vector space, we need to define how to add them and multiply them by scalars:

$$
\vec{x}+\vec{y}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \quad c \cdot \vec{x}=c \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

## Vector in $\mathbb{R}^{n}$

We denote the set of vectors

$$
\mathbb{R}^{n}=\left\{\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], x_{i} \in \mathbb{R}\right\}
$$

To make this a vector space, we need to define how to add them and multiply them by scalars:

$$
\vec{x}+\vec{y}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \quad c \cdot \vec{x}=c \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c x_{1} \\
c x_{2} \\
\vdots \\
c x_{n}
\end{array}\right]
$$

## $\mathbb{R}^{n}$ is a Vector Space

Theorem
$\mathbb{R}^{n}$ is a vector space.

## $\mathbb{R}^{n}$ is a Vector Space

## Theorem

$\mathbb{R}^{n}$ is a vector space.

## Exercise

Check that all the axioms are satisfied when we set

$$
\overrightarrow{0}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad-\vec{x}=\left[\begin{array}{c}
-x_{1} \\
-x_{2} \\
\vdots \\
-x_{n}
\end{array}\right]
$$

## $\mathbb{R}^{n}$ is a Vector Space

## Theorem

$\mathbb{R}^{n}$ is a vector space.

## Exercise

Check that all the axioms are satisfied when we set

$$
\overrightarrow{0}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad-\vec{x}=\left[\begin{array}{c}
-x_{1} \\
-x_{2} \\
\vdots \\
-x_{n}
\end{array}\right]
$$

Note that even though we did not define it as such we get that

$$
-\vec{x}=(-1) \cdot \vec{x}
$$

## Other Vector Spaces

In a similar manner we can define the vector space $F^{n}$ for any field $F$.

## Other Vector Spaces

In a similar manner we can define the vector space $F^{n}$ for any field $F$.

A more complicated vector space would be the set of all function $f: \mathbb{R} \rightarrow \mathbb{R}$.

## Other Vector Spaces

In a similar manner we can define the vector space $F^{n}$ for any field $F$.

A more complicated vector space would be the set of all function $f: \mathbb{R} \rightarrow \mathbb{R}$.

## Exercise

Show that $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ is a vector space. What is the 0-vector? What is
a vectors negative? What is a scolor? What is Scalor moltiplication?

## Other Vector Spaces

In a similar manner we can define the vector space $F^{n}$ for any field $F$.

A more complicated vector space would be the set of all function $f: \mathbb{R} \rightarrow \mathbb{R}$.

## Exercise

Show that $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ is a vector space. What is the 0 -vector? What is a vectors negative?

Unless otherwise stated, the vector space we work with will be $\mathbb{R}^{n}$ for some $n$.

## Examples

Vectors in $\mathbb{R}^{2}$ are arrows:

$$
\vec{u}=(-1,2) \quad \vec{v}=(3,4)
$$

Addition: placing one arrow at the tip of the other

$$
\vec{u}+\vec{v}=(2,6)
$$

Negation: changing the direction of the arrow

$$
-\vec{v}=(-3,-4)
$$

Scalar multiplication: strecthing or shrinking the arrow:

$$
2 \vec{u}=(-2,4) \quad 0.5 \vec{u}=(-0.5,1)
$$

## Parallel and Norm

## Definition

We say that $\vec{u}$ and $\vec{v}$ are parallel if there is a scalar $c$ such that $\vec{u}=c \cdot \vec{v}$.

## Definition

For $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ we define the norm of $\vec{x}$ as

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}
$$

We can think of the norm of $\vec{x}$ as the "length of the arrow".



Properties of the Norm

Exercise
If $\vec{x} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, then
(1) $\|\vec{x}\| \geq 0$
(2) $\|\vec{x}\|=0$ if and only if $\vec{x}=\overrightarrow{0}$
(3) $\|c \vec{x}\|=|c| \cdot\|\vec{x}\|$

1) $\|\vec{x}\|-\sqrt{x_{1}^{2}+x_{0}^{2}+\cdots+x_{n}^{2}} 20$ because $\sqrt{ }$ is always positive cit it exist)
The seaman rout twas mokes sense as $x^{\prime}+x_{L}^{\prime}+\cdots+x_{n}^{\prime} 20$
2) $\begin{aligned}\|\vec{x}\| & =0 \\ & \Leftrightarrow x_{1}^{\prime}+\cdots+x_{n}^{2}-0 \Leftrightarrow x_{1}^{2}=0, x_{2}^{\prime}=0, \ldots x_{n}^{\prime}=0 \Leftrightarrow x_{1}=0, \ldots x_{n}=0\end{aligned}$
3) $\bar{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x\end{array}\right] \quad c \bar{x}-\left[\begin{array}{c}c x_{1} \\ \vdots \\ c_{n}\end{array}\right]$

$$
\begin{aligned}
\|\vec{x}\| & =\sqrt{\left(c x_{1}\right)^{2}+\cdots+\left(x_{n}\right)^{2}}=\sqrt{c^{2}\left(x_{1}^{2}+\cdots+x_{1}^{2}\right)} \\
& =\sqrt{c^{2}}\|\vec{x}\|=|c|\|\vec{x}\|
\end{aligned}
$$

## Distance Between Two Vectors

The distance between two vectors is the "distance between the tips of the arrows".

$$
\begin{aligned}
\vec{v} & =\vec{u}+\vec{w} \\
\Rightarrow \vec{w} & =\vec{v}-\vec{u} \\
d(u, v) & =\|\vec{w}\|=\|\vec{v}-\vec{u}\|
\end{aligned}
$$

Thus we see that the distance between the two vectors $\vec{u}$ and $\vec{v}$ will be the length of $\vec{v}-\vec{u}$.

Hence, we may define

$$
d(\vec{u}, \vec{v}):=\|\vec{v}-\vec{u}\|
$$

Exercise: Show that

$$
d(\vec{u}, \vec{v})=d(\vec{v}, \vec{u}) .
$$

## Unit Vectors

## Definition

We say a vector $\vec{x}$ is a unit vector if $\|\vec{x}\|=1$
For any vector $\vec{x}$, the vector

$$
\vec{e}_{\vec{x}}=\frac{1}{\|\vec{x}\|} \vec{x}
$$


is a unit vector. Moreover $\vec{e}_{\vec{x}}$ is parallel to $\vec{x}$.
By moving from $\vec{x}$ to $\vec{e}_{\vec{x}}$ we say we have normalized $\vec{x}$ and say that $\vec{e}_{\vec{x}}$ is the normalization of $\vec{x}$.
We denote

Then each $\vec{e}_{i}$ is a unit vector and we call them the standard unit vectors.

Exercises

1) $\vec{u} \& \vec{v}$ parallel if $\vec{u}=c \vec{u}$

$$
(u, 4,-1)=\vec{u}=\overline{v_{v}}=(x, x, 1)
$$

Need $2 c=4,2 c=4, c=-2$
Let $\vec{u}=(4,4,-2), \vec{v}=(2,2,1)$
(1) Are $\vec{u}$ and $\vec{v}$ parallel?
(2) Find the distance between $\vec{u}$ and $\vec{v}$.
(3) Find a unit vector that is parallel to $\vec{v}$.
$\bar{e}_{\vec{v}}=\frac{1}{3} \bar{v}=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$ is a unit vector which is parallel to $\vec{V}$

## Linear Combinations

We say $\vec{u}$ is a linear combination of the $m$ vectors ${\overrightarrow{v_{1}}}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ if there exists $m$ scalars $a_{1}, a_{2}, \ldots, a_{m}$ such that

$$
\vec{u}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m} .
$$

## Linear Combinations

We say $\vec{u}$ is a linear combination of the $m$ vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ if there exists $m$ scalars $a_{1}, a_{2}, \ldots, a_{m}$ such that

$$
\vec{u}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m} .
$$

Every vector $\vec{x} \in \mathbb{R}^{n}$ can be written as a linear combination of the standard unit vectors $\vec{e}_{1}, \ldots, \vec{e}_{n}$. Indeed, if $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, then we see

$$
\vec{x}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n}
$$

where we recall that

$$
\begin{array}{r}
\stackrel{\text { i-th }}{\stackrel{\downarrow}{\perp}} \text { pasition } \\
\vec{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0)
\end{array}
$$

## Dot Product in $\mathbb{R}^{n}$

For

we define the dot product of the two vectors as

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

## Dot Product in $\mathbb{R}^{n}$

For

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

we define the dot product of the two vectors as

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

NOTE: $\vec{x} \cdot \vec{y}$ is a scalar and NOT a vector!

## Dot Product in $\mathbb{R}^{n}$

For

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

we define the dot product of the two vectors as

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

NOTE: $\vec{x} \cdot \vec{y}$ is a scalar and NOT a vector!

Observe that if we let $\vec{x}=\vec{y}$, then we get that

$$
\|\vec{x}\|=\sqrt{\vec{x} \cdot \vec{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Properties of the Dot Product
Exercise:

If $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, then
prove these.
(1) $\vec{x} \cdot \vec{x} \geq 0$
(2) $\vec{x} \cdot \vec{x}=0$ if and only if $\vec{x}=\overrightarrow{0}$.
(3) $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}$
(4) $\vec{x} \cdot(\vec{y}+\vec{z})=\vec{x} \cdot \vec{y}+\vec{x} \cdot \vec{z} \longrightarrow$ is essentially the sue
(5) $(c \vec{x}) \cdot \vec{y}=\vec{x} \cdot(c \vec{y})=c(\vec{x} \cdot \vec{y})$ as distributing multiplication into addition in regular algebra.

Theorem of the Dot Product
Theorem (Section 1.2)
For $\vec{x}, \vec{y} \in \mathbb{R}^{n}$
(1) $\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos (\theta)$ where $\theta$ is the angle between the two vectors.
(2) $|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\|$ (Cauchy-Schwartz inequality)
(3) $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$ (Triangle Inequality)
1)


$$
\begin{aligned}
\|\vec{y} \cdot \vec{x}\|^{2} & =(\vec{y}-\vec{x}) \cdot(\bar{y}-\vec{x})=\vec{y} \cdot \vec{y}-\vec{y} \cdot \vec{x}-\vec{x} \cdot \hat{y}+\bar{x} \cdot \vec{x} \\
& =\vec{y} \cdot \vec{y}-\alpha \vec{x} \cdot \vec{y}+\bar{x} \cdot \vec{x}
\end{aligned}
$$

$$
\underline{\vec{y} \cdot \vec{y}}-2 \vec{x} \cdot \vec{y}+\vec{x}_{-} \cdot \vec{x}=\underline{\vec{x} \cdot \vec{x}}+\overrightarrow{\dot{y}} \cdot \vec{y}-2\|\vec{x}\|\|\vec{y}\| \cos \theta \rightarrow-2 x \cdot y=-\alpha\|\vec{x}\|\|\vec{y}\| \cos \theta
$$

$$
\dot{x} \cdot \dot{y}=(\| \vec{y}) \cdot(\|\vec{v}\|
$$

Proofs
2) Show $|\dot{x} \cdot \vec{y}| \leq\|\vec{x} \mid \cdot\| \vec{y} \|$

Proof: $|\vec{x} \cdot \vec{y}|=|\|x\| \cdot\|\vec{y}\| \cos \theta|=\|\vec{x}\|\|\vec{y}\||\cos \theta| \leq\|\vec{x}\| \cdot\|\vec{y}\|$
3) Show $\|\vec{x}+\vec{y}\| \leq\|x\|+\|\bar{y}\|$

Proof: $\|\vec{x}+\vec{y}\|=\sqrt{(\dot{x}+\vec{y}) \cdot(\vec{x}+\vec{y})}=\sqrt{\tilde{x} \cdot \vec{x}+2 \vec{x} \cdot \vec{y}+\vec{y}-\vec{y}}$

$$
\begin{aligned}
(x) & \leq \sqrt{|\dot{x} \cdot x|+2|x \cdot y+| x \cdot y} \\
(\cos +2) & \leq \sqrt{\|x\| \cdot\|x\|+2\|x\|\|x\|+\|y\| \cdot\|y\|} \\
& =\sqrt{\|x\|^{2}+2\|x\|\|y\|+\|x\|^{2}} \\
& =\sqrt{(\|x\|+\|y\|)^{2}}
\end{aligned}
$$

for all a $G \mathbb{R}$

$$
a \leq|a| \#
$$

$$
=\|\vec{x}\|+\|\vec{y}\|
$$



## Orthogonal Vectors

$$
0=\vec{x} \cdot \vec{y}
$$

From the first part of the theorem, we see that

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos (\theta)
$$


and since $\|\vec{x}\|$ and $\|\vec{y}\|$ is never $\int_{s}^{0}$ (unless $\vec{x}$ or $\vec{y}$ themselves were $\underset{\jmath}{\overrightarrow{0}}$ ), we get that

$$
0 \text {, the number }
$$

O, the veter

$$
\vec{x} \cdot \vec{y}=0 \text { if and only if } \cos (\theta)=0 \text { if and only if } \theta=\pi / 2 \text { or } 3 \pi / 2
$$

## Definition

Two vectors $\vec{x}$ and $\vec{y}$ are said to be orthogonal if $\vec{x} \cdot \vec{y}=0$.

Pythagorean Theorem
Theorem
If $\vec{x} \cdot \vec{y}=0$ then $\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}$.

$$
+
$$

$$
\begin{aligned}
& \|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y}) \\
& \quad=\vec{x} \cdot \vec{x}+\vec{x} \bar{y}+\vec{y} \cdot \vec{x}+\vec{y} \cdot \vec{y} \\
& =\|x\|^{2}+0+0+\|y\|^{2} \\
& =\|y\|^{2}+\|y\|^{2}
\end{aligned}
$$

Exercise
2) if $\left[\begin{array}{l}x \\ y\end{array}\right]$ orth to
(1) Let
exercise

$$
\vec{w}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \quad \vec{z}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right]
$$

$$
\text { the } \vec{u}-\left[\begin{array}{l}
x \\
y
\end{array}\right]=0
$$

Find the angle between them. $\vec{u}$

$$
x+2 y=0
$$

(2) Find a vector orthogonal to

$$
\vec{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

let $x=2 \quad \& \quad y=-1$
the $\left[\begin{array}{r}2 \\ -1\end{array}\right]$ orth to $\overrightarrow{4}$.

