
Numerical methods for matrix functions
SF2524 - Matrix Computations for Large-scale Systems

Lecture 15: Krylov methods for matrix functions
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Problem

In this lecture we wish to compute

f (A)b,

where A ∈ Rn×n is a given large sparse matrix.

Cauchy integral definition leads to

f (A)b =

(
1

2iπ

∮
Γ
f (z)(zI − A)−1 dz

)
b =

−1

2iπ

∮
Γ
f (z)(A− zI )−1b dz

How do we compute?
(A− zI )−1b (?)

Note: (?) is a shifted linear system of equations:

(A− zI )x = b.

We will solve the shifted linear system using an Arnoldi method.
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The rest of this lecture

1. Arnoldi’s method for shifted systems

2. GMRES-variant (FOM) for shifted systems

3. Use Cauchy definition ⇒ Krylov method for matrix functions

4. Application to exponential integrators
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Shift invariance of Krylov subspaces

Kn(A, b) = Kn(A− σI , b)

Proof idea: Find a non-singular R such that
[b,Ab,A2n, . . . ,An−1b]R = [b, (A− σI )b, (A− σI )2b, . . . , (A− σI )n−1b]

Recall: W = VR and R non-singular and w1, . . . ,wm linear independent
⇒ span(w1, . . . ,wm) = span(v1, . . . , vm) * Sketch on board *

What happens with the Arnoldi factorization? * On black board *
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Arnoldi factorization for a shifted matrix
Suppose we have an Arnoldi factorization

AQm = Qm+1Hm (?)

Lemma

Suppose Qm ∈ Cn×m, Hm ∈ C(m+1)×m is an Arnoldi factorization (?)
associated with Km(A, b). Then, for any σ ∈ C, Qm ∈ Cn×m and
Hm − σIm+1,m is an Arnoldi factorization associated with Km(A− σI , b),

(A− σI )Qm = Qm+1(Hm − σIm+1,m). (??)

where

Im+1,m =


1

. . .

1
0 · · · 0

 ∈ R(m+1)×m.
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FOM - almost GMRES for linear system
We now wish to solve linear systems:

Cx = b

(where we later set C = A− σI .) * Derive on black board *

Full Orthogonalization Method (FOM)

Compute an Arnoldi factorization AQn = Qn+1Hn

Compute z=H(1:n,1:n)\e1 ⇔ z = H−1
n e1

Compute approximation x̃ = Qnz‖b‖

Only slight difference in GMRES z=H(1:n+1,1:n)\e1.
Convergence very similar to GMRES.

Relationship with GMRES

GMRES corresponds to (AQn)T (Ax̃ − b) = 0 (lecture 8)

FOM corresponds to QT
n (Ax̃ − b) = 0
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Now consider shifted system:

(A− σI )xσ = b

FOM for shifted systems

1. Compute an Arnoldi factorization AQn = Qn+1Hn from (A, b)

2. Compute zs=(H(1:n,1:n)-σI)\e1 ⇔ zσ = (Hn − σI )−1e1

3. Compute approximation x̃σ = Qnzσ‖b‖

Note: Step 1 is independent of σ and the Step 2-3 can be done for many
σ without carrying out Arnoldi method:

xσ ≈ x̃σ = Qn(Hn − σI )−1e1‖b‖.
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* On black board *

Cauchy integral definition and use FOM-approximation:

f (A)b =
−1

2iπ

∮
Γ
f (z)(A− zI )−1b dz

≈ −1

2iπ

∮
Γ
f (z)Qn(Hn − zI )−1e1‖b‖ dz

= Qn
1

2iπ

∮
Γ
f (z)(zI − Hn)−1 dz e1‖b‖

= Qnf (Hn)e1‖b‖

Krylov approximation of matrix functions

f (A)b ≈ fn = Qnf (Hn)e1‖b‖

* Video [link] *
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Error analysis of Krylov approximation

Theorem

Suppose A ∈ Cn×n is a normal matrix and suppose Ω ⊂ C is a convex
compact set such that λ(A) ⊂ Ω. Let fm be the Krylov approximation of
f (A)b. Then,

‖f (A)b − fm‖ ≤ 2‖b‖ min
p∈Pm−1

max
z∈Ω
|f (z)− p(z)|.

Favorable situations (fast convergence):

f (z) can be well approximated with low-order polynomials

λ(A) and λ(Hk) are clustered such that Ω can be chosen small.
(Note. Not relative clustering)

* Examples *
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Application to exponential integrators
PDF lecture notes 4.4.3
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We already know that the initial value problem

y ′(t) = Ay(t), y(0) = y0

has the solution
y(t) = exp(tA)y0.

What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix
functions:

y ′(t) = g(y(t)), y(0) = y0.

Look at linear inhomogeneous ODE

Use to approximate nonlinear ODE
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Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side
g(y) = g1(y) := Ay + b, and

y ′(t) = Ay(t) + b = g1(y(t)), y(0) = y0, (1)

has a solution explicitly given by

y(t) = y0 + tϕ(tA)g1(y0). (2)

The matrix function ϕ is called a ϕ-function

φ(z) =
ez − 1

z

* Julia: plot phi-function *
* Julia: ODE solution *

* Proof (if time) *
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Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let 0 = t0 < t1 < · · · < tN . The forward Euler exponential integrator
generate the approximations yk ≈ y(tk), k =, . . . ,N defined as

yk+1 = yk + hkϕ(hkAk)g(yk) (3)

where hk = tk+1 − tk and Ak := g ′(yk).

Properties:

Exact for the linear inhomogeneous case (1), and one step can be
proven to be second order in h in the general case.

Requires the computation of ϕ(hkAk)g(yk) in every step. Suitable to
be used with matrix functions.
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be used with matrix functions.
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Step-length trade-off

We want

Trade-off of time-step h

small h ⇒ small Krylov error; ‖ϕ(hA)b − fm‖ = O(hm)

small h ⇒ small time-stepping error; but
large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error
estimates and increase to specific tolerance.

More elaborate example in Lecture notes PDF.
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It’s been a pleasure to teach this course. Thanks!

SF2526 “Numerics for data science” [link]

Exam preparation information

Work with the material!
⇒ Solve many problems as preparation:

I old exams [link]
I selected wiki problems from previous years (2020 is coming)

Read problem formulation carefully:
e.g. “Show” means “prove” (not matlab code)

Correction more strict than wiki correction

No calculator, notes, phones, books, etc allowed

Zoom-protoctored exam, details are being set.
Information will appear in Canvas

Good luck on the exam
Please fill out the course evaluation (later)
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