Numerical methods for matrix functions
 SF2524 - Matrix Computations for Large-scale Systems

Lecture 15: Krylov methods for matrix functions

Problem

In this lecture we wish to compute

$$
f(A) b,
$$

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.

Problem

In this lecture we wish to compute

$$
f(A) b
$$

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.
Cauchy integral definition leads to

$$
f(A) b=\left(\frac{1}{2 i \pi} \oint_{\Gamma} f(z)(z l-A)^{-1} d z\right) b
$$

Problem

In this lecture we wish to compute

$$
f(A) b
$$

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.
Cauchy integral definition leads to

$$
f(A) b=\left(\frac{1}{2 i \pi} \oint_{\Gamma} f(z)(z I-A)^{-1} d z\right) b=\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z
$$

Problem

In this lecture we wish to compute

$$
f(A) b
$$

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.
Cauchy integral definition leads to

$$
f(A) b=\left(\frac{1}{2 i \pi} \oint_{\Gamma} f(z)(z I-A)^{-1} d z\right) b=\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z
$$

How do we compute?

$$
(A-z l)^{-1} b
$$

Problem

In this lecture we wish to compute

$$
f(A) b
$$

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.
Cauchy integral definition leads to

$$
f(A) b=\left(\frac{1}{2 i \pi} \oint_{\Gamma} f(z)(z I-A)^{-1} d z\right) b=\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z
$$

How do we compute?

$$
(A-z I)^{-1} b
$$

Note: (\star) is a shifted linear system of equations:

$$
(A-z l) x=b
$$

We will solve the shifted linear system using an Arnoldi method.

The rest of this lecture

1. Arnoldi's method for shifted systems
2. GMRES-variant (FOM) for shifted systems
3. Use Cauchy definition \Rightarrow Krylov method for matrix functions
4. Application to exponential integrators

Shift invariance of Krylov subspaces

$$
\mathcal{K}_{n}(A, b)=\mathcal{K}_{n}(A-\sigma l, b)
$$

Shift invariance of Krylov subspaces

$$
\mathcal{K}_{n}(A, b)=\mathcal{K}_{n}(A-\sigma l, b)
$$

Proof idea: Find a non-singular R such that
$\left[b, A b, A^{2} n, \ldots, A^{n-1} b\right] R=\left[b,(A-\sigma l) b,(A-\sigma l)^{2} b, \ldots,(A-\sigma l)^{n-1} b\right]$

Shift invariance of Krylov subspaces

$$
\mathcal{K}_{n}(A, b)=\mathcal{K}_{n}(A-\sigma I, b)
$$

Proof idea: Find a non-singular R such that $\left[b, A b, A^{2} n, \ldots, A^{n-1} b\right] R=\left[b,(A-\sigma l) b,(A-\sigma l)^{2} b, \ldots,(A-\sigma l)^{n-1} b\right]$

Recall: $W=V R$ and R non-singular and w_{1}, \ldots, w_{m} linear independent $\Rightarrow \operatorname{span}\left(w_{1}, \ldots, w_{m}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$

* Sketch on board *

Shift invariance of Krylov subspaces

$$
\mathcal{K}_{n}(A, b)=\mathcal{K}_{n}(A-\sigma l, b)
$$

Proof idea: Find a non-singular R such that $\left[b, A b, A^{2} n, \ldots, A^{n-1} b\right] R=\left[b,(A-\sigma l) b,(A-\sigma l)^{2} b, \ldots,(A-\sigma l)^{n-1} b\right]$

Recall: $W=V R$ and R non-singular and w_{1}, \ldots, w_{m} linear independent $\Rightarrow \operatorname{span}\left(w_{1}, \ldots, w_{m}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$

* Sketch on board *

What happens with the Arnoldi factorization?

Shift invariance of Krylov subspaces

$$
\mathcal{K}_{n}(A, b)=\mathcal{K}_{n}(A-\sigma l, b)
$$

Proof idea: Find a non-singular R such that $\left[b, A b, A^{2} n, \ldots, A^{n-1} b\right] R=\left[b,(A-\sigma l) b,(A-\sigma l)^{2} b, \ldots,(A-\sigma l)^{n-1} b\right]$

Recall: $W=V R$ and R non-singular and w_{1}, \ldots, w_{m} linear independent $\Rightarrow \operatorname{span}\left(w_{1}, \ldots, w_{m}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$

* Sketch on board *

What happens with the Arnoldi factorization?

* On black board *

Arnoldi factorization for a shifted matrix

 Suppose we have an Arnoldi factorization$$
A Q_{m}=Q_{m+1} \underline{H}_{m}
$$

Arnoldi factorization for a shifted matrix

Suppose we have an Arnoldi factorization

$$
A Q_{m}=Q_{m+1} \underline{H}_{m}
$$

Lemma

Suppose $Q_{m} \in \mathbb{C}^{n \times m}, \underline{H}_{m} \in \mathbb{C}^{(m+1) \times m}$ is an Arnoldi factorization (\star) associated with $\mathcal{K}_{m}(A, b)$. Then, for any $\sigma \in \mathbb{C}, Q_{m} \in \mathbb{C}^{n \times m}$ and $\underline{H}_{m}-\sigma I_{m+1, m}$ is an Arnoldi factorization associated with $\mathcal{K}_{m}(A-\sigma I, b)$,

$$
(A-\sigma l) Q_{m}=Q_{m+1}\left(\underline{H}_{m}-\sigma I_{m+1, m}\right)
$$

Arnoldi factorization for a shifted matrix

Suppose we have an Arnoldi factorization

$$
A Q_{m}=Q_{m+1} \underline{H}_{m}
$$

Lemma

Suppose $Q_{m} \in \mathbb{C}^{n \times m}, \underline{H}_{m} \in \mathbb{C}^{(m+1) \times m}$ is an Arnoldi factorization (\star) associated with $\mathcal{K}_{m}(A, b)$. Then, for any $\sigma \in \mathbb{C}, Q_{m} \in \mathbb{C}^{n \times m}$ and $\underline{H}_{m}-\sigma I_{m+1, m}$ is an Arnoldi factorization associated with $\mathcal{K}_{m}(A-\sigma I, b)$,

$$
(A-\sigma l) Q_{m}=Q_{m+1}\left(\underline{H}_{m}-\sigma I_{m+1, m}\right)
$$

where

$$
I_{m+1, m}=\left[\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1 \\
0 & \cdots & 0
\end{array}\right] \in \mathbb{R}^{(m+1) \times m}
$$

FOM - almost GMRES for linear system

We now wish to solve linear systems:

$$
C x=b
$$

(where we later set $C=A-\sigma l$.)

* Derive on black board *

FOM - almost GMRES for linear system

We now wish to solve linear systems:

$$
C x=b
$$

(where we later set $C=A-\sigma I$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $A Q_{n}=Q_{n+1} \underline{H}_{n}$
- Compute $z=H(1: n, 1: n) \backslash e 1 \Leftrightarrow z=H_{n}^{-1} e_{1}$
- Compute approximation $\tilde{x}=Q_{n} z\|b\|$

FOM - almost GMRES for linear system

We now wish to solve linear systems:

$$
C x=b
$$

(where we later set $C=A-\sigma l$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $A Q_{n}=Q_{n+1} \underline{H}_{n}$
- Compute $z=H(1: n, 1: n) \backslash e 1 \Leftrightarrow z=H_{n}^{-1} e_{1}$
- Compute approximation $\tilde{x}=Q_{n} z\|b\|$

Only slight difference in GMRES $z=H(1: n+1,1: n) \backslash e 1$.

FOM - almost GMRES for linear system

We now wish to solve linear systems:

$$
C x=b
$$

(where we later set $C=A-\sigma l$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $A Q_{n}=Q_{n+1} \underline{H}_{n}$
- Compute $z=H(1: n, 1: n) \backslash e 1 \Leftrightarrow z=H_{n}^{-1} e_{1}$
- Compute approximation $\tilde{x}=Q_{n} z\|b\|$

Only slight difference in GMRES $z=H(1: n+1,1: n) \backslash e 1$.
Convergence very similar to GMRES.

FOM - almost GMRES for linear system

We now wish to solve linear systems:

$$
C x=b
$$

(where we later set $C=A-\sigma I$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $A Q_{n}=Q_{n+1} \underline{H}_{n}$
- Compute $z=H(1: n, 1: n) \backslash e 1 \Leftrightarrow z=H_{n}^{-1} e_{1}$
- Compute approximation $\tilde{x}=Q_{n} z\|b\|$

Only slight difference in GMRES $z=H(1: n+1,1: n) \backslash e 1$.
Convergence very similar to GMRES.

Relationship with GMRES

- GMRES corresponds to $\left(A Q_{n}\right)^{T}(A \tilde{x}-b)=0$ (lecture 8)
- FOM corresponds to $Q_{n}^{T}(A \tilde{x}-b)=0$

Now consider shifted system:

$$
(A-\sigma l) x_{\sigma}=b
$$

Now consider shifted system:

$$
(A-\sigma l) x_{\sigma}=b
$$

FOM for shifted systems

1. Compute an Arnoldi factorization $A Q_{n}=Q_{n+1} \underline{H}_{n} \quad$ from (A, b)
2. Compute $\mathrm{zs}=(\mathrm{H}(1: \mathrm{n}, 1: \mathrm{n})-\sigma \mathrm{I}) \backslash \mathrm{e} 1 \Leftrightarrow z_{\sigma}=\left(H_{n}-\sigma /\right)^{-1} e_{1}$
3. Compute approximation $\tilde{x}_{\sigma}=Q_{n} z_{\sigma}\|b\|$

Now consider shifted system:

$$
(A-\sigma l) x_{\sigma}=b
$$

FOM for shifted systems

1. Compute an Arnoldi factorization $A Q_{n}=Q_{n+1} \underline{H}_{n}$
2. Compute $\mathrm{zs}=(\mathrm{H}(1: \mathrm{n}, 1: \mathrm{n})-\sigma \mathrm{I}) \backslash \mathrm{e} 1 \Leftrightarrow z_{\sigma}=\left(H_{n}-\sigma /\right)^{-1} e_{1}$
3. Compute approximation $\tilde{x}_{\sigma}=Q_{n} z_{\sigma}\|b\|$

Note: Step 1 is independent of σ and the Step 2-3 can be done for many σ without carrying out Arnoldi method:

$$
x_{\sigma} \approx \tilde{x}_{\sigma}=Q_{n}\left(H_{n}-\sigma I\right)^{-1} e_{1}\|b\| .
$$

Cauchy integral definition and use FOM-approximation:

Cauchy integral definition and use FOM-approximation:

$$
\begin{aligned}
f(A) b & =\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z \\
& \approx \frac{-1}{2 i \pi} \oint_{\Gamma} f(z) Q_{n}\left(H_{n}-z l\right)^{-1} e_{1}\|b\| d z
\end{aligned}
$$

Cauchy integral definition and use FOM-approximation:

$$
\begin{aligned}
f(A) b & =\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z l)^{-1} b d z \\
& \approx \frac{-1}{2 i \pi} \oint_{\Gamma} f(z) Q_{n}\left(H_{n}-z l\right)^{-1} e_{1}\|b\| d z \\
& =Q_{n} \frac{1}{2 i \pi} \oint_{\Gamma} f(z)\left(z l-H_{n}\right)^{-1} d z e_{1}\|b\|
\end{aligned}
$$

Cauchy integral definition and use FOM-approximation:

$$
\begin{aligned}
f(A) b & =\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z \\
& \approx \frac{-1}{2 i \pi} \oint_{\Gamma} f(z) Q_{n}\left(H_{n}-z I\right)^{-1} e_{1}\|b\| d z \\
& =Q_{n} \frac{1}{2 i \pi} \oint_{\Gamma} f(z)\left(z I-H_{n}\right)^{-1} d z e_{1}\|b\| \\
& =Q_{n} f\left(H_{n}\right) e_{1}\|b\|
\end{aligned}
$$

Cauchy integral definition and use FOM-approximation:

$$
\begin{aligned}
f(A) b & =\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z \\
& \approx \frac{-1}{2 i \pi} \oint_{\Gamma} f(z) Q_{n}\left(H_{n}-z I\right)^{-1} e_{1}\|b\| d z \\
& =Q_{n} \frac{1}{2 i \pi} \oint_{\Gamma} f(z)\left(z I-H_{n}\right)^{-1} d z e_{1}\|b\| \\
& =Q_{n} f\left(H_{n}\right) e_{1}\|b\|
\end{aligned}
$$

Krylov approximation of matrix functions

$$
f(A) b \approx f_{n}=Q_{n} f\left(H_{n}\right) e_{1}\|b\|
$$

Cauchy integral definition and use FOM-approximation:

$$
\begin{aligned}
f(A) b & =\frac{-1}{2 i \pi} \oint_{\Gamma} f(z)(A-z I)^{-1} b d z \\
& \approx \frac{-1}{2 i \pi} \oint_{\Gamma} f(z) Q_{n}\left(H_{n}-z I\right)^{-1} e_{1}\|b\| d z \\
& =Q_{n} \frac{1}{2 i \pi} \oint_{\Gamma} f(z)\left(z I-H_{n}\right)^{-1} d z e_{1}\|b\| \\
& =Q_{n} f\left(H_{n}\right) e_{1}\|b\|
\end{aligned}
$$

Krylov approximation of matrix functions

$$
f(A) b \approx f_{n}=Q_{n} f\left(H_{n}\right) e_{1}\|b\|
$$

Error analysis of Krylov approximation

Error analysis of Krylov approximation

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_{m} be the Krylov approximation of $f(A) b$. Then,

$$
\left\|f(A) b-f_{m}\right\| \leq 2\|b\| \min _{p \in P_{m-1}} \max _{z \in \Omega}|f(z)-p(z)|
$$

Error analysis of Krylov approximation

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_{m} be the Krylov approximation of $f(A) b$. Then,

$$
\left\|f(A) b-f_{m}\right\| \leq 2\|b\| \min _{p \in P_{m-1}} \max _{z \in \Omega}|f(z)-p(z)| .
$$

Favorable situations (fast convergence):

- $f(z)$ can be well approximated with low-order polynomials

Error analysis of Krylov approximation

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_{m} be the Krylov approximation of $f(A) b$. Then,

$$
\left\|f(A) b-f_{m}\right\| \leq 2\|b\| \min _{p \in P_{m-1}} \max _{z \in \Omega}|f(z)-p(z)|
$$

Favorable situations (fast convergence):

- $f(z)$ can be well approximated with low-order polynomials
- $\lambda(A)$ and $\lambda\left(H_{k}\right)$ are clustered such that Ω can be chosen small. (Note. Not relative clustering)

Error analysis of Krylov approximation

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_{m} be the Krylov approximation of $f(A) b$. Then,

$$
\left\|f(A) b-f_{m}\right\| \leq 2\|b\| \min _{p \in P_{m-1}} \max _{z \in \Omega}|f(z)-p(z)|
$$

Favorable situations (fast convergence):

- $f(z)$ can be well approximated with low-order polynomials
- $\lambda(A)$ and $\lambda\left(H_{k}\right)$ are clustered such that Ω can be chosen small. (Note. Not relative clustering)

Application to exponential integrators PDF lecture notes 4.4.3

We already know that the initial value problem

$$
y^{\prime}(t)=A y(t), \quad y(0)=y_{0}
$$

has the solution

$$
y(t)=\exp (t A) y_{0} .
$$

We already know that the initial value problem

$$
y^{\prime}(t)=A y(t), \quad y(0)=y_{0}
$$

has the solution

$$
y(t)=\exp (t A) y_{0}
$$

What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix functions:

$$
y^{\prime}(t)=g(y(t)), \quad y(0)=y_{0}
$$

We already know that the initial value problem

$$
y^{\prime}(t)=A y(t), \quad y(0)=y_{0}
$$

has the solution

$$
y(t)=\exp (t A) y_{0}
$$

What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix functions:

$$
y^{\prime}(t)=g(y(t)), \quad y(0)=y_{0}
$$

- Look at linear inhomogeneous ODE
- Use to approximate nonlinear ODE

Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side $g(y)=g_{1}(y):=A y+b$, and

$$
\begin{equation*}
y^{\prime}(t)=A y(t)+b=g_{1}(y(t)), \quad y(0)=y_{0}, \tag{1}
\end{equation*}
$$

Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side $g(y)=g_{1}(y):=A y+b$, and

$$
\begin{equation*}
y^{\prime}(t)=A y(t)+b=g_{1}(y(t)), \quad y(0)=y_{0}, \tag{1}
\end{equation*}
$$

has a solution explicitly given by

$$
\begin{equation*}
y(t)=y_{0}+t \varphi(t A) g_{1}\left(y_{0}\right) . \tag{2}
\end{equation*}
$$

The matrix function φ is called a φ-function

$$
\phi(z)=\frac{e^{z}-1}{z}
$$

Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side $g(y)=g_{1}(y):=A y+b$, and

$$
\begin{equation*}
y^{\prime}(t)=A y(t)+b=g_{1}(y(t)), \quad y(0)=y_{0}, \tag{1}
\end{equation*}
$$

has a solution explicitly given by

$$
\begin{equation*}
y(t)=y_{0}+t \varphi(t A) g_{1}\left(y_{0}\right) \tag{2}
\end{equation*}
$$

The matrix function φ is called a φ-function

$$
\phi(z)=\frac{e^{z}-1}{z}
$$

Substitute in the nonlinear problem and repeat reasoning:

Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let $0=t_{0}<t_{1}<\cdots<t_{N}$. The forward Euler exponential integrator generate the approximations $y_{k} \approx y\left(t_{k}\right), k=, \ldots, N$ defined as

$$
\begin{equation*}
y_{k+1}=y_{k}+h_{k} \varphi\left(h_{k} A_{k}\right) g\left(y_{k}\right) \tag{3}
\end{equation*}
$$

where $h_{k}=t_{k+1}-t_{k}$ and $A_{k}:=g^{\prime}\left(y_{k}\right)$.

Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let $0=t_{0}<t_{1}<\cdots<t_{N}$. The forward Euler exponential integrator generate the approximations $y_{k} \approx y\left(t_{k}\right), k=, \ldots, N$ defined as

$$
\begin{equation*}
y_{k+1}=y_{k}+h_{k} \varphi\left(h_{k} A_{k}\right) g\left(y_{k}\right) \tag{3}
\end{equation*}
$$

where $h_{k}=t_{k+1}-t_{k}$ and $A_{k}:=g^{\prime}\left(y_{k}\right)$.
Properties:

- Exact for the linear inhomogeneous case (1), and one step can be proven to be second order in h in the general case.

Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let $0=t_{0}<t_{1}<\cdots<t_{N}$. The forward Euler exponential integrator generate the approximations $y_{k} \approx y\left(t_{k}\right), k=, \ldots, N$ defined as

$$
\begin{equation*}
y_{k+1}=y_{k}+h_{k} \varphi\left(h_{k} A_{k}\right) g\left(y_{k}\right) \tag{3}
\end{equation*}
$$

where $h_{k}=t_{k+1}-t_{k}$ and $A_{k}:=g^{\prime}\left(y_{k}\right)$.
Properties:

- Exact for the linear inhomogeneous case (1), and one step can be proven to be second order in h in the general case.
- Requires the computation of $\varphi\left(h_{k} A_{k}\right) g\left(y_{k}\right)$ in every step. Suitable to be used with matrix functions.

Step-length trade-off

We want

Trade-off of time-step h

- small $h \Rightarrow$ small Krylov error; $\quad\left\|\varphi(h A) b-f_{m}\right\|=\mathcal{O}\left(h^{m}\right)$

Step-length trade-off

We want

Trade-off of time-step h

- small $h \Rightarrow$ small Krylov error;

$$
\left\|\varphi(h A) b-f_{m}\right\|=\mathcal{O}\left(h^{m}\right)
$$

- small $h \Rightarrow$ small time-stepping error; but

Step-length trade-off

We want

Trade-off of time-step h

- small $h \Rightarrow$ small Krylov error;

$$
\left\|\varphi(h A) b-f_{m}\right\|=\mathcal{O}\left(h^{m}\right)
$$

- small $h \Rightarrow$ small time-stepping error; but
- large h, because to reach a specific time-point quicker.

Step-length trade-off

We want
Trade-off of time-step h

- small $h \Rightarrow$ small Krylov error;

$$
\left\|\varphi(h A) b-f_{m}\right\|=\mathcal{O}\left(h^{m}\right)
$$

- small $h \Rightarrow$ small time-stepping error; but
- large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error estimates and increase to specific tolerance.

Step-length trade-off

We want
Trade-off of time-step h

- small $h \Rightarrow$ small Krylov error;

$$
\left\|\varphi(h A) b-f_{m}\right\|=\mathcal{O}\left(h^{m}\right)
$$

- small $h \Rightarrow$ small time-stepping error; but
- large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error estimates and increase to specific tolerance.

More elaborate example in Lecture notes PDF.

It's been a pleasure to teach this course. Thanks!

It's been a pleasure to teach this course. Thanks!

SF2526 "Numerics for data science" [link]

It's been a pleasure to teach this course. Thanks!

SF2526 "Numerics for data science" [link]

Exam preparation information

- Work with the material!
\Rightarrow Solve many problems as preparation:
- old exams [link]
- selected wiki problems from previous years (2020 is coming)

SF2526 "Numerics for data science" [link]

Exam preparation information

- Work with the material!
\Rightarrow Solve many problems as preparation:
- old exams [link]
- selected wiki problems from previous years (2020 is coming)
- Read problem formulation carefully:
e.g. "Show" means "prove" (not matlab code)
- Correction more strict than wiki correction
- No calculator, notes, phones, books, etc allowed
- Zoom-protoctored exam, details are being set. Information will appear in Canvas

SF2526 "Numerics for data science" [link]

Exam preparation information

- Work with the material!
\Rightarrow Solve many problems as preparation:
- old exams [link]
- selected wiki problems from previous years (2020 is coming)
- Read problem formulation carefully:
e.g. "Show" means "prove" (not matlab code)
- Correction more strict than wiki correction
- No calculator, notes, phones, books, etc allowed
- Zoom-protoctored exam, details are being set. Information will appear in Canvas

Good luck on the exam
Please fill out the course evaluation (later)

