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Specialized methods

Matrix exponential - scaling-and-squaring
I Matlab: expm(A)
I Julia: exp(A)

Matrix square root
I Matlab: sqrtm(A)
I Julia: sqrt(A)

Matrix sign function
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Matrix exponential
PDF Lecture notes 4.3.1
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* exp(A + B) properties on board *

From basic properties of matrix functions:

exp(A) = exp(A/2) exp(A/2).

Repeat:
exp(A) = exp(A/4) exp(A/4) exp(A/4) exp(A/4).

· · ·
For any j

exp(A) =
(
exp(A/2j)

)2j
Repeated squaring

Given C = exp(A/2j), we can compute exp(A) with j matrix-matrix
multiplications: C0 = C

Ci = C 2
i−1, i = 1, . . . , j

We have Cj = exp(A). * Julia: squaring property *
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Computing exp(A/m)

How to compute exp(A/m), where m = 2j for large m?

Note: ‖ 1
mA‖ � 1 when m is large.

Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive

Use Truncated Taylor with expansion µ = 0

exp(B) ≈ I +
1

1!
B + · · ·+ 1

N!
BN

From Theorem 4.1.2:

Error ∼ ‖B‖N = ‖A/m‖N = ‖A‖N/mN

⇒ fast if m� ‖A‖
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Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

exp(B) ≈ Npq(B)Dpq(B)−1

where Npq ∈ Pp and Dpq ∈ Pq.

exp(z) ≈
∑p

i=0 αiz
i∑q

i=0 βiz i

More precisely, for Padé approximation of exponential we have

Npq(z) =

p∑
k=0

(p + q − k)!p!

(p + q)!k!(p − k)!
zk

Dpq(z) =

q∑
k=0

(p + q − k)!q!

(p + q)!k!(q − k)!
(−z)k .

Parameters p and q can be chosen such that a specific error can be
guaranteed.
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Why rational approximation?

In general, rational functions is a “richer set of functions”.
Padé approximant (p, q) for exponential has an error of order p + q + 1.

A note on computational cost

Matrix-vector product: O(n2) (Exploit in next lecture for f (A)b)

Matrix addition: O(n2)

Scalar times matrix: O(n2)

Matrix-matrix product: O(n3)

Matrix inverse: O(n3)

Padé approximants for exponential (typically p = q = 13)

Npp(B) = Dpp(−B) which gives that

Result: High-degree approximation can be evaluated cheaper than Taylor.
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Padé approximants for exponential (typically p = q = 13)

Npp(B) = Dpp(−B) which gives that

Npp(B) = V̂even(B2) + B · Ûodd(B2) (7 mat-mat
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Matrix square root
PDF Lecture notes 4.3.2
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Suppose
λ(A) ∩ (−∞, 0] = ∅

Then, with f (z) =
√
z the matrix function

F = f (A)

is well-defined with the Jordan definition or Cauchy definition. Moreover,

F 2 = A
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Newton’s method for scalar-valued equation:

g(x) = x2 − a = 0

Simplifies to

xk+1 = xk −
g(xk)

g ′(xk)
= . . . =

1

2
(xk + ax−1k )

Newton’s method for matrix square root (Newton-SQRT)

X0 = A

Xk+1 =
1

2
(Xk + AX−1k )

* Julia demo *

* Prove equivalence with Newton’s method for A = AT *
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Unfortunately: Newton’s method for matrix square root is numerically
unstable. Commutativity is important (not only our proof). * Julia demo *

Better in terms of stability:

Denman-Beavers algorithm

X0 = A

Y0 = I

Xk+1 :=
1

2
(Xk + Y−1k )

Yk+1 :=
1

2
(Yk + X−1k )

Properties of Denman-Beavers:

Equivalent to Newton-SQRT in exact arithmetic, but very different in
finite arithmetic
* proof on black board *

Much less sensitive to round-off than Newton-SQRT

One step requires two matrix inverses
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Matrix sign function
PDF Lecture notes 4.3.3
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Scalar-valued sign function

sign(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

−10 −5 0 5 10
−2

−1

0

1

2

x

Now: Matrix version.
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Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control
(Riccati equation)

For all cases except x = 0:

|x | =
√
x2

sign(x) =
|x |
x

=

√
x2

x

Definition matrix sign

sign(A) =
√
A2A−1
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Naive method

Compute directly
sign(A) =

√
A2A−1

We can do better: Combine Newton-SQRT with A2 and A−1

Derivation based on defining Sk = A−1Xk where Xk Newton-SQRT for√
A2 · · · * On black board *

Matrix sign iteration

S0 = A

Sk+1 =
1

2
(Sk + S−1k )
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Convergence

Local quadratic convergence follows from Newton equivalence.

We even have global convergence ...

Theorem (Global quadratic convergence of sign iteration)

Suppose A ∈ Rn×n has no eigenvalues on the imaginary axis. Let
S = sign(A), and Sk be generated by Sign iteration. Let

Gk := (Sk − S)(Sk + S)−1. (1)

Then,

Sk = S(I + Gk)(I − Gk)−1 for all k ,

Gk → 0 as k →∞,

Sk → S as k →∞, and

‖Sk+1 − S‖ ≤ 1

2
‖S−1k ‖‖Sk − S‖2. (2)
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