Numerical methods for matrix functions
 SF2524 - Matrix Computations for Large-scale Systems

Lecture 14: Specialized methods

Specialized methods

- Matrix exponential - scaling-and-squaring
- Matlab: $\operatorname{expm}(A)$

Julia: $\exp (A)$

- Matrix square root

Matlab: sqrtm(A)
Julia: sqrt(A)

- Matrix sign function

Matrix exponential PDF Lecture notes 4.3.1

From basic properties of matrix functions:

$$
\exp (A)=\exp (A / 2) \exp (A / 2)
$$

From basic properties of matrix functions:

$$
\exp (A)=\exp (A / 2) \exp (A / 2)
$$

Repeat:

$$
\exp (A)=\exp (A / 4) \exp (A / 4) \exp (A / 4) \exp (A / 4)
$$

From basic properties of matrix functions:

$$
\exp (A)=\exp (A / 2) \exp (A / 2)
$$

Repeat:

$$
\exp (A)=\exp (A / 4) \exp (A / 4) \exp (A / 4) \exp (A / 4)
$$

For any j

$$
\exp (A)=\left(\exp \left(A / 2^{j}\right)\right)^{2^{j}}
$$

From basic properties of matrix functions:

$$
\exp (A)=\exp (A / 2) \exp (A / 2)
$$

Repeat:

$$
\exp (A)=\exp (A / 4) \exp (A / 4) \exp (A / 4) \exp (A / 4)
$$

For any j

$$
\exp (A)=\left(\exp \left(A / 2^{j}\right)\right)^{2^{j}}
$$

Repeated squaring

Given $C=\exp \left(A / 2^{j}\right)$, we can compute $\exp (A)$ with j matrix-matrix multiplications: $C_{0}=C$

$$
C_{i}=C_{i-1}^{2}, \quad i=1, \ldots, j
$$

We have $C_{j}=\exp (A)$.

From basic properties of matrix functions:

$$
\exp (A)=\exp (A / 2) \exp (A / 2)
$$

Repeat:

$$
\exp (A)=\exp (A / 4) \exp (A / 4) \exp (A / 4) \exp (A / 4)
$$

For any j

$$
\exp (A)=\left(\exp \left(A / 2^{j}\right)\right)^{2^{j}}
$$

Repeated squaring

Given $C=\exp \left(A / 2^{j}\right)$, we can compute $\exp (A)$ with j matrix-matrix multiplications: $C_{0}=C$

$$
C_{i}=C_{i-1}^{2}, \quad i=1, \ldots, j
$$

We have $C_{j}=\exp (A)$.

Computing $\exp (A / m)$

How to compute $\exp (A / m)$, where $m=2^{j}$ for large m ?

Computing $\exp (A / m)$

How to compute $\exp (A / m)$, where $m=2^{j}$ for large m ?
Note: $\left\|\frac{1}{m} A\right\| \ll 1$ when m is large.

Computing $\exp (A / m)$

How to compute $\exp (A / m)$, where $m=2^{j}$ for large m ?
Note: $\left\|\frac{1}{m} A\right\| \ll 1$ when m is large.
Use approximation of matrix exponential which is good close to origin.

Computing $\exp (A / m)$

How to compute $\exp (A / m)$, where $m=2^{j}$ for large m ?
Note: $\left\|\frac{1}{m} A\right\| \ll 1$ when m is large.
Use approximation of matrix exponential which is good close to origin.
Idea 0: Naive
Use Truncated Taylor with expansion $\mu=0$

$$
\exp (B) \approx I+\frac{1}{1!} B+\cdots+\frac{1}{N!} B^{N}
$$

Computing $\exp (A / m)$

How to compute $\exp (A / m)$, where $m=2^{j}$ for large m ?
Note: $\left\|\frac{1}{m} A\right\| \ll 1$ when m is large.
Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive

Use Truncated Taylor with expansion $\mu=0$

$$
\exp (B) \approx I+\frac{1}{1!} B+\cdots+\frac{1}{N!} B^{N}
$$

From Theorem 4.1.2:

$$
\text { Error } \sim\|B\|^{N}=\|A / m\|^{N}=\|A\|^{N} / m^{N}
$$

\Rightarrow fast if $m \gg\|A\|$

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

$$
\exp (B) \approx N_{p q}(B) D_{p q}(B)^{-1}
$$

where $N_{p q} \in P_{p}$ and $D_{p q} \in P_{q}$.

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

$$
\exp (B) \approx N_{p q}(B) D_{p q}(B)^{-1}
$$

where $N_{p q} \in P_{p}$ and $D_{p q} \in P_{q}$.

$$
\exp (z) \approx \frac{\sum_{i=0}^{p} \alpha_{i} z^{i}}{\sum_{i=0}^{q} \beta_{i} z^{i}}
$$

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

$$
\exp (B) \approx N_{p q}(B) D_{p q}(B)^{-1}
$$

where $N_{p q} \in P_{p}$ and $D_{p q} \in P_{q}$.

$$
\exp (z) \approx \frac{\sum_{i=0}^{p} \alpha_{i} z^{i}}{\sum_{i=0}^{q} \beta_{i} z^{i}}
$$

More precisely, for Padé approximation of exponential we have

$$
\begin{aligned}
& N_{p q}(z)=\sum_{k=0}^{p} \frac{(p+q-k)!p!}{(p+q)!k!(p-k)!} z^{k} \\
& D_{p q}(z)=\sum_{k=0}^{q} \frac{(p+q-k)!q!}{(p+q)!k!(q-k)!}(-z)^{k}
\end{aligned}
$$

Parameters p and q can be chosen such that a specific error can be guaranteed.

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

$$
\exp (B) \approx N_{p q}(B) D_{p q}(B)^{-1}
$$

where $N_{p q} \in P_{p}$ and $D_{p q} \in P_{q}$.

$$
\exp (z) \approx \frac{\sum_{i=0}^{p} \alpha_{i} z^{i}}{\sum_{i=0}^{q} \beta_{i} z^{i}}
$$

More precisely, for Padé approximation of exponential we have

$$
\sum^{p} \quad(p+a-k)!p!
$$


```
Input: \(\delta>0\) and \(A \in \mathbb{R}^{n \times n}\)
    Output: \(F=\exp (A+E)\) where \(\|E\|_{\infty} \leq \delta\|A\|_{\infty}\).
    begin
    \(j=\max \left(0,1+\right.\) floor \(\left.\left(\log _{2}\left(\|A\|_{\infty}\right)\right)\right)\)
    \(A=A / 2^{j}\)
    Let \(q\) be the smallest non-negative integer such that
        \(\varepsilon(q, q) \leq \delta\).
    \(D=I ; N=I ; X=I ; c=1\)
    for \(k=1: q\) do
        \(c=c(q-k+1) /((2 q-k+1) k)\)
        \(X=A X ; N=N+c X ; D=D+(-1)^{k} c X\)
    end
    Solve \(D F=N\) for \(F\)
    for \(k=1: j\) do
    | \(F=F^{2}\)
    end
    end
```

Algorithm 2: Scaling-and-squaring for the matrix exponential

Why rational approximation?

Why rational approximation?

In general, rational functions is a "richer set of functions".

Why rational approximation?

In general, rational functions is a "richer set of functions".
Padé approximant (p, q) for exponential has an error of order $p+q+1$.

Why rational approximation?
In general, rational functions is a "richer set of functions".
Padé approximant (p, q) for exponential has an error of order $p+q+1$.
A note on computational cost

- Matrix-vector product: $\mathcal{O}\left(n^{2}\right)$
(Exploit in next lecture for $f(A) b$)
- Matrix addition: $\mathcal{O}\left(n^{2}\right)$
- Scalar times matrix: $\mathcal{O}\left(n^{2}\right)$
- Matrix-matrix product: $\mathcal{O}\left(n^{3}\right)$
- Matrix inverse: $\mathcal{O}\left(n^{3}\right)$

Why rational approximation?
In general, rational functions is a "richer set of functions".
Padé approximant (p, q) for exponential has an error of order $p+q+1$.
A note on computational cost

- Matrix-vector product: $\mathcal{O}\left(n^{2}\right) \quad$ (Exploit in next lecture for $f(A) b$)
- Matrix addition: $\mathcal{O}\left(n^{2}\right)$
- Scalar times matrix: $\mathcal{O}\left(n^{2}\right)$
- Matrix-matrix product: $\mathcal{O}\left(n^{3}\right)$
- Matrix inverse: $\mathcal{O}\left(n^{3}\right)$

Padé approximants for exponential (typically $p=q=13$)
$N_{p p}(B)=D_{p p}(-B)$ which gives that

- $N_{p p}(B)=V_{\text {even }}(B)+U_{\text {odd }}(B)$
(13 mat-mat
- $D_{p p}(B)=V_{\text {even }}(B)-U_{\text {odd }}(B)$
+1 inverse)

Why rational approximation?
In general, rational functions is a "richer set of functions".
Padé approximant (p, q) for exponential has an error of order $p+q+1$.
A note on computational cost

- Matrix-vector product: $\mathcal{O}\left(n^{2}\right) \quad$ (Exploit in next lecture for $f(A) b$)
- Matrix addition: $\mathcal{O}\left(n^{2}\right)$
- Scalar times matrix: $\mathcal{O}\left(n^{2}\right)$
- Matrix-matrix product: $\mathcal{O}\left(n^{3}\right)$
- Matrix inverse: $\mathcal{O}\left(n^{3}\right)$

Padé approximants for exponential (typically $p=q=13$)
$N_{p p}(B)=D_{p p}(-B)$ which gives that

- $N_{p p}(B)=\hat{V}_{\text {even }}\left(B^{2}\right)+B \cdot \hat{U}_{\text {odd }}\left(B^{2}\right)$
(7 mat-mat
- $D_{p p}(B)=\hat{V}_{\text {even }}\left(B^{2}\right)-B \cdot \hat{U}_{\text {odd }}\left(B^{2}\right) \quad+1$ inverse $)$

Result: High-degree approximation can be evaluated cheaper than Taylor.

Matrix square root PDF Lecture notes 4.3.2

Suppose

$$
\lambda(A) \cap(-\infty, 0]=\emptyset
$$

Suppose

$$
\lambda(A) \cap(-\infty, 0]=\emptyset
$$

Then, with $f(z)=\sqrt{z}$ the matrix function

$$
F=f(A)
$$

is well-defined with the Jordan definition or Cauchy definition.

Suppose

$$
\lambda(A) \cap(-\infty, 0]=\emptyset
$$

Then, with $f(z)=\sqrt{z}$ the matrix function

$$
F=f(A)
$$

is well-defined with the Jordan definition or Cauchy definition. Moreover,

$$
F^{2}=A
$$

Newton's method for scalar-valued equation:

$$
g(x)=x^{2}-a=0
$$

Newton's method for scalar-valued equation:

$$
g(x)=x^{2}-a=0
$$

Simplifies to

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}=\ldots=\frac{1}{2}\left(x_{k}+a x_{k}^{-1}\right)
$$

Newton's method for scalar-valued equation:

$$
g(x)=x^{2}-a=0
$$

Simplifies to

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}=\ldots=\frac{1}{2}\left(x_{k}+a x_{k}^{-1}\right)
$$

Newton's method for matrix square root (Newton-SQRT)

$$
\begin{aligned}
X_{0} & =A \\
X_{k+1} & =\frac{1}{2}\left(X_{k}+A X_{k}^{-1}\right)
\end{aligned}
$$

Newton's method for scalar-valued equation:

$$
g(x)=x^{2}-a=0
$$

Simplifies to

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}=\ldots=\frac{1}{2}\left(x_{k}+a x_{k}^{-1}\right)
$$

Newton's method for matrix square root (Newton-SQRT)

$$
\begin{aligned}
X_{0} & =A \\
X_{k+1} & =\frac{1}{2}\left(X_{k}+A X_{k}^{-1}\right)
\end{aligned}
$$

Newton's method for scalar-valued equation:

$$
g(x)=x^{2}-a=0
$$

Simplifies to

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}=\ldots=\frac{1}{2}\left(x_{k}+a x_{k}^{-1}\right)
$$

Newton's method for matrix square root (Newton-SQRT)

$$
\begin{aligned}
X_{0} & =A \\
X_{k+1} & =\frac{1}{2}\left(X_{k}+A X_{k}^{-1}\right)
\end{aligned}
$$

* Julia demo *
* Prove equivalence with Newton's method for $A=A^{T}$ *

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof).

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof). Better in terms of stability:

Denman-Beavers algorithm

$$
\begin{aligned}
X_{0} & =A \\
Y_{0} & =1 \\
X_{k+1} & :=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right) \\
Y_{k+1} & :=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right)
\end{aligned}
$$

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof). Better in terms of stability:

Denman-Beavers algorithm

$$
\begin{aligned}
X_{0} & =A \\
Y_{0} & =1 \\
X_{k+1} & :=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right) \\
Y_{k+1} & :=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right)
\end{aligned}
$$

Properties of Denman-Beavers:

- Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic
* proof on black board *

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof). * Julia demo * Better in terms of stability:

Denman-Beavers algorithm

$$
\begin{aligned}
X_{0} & =A \\
Y_{0} & =1 \\
X_{k+1} & :=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right) \\
Y_{k+1} & :=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right)
\end{aligned}
$$

Properties of Denman-Beavers:

- Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic
* proof on black board *
- Much less sensitive to round-off than Newton-SQRT

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof). * Julia demo * Better in terms of stability:

Denman-Beavers algorithm

$$
\begin{aligned}
X_{0} & =A \\
Y_{0} & =1 \\
X_{k+1} & :=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right) \\
Y_{k+1} & :=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right)
\end{aligned}
$$

Properties of Denman-Beavers:

- Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic
* proof on black board *
- Much less sensitive to round-off than Newton-SQRT
- One step requires two matrix inverses

Matrix sign function

PDF Lecture notes 4.3.3

Scalar-valued sign function

$$
\operatorname{sign}(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Scalar-valued sign function

$$
\operatorname{sign}(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Now: Matrix version.

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

For all cases except $x=0$:

$$
\begin{aligned}
|x| & =\sqrt{x^{2}} \\
\operatorname{sign}(x) & =\frac{|x|}{x}=\frac{\sqrt{x^{2}}}{x}
\end{aligned}
$$

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

For all cases except $x=0$:

$$
\begin{aligned}
|x| & =\sqrt{x^{2}} \\
\operatorname{sign}(x) & =\frac{|x|}{x}=\frac{\sqrt{x^{2}}}{x}
\end{aligned}
$$

Definition matrix sign

$$
\operatorname{sign}(A)=\sqrt{A^{2}} A^{-1}
$$

Naive method
Compute directly

$$
\operatorname{sign}(A)=\sqrt{A^{2}} A^{-1}
$$

Naive method
Compute directly

$$
\operatorname{sign}(A)=\sqrt{A^{2}} A^{-1}
$$

We can do better: Combine Newton-SQRT with A^{2} and A^{-1}

Naive method

Compute directly

$$
\operatorname{sign}(A)=\sqrt{A^{2}} A^{-1}
$$

We can do better: Combine Newton-SQRT with A^{2} and A^{-1}

Derivation based on defining $S_{k}=A^{-1} X_{k}$ where X_{k} Newton-SQRT for $\sqrt{A^{2}} \ldots$

* On black board *

Naive method

Compute directly

$$
\operatorname{sign}(A)=\sqrt{A^{2}} A^{-1}
$$

We can do better: Combine Newton-SQRT with A^{2} and A^{-1}

Derivation based on defining $S_{k}=A^{-1} X_{k}$ where X_{k} Newton-SQRT for $\sqrt{A^{2}} \ldots$

* On black board *

Matrix sign iteration

$$
\begin{aligned}
S_{0} & =A \\
S_{k+1} & =\frac{1}{2}\left(S_{k}+S_{k}^{-1}\right)
\end{aligned}
$$

Convergence

- Local quadratic convergence follows from Newton equivalence.

Convergence

- Local quadratic convergence follows from Newton equivalence.
- We even have global convergence ...

Convergence

- Local quadratic convergence follows from Newton equivalence.
- We even have global convergence ...

Theorem (Global quadratic convergence of sign iteration)

Suppose $A \in \mathbb{R}^{n \times n}$ has no eigenvalues on the imaginary axis. Let $S=\operatorname{sign}(A)$, and S_{k} be generated by Sign iteration. Let

$$
\begin{equation*}
G_{k}:=\left(S_{k}-S\right)\left(S_{k}+S\right)^{-1} \tag{1}
\end{equation*}
$$

Then,

- $S_{k}=S\left(I+G_{k}\right)\left(I-G_{k}\right)^{-1}$ for all k,
- $G_{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $S_{k} \rightarrow S$ as $k \rightarrow \infty$, and

$$
\begin{equation*}
\left\|S_{k+1}-S\right\| \leq \frac{1}{2}\left\|S_{k}^{-1}\right\|\left\|S_{k}-S\right\|^{2} \tag{2}
\end{equation*}
$$

