Introduction to Arnoldi method

SF2524 - Matrix Computations for Large-scale Systems

Main eigenvalue algorithms in this course

- Fundamental eigenvalue techniques (Lecture 1-2)
- Arnoldi method (Lecture 2-3). Typically suitable when
- we are interested in a small number of eigenvalues,
the matrix is large and sparse
Solvable size on current desktop $m \sim 10^{6}$ (depending on structure)
- QR-method (Lecture 9-10).

Typically suitable when
we want to compute all eigenvalues,
the matrix does not have any particular easy structure.

- Solvable size on current desktop $m \sim 1000$.

Agenda lecture 2-4

- Lecture 2: Introduction to Arnoldi method
- Lecture 2.5 video: Rayleigh-Ritz method
- Lecture 3: Gram-Schmidt - efficiency and roundoff errors
- Lecture 3: Derivation of Arnoldi method
- Lecture 3.5 video: Convergence preparation: $\varepsilon_{i}^{(m)}$
- Lecture 4: Convergence characterization

Idea of Arnoldi method (slide $1 / 3$)

Eigenvalue problem

$$
A x=\lambda x
$$

Suppose $Q=\left[q_{1}, \ldots, q_{m}\right] \in \mathbb{R}^{n \times m}$ and

$$
x \in \operatorname{span}\left(q_{1}, \ldots, q_{m}\right)
$$

\Rightarrow There exists $z \in \mathbb{R}^{m}$ such that

$$
A Q z=\lambda Q z
$$

and Q orthogonal

$$
Q^{T} A Q z=\lambda Q^{T} Q z=\lambda z
$$

Elias: Remind background quiz which contains intro to orthogonal matrices.

Idea of Arnoldi method (slide 2/3)

Rayleigh-Ritz procedure

Let $Q \in \mathbb{R}^{n \times m}$ be orthogonal basis of some subspace. Solutions (μ, z) to the eigenvalue problem

$$
Q^{T} A Q z=\mu z
$$

are called Ritz pairs. The procedure (Rayleigh-Ritz)

- returns an exact eigenvalue if $x \in \operatorname{span}\left(q_{1}, \ldots, q_{m}\right)$, and
- approximates eigenvalues of A "well" if

$$
x \approx \tilde{x} \in \operatorname{span}\left(q_{1}, \ldots, q_{m}\right)
$$

Formalized in Lecture 2.5 video.
What is a good subspace $\operatorname{span}(Q)$?

Idea of Arnoldi method (slide 3/3)

Recall: Power method approximates the largest eigenvalue well.
Definition: Krylov matrix / subspace

$$
\begin{gathered}
K_{m}\left(A, q_{1}\right):=\left(q_{1}, A q_{1}, \ldots A^{m-1} q_{1}\right) \\
\mathcal{K}_{m}\left(A, q_{1}\right):=\operatorname{span}\left(q_{1}, A q_{1}, \ldots A^{m-1} q_{1}\right)
\end{gathered}
$$

Justification of Arnoldi method

- Use Rayleigh-Ritz on $Q=\left(q_{1}, \ldots, q_{m}\right)$ and $Q^{T} Q=I$, where

$$
\operatorname{span}\left(q_{1}, \ldots, q_{m}\right)=\mathcal{K}_{m}\left(A, q_{1}\right)
$$

- Arnoldi method is a "clever" procedure to construct $H_{m}=Q^{T} A Q$.
- "Clever": We expand Q with one row in each iteration \Rightarrow Iterate until we are happy.

Arnoldi method graphically

Graphical illustration of algorithm:

After iteration: Take eigenvalues of H as approximate eigenvalues.

We will now...

(1) derive a good orthogonalization procedure: variants of Gram-Schmidt,
(2) show that Arnoldi generates a Rayleigh-Ritz approximation,
(3) characterize the convergence (next Lecture 3-4).

Lecture 3

- Gram-Schmidt (classical, modified, double)
- Arnoldi method derivation \& analysis

Gram-Schmidt methods (for numerical computations)

 in particular for the Arnoldi method
Something someone should have taught you

Problem from linear algebra

Given:

- $\left[a_{1}, \ldots, a_{m}\right]=A_{m} \in \mathbb{R}^{n \times m}$ (linearly independent)

Compute $\left[q_{1}, \ldots, q_{m}\right]=Q_{m}$ such that

- $\operatorname{span}\left(q_{1}, \ldots, q_{m}\right)=\operatorname{span}\left(a_{1}, \ldots, a_{m}\right)$
- Q_{m} orthogonal.

Problem ("easier" problem)

Given:

- $Q_{m} \in \mathbb{R}^{n \times m}$ orthogonal matrix \leftarrow Already orthogonal
- $w \in \mathbb{R}^{n}$ satisfying $w \notin \operatorname{span}\left(Q_{m}\right)$

Compute Q_{m+1},

- $h_{1}, \ldots, h_{m}, \beta \in \mathbb{R}$
- $q_{m+1} \in \mathbb{R}^{n}$

such that

(a) $Q_{m+1}=\left[Q_{m}, q_{m+1}\right]$ is orthogonal
(b) $\operatorname{span}\left(q_{1}, \ldots, q_{m+1}\right)=\operatorname{span}\left(q_{1}, \ldots, q_{m}, w\right)$
(c) $w=h_{1} q_{1}+\cdots+h_{m} q_{m}+\beta q_{m+1}$

Solution:

1. Compute a vector y which is orthogonal to Q_{m}
2. Normalize vector y

- 1. Element of $\operatorname{span}\left(q_{1}, \ldots, q_{k}\right)$ can be expressed as $Q h$: If y and h satisfy

$$
\begin{equation*}
y=w-Q h \tag{}
\end{equation*}
$$

$\Rightarrow \operatorname{span}\left(q_{1}, \ldots, q_{k}, w\right)=\operatorname{span}\left(q_{1}, \ldots, q_{k}, y\right)$
Idea: Select h such that y orthogonal to q_{1}, \ldots, q_{k} :

$$
\begin{aligned}
0 & =q_{1}^{T} y \\
& \vdots \\
0 & =q_{k}^{T} y
\end{aligned}
$$

can be expressed in vectors as

$$
0=Q^{T} y=Q^{T}(w-Q h)=Q^{T} w-Q^{T} Q h=Q^{T} w-h
$$

$$
\Rightarrow h=Q^{T} w .
$$

2. Let $\beta=\|y\|$ and set $q_{k+1}=y / \beta$

The construction implies that $\left({ }^{*}\right)$ reduces to

$$
\begin{aligned}
y & =w-Q h \\
w & =Q h+y=h_{1} q_{1}+\cdots h_{k} q_{k}+\beta q_{k+1}
\end{aligned}
$$

```
Classical Gram-Schmidt
>> h=Q'*w
>> y=w-Q*h
>> beta=norm(y)
>> qnew=y/beta
>> Qnew=[Q,qnew]
```

* Show that it often works *
* Show a case where it doesn't work *
* Modified GS on black board *

Repeated Gram-Schmidt

Another solution to the instability of CGS:
Repeated Gram-Schmidt (or Double Gram-Schmidt)

Simple idea

Carry out orthogonalization again.

```
>> h = Q'*W
>> y = w-Q*h
>> g = Q'*y
>> y = y-Q*g
>> h = h + g
>> beta = norm(y)
>> y = y/beta
```

Properties:

- Less sensitive to round-off than CGS
- Twice as many FLOPS as CGS and MGS
- Can be carried out with matrix vector operations
* Now: Arnoldi factorization etc on black board *

```
function [Q,H]=arnoldi(A,b,m)
% [Q,H]=arnoldi (A,b,m)
% A simple implementation of the Arnoldi method.
% The algorithm will return an Arnoldi "factorization":
% Q Q H (1:m+1,1:m)-A*Q(:,1:m)=0
% where Q is an orthogonal basis of the Krylov subspace
% and H a Hessenberg matrix.
%
    n= length(b);;
    Q=zeros(n,m+1);
    Q(:,1)=b/norm(b);
    for k=1:m
        w=A*(Q(:,k)); % Matrix-vector product
                        % with last element
        %%% Orthogonalize w against columns of Q
        % correct sol of HW1.2b
        [h,beta,worth]=hw1_good_gs(Q,w,k);
        %%% Put Gram-Schmidt coefficients into H
        H(1:(k+1),k)=[h;beta];
        %%% normalize
        Q(:,k+1)=wor th/beta;
    end
end
```

Convergence theory of Arnoldi's method for eigenvalue problems

Convergence of AM for eigproblems

Our characterization: The convergence to eigenvalue i at iteration m :

$$
\text { error for eigvec } x_{i} \leq \xi_{i} \varepsilon_{i}^{(m)}
$$

where

$$
\varepsilon_{i}^{(m)}=\min _{\substack{p \in P_{m-1} \\ p\left(\lambda_{i}\right)=1}} \max _{j \neq i}\left|p\left(\lambda_{j}\right)\right| .
$$

and P_{m-1} is the set of polynomials of degree $m-1$.

Example of convergence theory of the Arnoldi method for eigenvalue problems:

Theorem (Jia, SIAM J. Matrix. Anal. Appl. 1995)

Let Q_{m} and H_{m} be generated by the Arnoldi method and suppose $\lambda_{i}^{(m)}$ is an eigenvalue of H_{m}. Assume that $\ell_{i}=1$ and the associated value $\left\|\left(I-Q_{m} Q_{m}^{T}\right) x_{i}\right\|$ is sufficiently small. Let $P_{i}^{(m)}$ be the spectral projector associated with $\lambda_{i}^{(m)}$. Then,

$$
\left|\lambda_{i}^{(m)}-\lambda_{i}\right| \leq\left\|P_{i}^{(m)}\right\| \gamma_{m} \frac{\left\|\left(I-Q_{m} Q_{m}^{T}\right) x_{i}\right\|}{\left\|Q_{m} Q_{m}^{T} x_{i}\right\|}+\mathcal{O}\left(\frac{\left\|\left(I-Q_{m} Q_{m}^{T}\right) x_{i}\right\|^{2}}{\left\|Q_{m} Q_{m}^{T} x_{i}\right\|^{2}}\right)
$$

The theorem is not a part of the course. In this course we will gain qualitative understanding by bounding

$$
\left\|\left(I-Q_{m} Q_{m}^{T}\right) x_{i}\right\|
$$

