SF2524 - Matrix computations for large-scale systems
\approx Numerical linear algebra for large-scale systems

Elias Jarlebring
KTH Royal Institute of Technology
Mathematics Dept. - NA division

Lecture 1

- About the teachers
- About the students
- About the topic
- About the course

About the teachers
About the students

- Fundamental eigenvalue techniques:

About the topic

- Rayleigh quotient
- Power method
- Inverse iteration
- Rayleigh qoutient iteration

About the Lecturer

Elias Jarlebring - Associate Professor - teacher - researcher

[width=0.3]silhouette.jpg

Background - Elias Jarlebring

- From: Vännäs/Umeå, Sweden
- MSc: KTH, Stockholm (Teknisk fysik)
- MSc thesis: TU Hamburg
- PhD: TU Braunschweig, Germany

About the teachers
About the students
About the topic
About the course

- Post-doc: KU Leuven, Belgium
- Dahlquist fellow: KTH, Stockholm
- Assoc. Prof (Lektor): KTH, Stockholm
- Assoc. Prof (Docent): KTH, Stockholm

CV - continued

About the teachers
About the students

About the topic

About the course

CV - continued

- Researcher:
- applied and computational mathematics
- numerical linear algebra: e.g. Nonlinear eigenvalue problems

CV - continued

- Researcher:
- applied and computational mathematics

- numerical linear algebra: e.g. Nonlinear eigenvalue problems
- Teacher: numerical methods and numerical linear algebra

About the teachers
About the students
About the topic
About the course

CV - continued

- Researcher:
- applied and computational mathematics

- numerical linear algebra: e.g. Nonlinear eigenvalue problems
- Teacher: numerical methods and numerical linear algebra
- Hacker/programmer: Open source projects

About the teachers
About the students
About the topic
About the course

CV - continued

- Researcher:
- applied and computational mathematics

- numerical linear algebra: e.g. Nonlinear eigenvalue problems
- Teacher: numerical methods and numerical linear algebra
- Hacker/programmer: Open source projects
- Language nerd: Swedish, English, German, Dutch, Russian

About the teachers
About the students
About the topic
About the course

- Language nerd: C/C++, Assembler, Julia, Java, ...

CV - continued

- Researcher:
- applied and computational mathematics

- numerical linear algebra: e.g. Nonlinear eigenvalue problems
- Teacher: numerical methods and numerical linear algebra
- Hacker/programmer: Open source projects
- Language nerd: Swedish, English, German, Dutch, Russian

About the teachers
About the students
About the topic
About the course

- Language nerd: C/C++, Assembler, Julia, Java, ...
- EU globetrotter: Sweden, Ireland, Germany, Belgium, USA

Teaching portfolio - Elias Jarlebring

About the teachers bachelor, master, PhD-level (+high-shool level)

- Teaching style: lectures with blended learning slides, blackboard, live computer demos, additional online material, quizzes, wiki activity

About the teachers bachelor, master, PhD-level (+high-shool level)

- Teaching style: lectures with blended learning slides, blackboard, live computer demos, additional online material, quizzes, wiki activity

Student comments about E.J. as a teacher

- Germany 2004: "We don't understand what he is saying. We can't read what he is writing, but he is nice and draws beautiful figures."

About the teachers
About the students

- Teaching style: lectures with blended learning slides, blackboard, live computer demos, additional online material, quizzes, wiki activity

Student comments about E.J. as a teacher

- Germany 2004: "We don't understand what he is saying. We can't read what he is writing, but he is nice and draws beautiful figures."
- Germany 2006: Clear explanations

- Experience: All university levels + four countries bachelor, master, PhD-level (+high-shool level)
- Teaching style: lectures with blended learning slides, blackboard, live computer demos, additional online material, quizzes, wiki activity

Student comments about E.J. as a teacher

- Germany 2004: "We don't understand what he is saying. We can't read what he is writing, but he is nice and draws beautiful figures."
- Germany 2006: Clear explanations
- Sweden ~2012: Authorative style. Strict. Structured and competent.
- Sweden ~2016: The best learning experience I have had

About the Teaching Assistant

Teaching assistant: Giampaolo Mele

Elias Jarlebring

About the students
About the topic
TA: Giampaolo Mele

- Moderator of Wiki
- Answers questions (email)
- Answers questions office hours
- Substitute lecturer
- Competent: researcher in numerical linear algebra
- Very friendly!

About the students

Who are the students

About the teachers
About the students
About the topic
About the course

Who are the students

Students from countries

Sweden, France, Germany, USA, Denmark, Netherlands, India, South africa, China, UK, Spain, Iceland ...

Beware: Different student background \Rightarrow Different skill set.

About the topic

Numerical linear algebra in a bigger context

Application
Mathematical
problem

Matrix problem

Computational solution

Numerical linear algebra in a bigger context

Computational solution

Numerical linear algebra in a bigger context

Computational solution

Numerical linear algebra in a bigger context

Numerical linear algebra in a bigger context

Definition: Numerical linear algebra

Numerical linear algebra is the study of numerical methods for linear algebra operations

Large-scale matrix computations

Elias Jarlebring

About the teachers

- Physics, mechanics, astronomy, etc
- Chemistry, quantum chemistry, biology,
- Data science, data analysis, machine learning
- Discretizations of PDEs
- ...

The predictive power of the model is often limited by the performance of the algorithms. We study the details of the algorithms.

Definition: Numerical linear algebra

Numerical linear algebra is the study of numerical methods for linear algebra operations, a.k.a. fun part of linear algebra.

Large-scale matrix computations

- Algorithms and methods that involve matrices of large size
- Large-scale matrix computations \subset Numerical linear algebra

Applications / motivation

Applications arise in essentially all scientific fields

About the teachers
About the students

About the topic

About the course

- Physics, mechanics, astronomy, etc
- Chemistry, quantum chemistry, biology,
- Data science, data analysis, machine learning
- Discretizations of PDEs
- ...

The predictive power of the model is often limited by the performance of the algorithms. We study the details of the algorithms.

About the course - SF2524

Course contents - SF2524

A selection of topics in numerical linear algebra. Separated into blocks:

- Background: Orthogonal matrices Jordan decomposition
- Block 1: Large and sparse eigenvalue algorithms

Elias Jarlebring

Why these topics?

- Most mature problem classes in research on matrix comp
- Most common matrix problems in applications

Lectures

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

Lectures

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

Lecture overview (preliminary)

- Lecture 1-4: Block 1: Eigenvalue algorithms (part 1)
- Lecture 4-9: Block 2: Linear systems of equations
- Lecture 10-11: Block 3: Eigenvalue algorithms (part 2): QR-method
- Lecture 12-15: Block 4: Functions of matrices

Practicalities

Course webpage

- Online learning platform: CANVAS
- Course registration necessary to obtain complete access.
- Most course material online
- Mandatory quizzes
- Optional quiz: background

Practicalities

Course webpage

- Online learning platform: CANVAS
- Course registration necessary to obtain complete access.
- Most course material online
- Mandatory quizzes
- Optional quiz: background

Literature

Elias Jarlebring

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

- Julia language

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

- Julia language

SF3580:

- Julia language

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

- Julia language

SF3580:

- Julia language

About the teachers
About the students
About the topic
About the course

- Julia language

SF3580:

- Julia language
- Live programming in lectures will be in MATLAB.
[width=0.25]homework.png

- Work in groups of at most two
[width=0.25]homework.png

Elias Jarlebring

[width=0.25]homework.png

Elias Jarlebring

Two types of bonus points

- Regular bonus points.
- Wiki bonus points: Reduces limits for grade A and B.

Course wiki: active learning

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

Course wiki: active learning

Elias Jarlebring

About the teachers
About the students
About the topic
About the course

Course wiki: active learning

- Students create problems and solutions

About the teachers
About the students
About the topic
About the course

Course wiki: active learning

- Students create problems and solutions
- Optional part of homework
- Mandatory for regular bonus points

About the teachers
[width=]course ${ }_{\text {w }}$ iki.jpg
About the students
About the topic
About the course

Course wiki: active learning

- Students create problems and solutions
- Optional part of homework
- Mandatory for regular bonus points (1 prob +1 sol)
- Can lead to wiki bonus
- Moderation by Giampaolo and Elias
- Public but anonymous to outsiders

Course wiki: active learning

- Students create problems and solutions
- Optional part of homework
- Mandatory for regular bonus points
(1 prob +1 sol)
- Can lead to wiki bonus
- Moderation by Giampaolo and Elias
- Public but anonymous to outsiders
- Highly collaborative training activity

Course wiki: active learning

- Students create problems and solutions
- Optional part of homework
- Mandatory for regular bonus points (1 prob +1 sol)
- Can lead to wiki bonus
- Moderation by Giampaolo and Elias
- Public but anonymous to outsiders
- Highly collaborative training activity
- Think out of the box! Help each other! Don't be afraid to pose easy problems! Don't be afrait make mistakes! It's fun!

Course analysis and development

Course analysis and development

 Greetings from "older" students:Messages from students of previous year(s)

- "Take notes during lectures. The proofs in the book are sometimes incomplete."
- "I first looked at the home-work and thought, this will be so much work..., and then we actually started and the tasks in the homework were specific so it went fast"
- "The homework are designed to check understanding of the actual contents of the course."
- "High attendence in the lectures is important"
- "After the second lecture, I thought, wow this is totally different"

Course analysis and development

 Greetings from "older" students:
Messages from students of previous year(s)

- "Take notes during lectures. The proofs in the book are sometimes incomplete."
- "I first looked at the home-work and thought, this will be so much work..., and then we actually started and the tasks in the homework were specific so it went fast"
- "The homework are designed to check understanding of the actual contents of the course."
- "High attendence in the lectures is important"
- "After the second lecture, I thought, wow this is totally different"

Course development HT19 (see course analysis)

- New parts in homeworks
- More written material in blockX.pdf
- More video material
[width=]FFF-Rose-87-year-old-student$150 \times 150 . j p g$ Greetings from old student

Course analysis and development

 Greetings from "older" students:
Messages from students of previous year(s)

- "Take notes during lectures. The proofs in the book are sometimes incomplete."
- "I first looked at the home-work and thought, this will be so much work..., and then we actually started and the tasks in the homework were specific so it went fast"
- "The homework are designed to check understanding of the actual contents of the course."
- "High attendence in the lectures is important"
- "After the second lecture, I thought, wow this is totally different"

Course development HT19 (see course analysis)

- New parts in homeworks
- More written material in blockX.pdf
- More video material

Time to start the lecture ...

Time to start the lecture ...

About the teachers
About the students
Fundamental eigenvalue techniques (block 1)

- Examples: Large and sparse eigenvalue problems
- Rayleigh quotient
- Power method = power iteration
- Inverse iteration
- Rayleigh qoutient iteration

Large eigenproblem example: Structural mechanics

[width $=0.4]$ structural3.jpg $\quad[$ width $=0.4]$ structutural $_{n} e w . p n g$

Structural mechanics + Finite Element Method \Rightarrow

$$
A x=\lambda x
$$

- A is a large and sparse matrix (stiffness matrix)
- (λ, x) determines vibrations

Large eigenproblem example: Data science

Facebook network:
[width=0.45]facebook-network.png

Graph of representing interconnectedness of data \Rightarrow

$$
A x=\lambda x
$$

- A is a large and sparse matrix (graph Laplacian)
- $\left(\lambda_{2}, x_{2}\right)$ determines clustering properties

Large eigenproblem example: Data science

Facebook network:
[width=0.45]facebook-network.png

$$
A x=\lambda x
$$

- A is a large and sparse matrix (graph Laplacian)
- $\left(\lambda_{2}, x_{2}\right)$ determines clustering properties

Learn more in SF2526 - Numerics for data science

Inverse Iteration

Whe if

About the students

About the topic

About the course

