QR-method lecture 2

SF2524 - Matrix Computations for Large-scale Systems

Outline:
(1) Decompositions

- Jordan form
- Schur decomposition
- QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach
- Hessenberg reduction
- Hessenberg QR-method
(9) Improvement 2: Acceleration with shifts
(6) Convergence theory

Improvement 1: Two-phase approach

We will separate the computation into two phases:

Phases:

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes)

Phase 1: Hessenberg reduction

Idea for Hessenberg reduction
Compute unitary P and Hessenberg matrix H such that

$$
A=P H P^{*}
$$

Unlike the Schur factorization, this can be computed with a finite number of operations.

Key method: Householder reflectors

Phase 1: Hessenberg reduction

Definition

A matrix $P \in \mathbb{C}^{m \times m}$ of the form

$$
P=I-2 u u^{*} \quad \text { where } u \in \mathbb{C}^{m} \text { and }\|u\|=1
$$

is called a Householder reflector.

Properties

- $P^{*}=P^{-1}=P$
- $P z=z-2 u\left(u^{*} z\right)$ can be computed with $O(m)$ operations.
- ... (show on white board)

Householder reflectors satisfying $P x=\alpha e_{1}$

Problem
Given a vector x compute a Householder reflector such that

$$
P x=\alpha e_{1} .
$$

Solution (Lemma 2.2.3)

Let $\rho=\operatorname{sign}\left(x_{1}\right)$,

$$
z:=x-\rho\|x\| e_{1}=\left[\begin{array}{c}
x_{1}-\rho\|x\| \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

and

$$
u=z /\|z\| .
$$

Then, $P=I-2 u u^{*}$ is a Householder reflector that satisfies $P x=\alpha e_{1}$.

* Matlab demo showing Householder reflectors *

We will be able to construct $m-2$ householder reflectors that bring the matrix to Hessenberg form.

Elimination for first column

$$
P_{1}:=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right]=\left[\begin{array}{cc}
1 & 0^{T} \\
0 & I-2 u_{1} u_{1}^{T}
\end{array}\right] .
$$

Use Lemma 2.2.1 with $x^{T}=\left[a_{21}, \ldots, a_{n 1}\right]$ to select u_{1} such that

$$
P_{1} A=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times
\end{array}\right]
$$

In order to have a similarity transformation mult from right:

$$
P_{1} A P_{1}^{-1}=P_{1} A P_{1}=\text { same structure as } P_{1} A .
$$

Elimination for second column

Repeat the process with:

$$
P_{2}=\left[\begin{array}{ccc}
1 & 0 & 0^{T} \\
0 & 1 & 0^{T} \\
0 & 0 & I-2 u_{2} u_{2}^{T}
\end{array}\right]
$$

where u_{2} is constructed from the $n-2$ last elements of the second column of $P_{1} A P_{1}^{*}$.

$$
\begin{aligned}
& P_{1} A P_{1}=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times
\end{array}\right] \underset{\text { mult. from }}{\longrightarrow}\left[\begin{array}{lllll}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times & \times
\end{array}\right] \\
& \underset{\text { mult. from }}{ } \quad\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
\text { right with } P_{2}
\end{array}\right]=P_{2} P_{1} A P_{1} P_{2}
\end{aligned}
$$

* Matlab demo of the first two steps of the Hessenberg reduction *

The iteration can be implemented without explicit use of the P matrices.

```
Algorithm 2 Reduction to Hessenberg form
Input: A matrix \(A \in \mathbb{C}^{n \times n}\)
Output: A Hessenberg matrix \(H\) such that \(H=U^{*} A U\).
    for \(k=1, \ldots, n-2\) do
        Compute \(u_{k}\) using (2.4) where \(x^{T}=\left[a_{k+1, k}, \cdots, a_{n, k}\right]\)
        Compute \(P_{k} A: A_{k+1: n, k: n}:=A_{k+1: n, k: n}-2 u_{k}\left(u_{k}^{*} A_{k+1: n, k: n}\right)\)
        Compute \(P_{k} A P_{k}^{*}: A_{1: n, k+1: n}:=A_{1: n, k+1: n}-2\left(A_{1: n, k+1: n} u_{k}\right) u_{k}^{*}\)
    end for
    Let \(H\) be the Hessenberg part of \(A\).
```

* show it in matlab *

