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11 Method of Proof by Induction

With the emphasis on structured programming has come the development of
an area called program verification, which means your program is correct
as you are writing it.

One technique essential to program verification is mathematical induc-
tion, a method of proof that has been useful in every area of mathematics

as well.
Consider an arbitrary loop in Pascal starting with the statement

FORI =1T0O N DO

If you want to verify that the loop does something regardless of the particular
integral value of N, you need mathematical induction.
Also, sums of the form
n(n +1
MRS

are very useful in analysis of algorithms and a proof of this formula is math-

ematical induction.
Next we examine this method. We want to prove that a predicate P(n) is
true for any nonnegative integer n > ng. The steps of mathematical induc-

tion are as follows:
(i) (Basis of induction) Show that P(ng) is true.

(ii) (Induction hypothesis) Assume P(n) is true.
(iii) (Induction step) Show that P(n + 1) is true.

Example 11.1

Use the technique of mathematical induction to show that

1
1+2+3+---+n:@32i—), n>1.

Solution.
Let P(n): 142+ +n =20 Thep
(i) (Basis of induction) P(1): 1= (1+]) . That is, P(1)is true.

(u) (Induction hypothesis) Assume P(n) is true. That is, P(n) : 1+2+3+

n{n+1)
o S
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(iii) (Induction step) We must show that P(n+1):1+2+34---+n+1=

+)(n42) 1 96ed
2 ' )

n+1)

(n + 1)(n+2).

+(n+1) = 5

1424 - 4n+(n+1) = (1424 - +n)+n+1 = 7—1—(~2—

1 Example 11.2 (Geometric progression)

a. Use induction to show P(n): S°7_ ar* = “'“1’::“’, n > 0 where r # 1.
b. Showthatl-l—%+--~+5;§,—1§2, for all n > 1.

Solution.
a. We use the method of proof by mathematical induction.

(i) (Basis of induction) a = al’lio:l =3 0_,ar*. That is, P(0)is true.

(ii) (Induction hypothesis) Assume P(n) is true. That is, Yop gort =
a(lfr’“q)
1-r

(iif) (Induction step) We must show that P(n+1) is true. That is,
=) Indeed,

n+1 k.
k=0 4T =

l—r
n+1 n
Zark :Za’rk+ar”+1
k=0 k=0
1—pntl ng1l =T
R e
1—7‘""'1 +rﬂ+l —T‘n+2
- 1—7r
1*T"+2
:a—-—---—-«-—
1—r
b. By a. we have
1 I 1 1-(3)"
1-}-54‘?4‘""{"2”71 = 1~_%
1
=2(1 - (=)"
(1- )"
1
= 2n—1
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Example 11.3 (Arithmetic progression)
Use induction to show that P(n) : 327 (a+(k—1)r) = 22a+(n—-1)r], n >
1.

Solution.
We use the method of proof by mathematical induction.

(i) (Basis of induction) a = }[2a + (1 — 1)r] = S°i_,(a + (k — 1)r). That is,
P(1)is true.

(ii) (Induction hypothesis) Assume P(n) is true. That is, Yor(a+(k=1)r) =
2[2a + (n — 1)r].

(iii) (Induction step) We must show that P(rn+1) is true. That is, i (et

(B—1)r) = (’—’g—i—)[% + nr]. Indeed,

n+1 n
Dlat+(k=1r) = a+(k-1)r)+a+(n+1-1)r
k=1 k=1
n
=§[2a +(n—=1)r]+a+nr
_ 2an + n*r —nr + 2a + 2nr
B 2
~2a(n+1)+n(n+1)r
B 2
] 1
:”’“2* 20 +nr] m

We next exhibit a theorem whose proof uses mathematical induction.

Theorem 11.1

For all integers n > 1, 22" — 1 is divisible by 3.

Proof.

Let P(n) :2?" — 1 is divisible by 3. Then

(i) (Basis of induction) P(1) is true since 3 is divisible by 3.

(ii) (Induction hypothesis) Assume P(n) is true. That is, 22" — 1 is divisible
by 3.

(iii) (Induction step) We must show that 22"+ — 1 is divisible by 3. Indeed,
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22M+2 1 =22(4) — 1
) s 6 W |
SUE N S
=22, 8 4 P(n)

Since 3|(2%" —1) and 3|(2%"-3) we have 3|(22"-3+4 22" — 1). This ends a proof
of the theorem @ DETTA BEVIS SAKNAR REFERENS Yiw

TND WkTIONSAXIUMET P
Example 11.4

a. Use induction to prove that n < 2" for all non-negative integers n.
b. Use induction to prove that 2" < n! for all non-negative integers n > 4.

Solution.

a. Let P(n) : n < 2" We want to show that P(n) is valid for all n > 0. By
the method of mathematical induction we have

(i) (Basis of induction) 2° — 0 =1 > 0. That is, 0 < 2°. Thus, P(0)is true.
(ii) (Induction hypothesis) Assume P(n) is true. That is, n < 2"

(iii) (Induction step) We must show that P(n + 1) is also true. That is,
n+1 < 2" Indeed,

2" — (n+1) =2"cdot2 — n — 1
=2"(1+1)—n—1
=2"-n)+2" -1
>2" 1
>0

where we used the fact that 2" — n > 0.

b. Let P(n) : 2" < nl. We want to show that P(n) is valid for all n > 4. By
the method of mathematical induction we have

(i) (Basis of induction) 4! — 24 = 8 > 0. That is, P(4)is true.

(ii) (Induction hypothesis) Assume P(n) is true. That is, 2" < n!, n > 4.
(iii) (Induction step) We must show that P(n + 1) is true. That is, 2! <
(n+ 1)!. Indeed,
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(n+ 1) =2" =(n+ 1)n! - 2"(1+1)
=n!—2" +nn! - 2"

>nnl — 20
sl = 27
=0

where we have used the fact that if n > 1 then nn! > n!'m (Dc b /) a e tevenson
*,.\ l\ klv\"iu\ £(ﬁc-v15 c—

Example 11.5 (Bernoulli’s inequality) f
X\ wig {' g&l‘\\/\(ﬁs .

Let h > —1. Use induction to show that o

(1+nh) < (1+R)", n>0.

Solution.

Let P(n) : (1 +nh) < (1 + h)". We want to show that P(n) is valid for all
nonnegative integers. (i) (Basis of induction) (1 + h)° — (1 + 0h) = 0. That
is, P(0)is true.

(ii) (Induction hypothesis) Assume P(n) is true. That is, (1+nh) < (1+h)".
(iii) (Induction step) We must show that P(n+ 1) is true. That is, (1+ (n+
1)h) < (1 + h)"*!. Indeed,

(I+R)" =1+ m+1Dh)=1+h)A+h)"—nh—1—h
>(14+h)(1+nh) —nh—1-h
=nh*
>0m 6“(55;,1 \)Li.ck €3 WA 6&;\‘-“&3?

Example 11.6

Define the following sequence of numbers: a; = 2 and for n > 2, a, = 5a,,_;.
Find a formula for a,, and then prove its validity by mathematical induction.

Solution.

Listing the first few terms we find, a; = 2,a; = 10, a3 = 50, ay = 250. Thus,
an = 2.5"71. We will show that P(n) : a, = 2-5""! is valid for all n > 1 by
the method of mathematical induction.

(i) (Basis of induction) a; = 2 = 2.5'~1, That is, P(1) is true.
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(i) (Induction hypothesis) Assume P(n) is true. That ig, 8, =251
(iii) (Induction step) We must show that a,,; = 2.5". Indeed,

Qpt1 =day,
=hH(2:57 )

=2.5" B @(_\,\ \‘)m . i,f\bhlt{—\‘c;v\g =5

O\J‘\\owe',t ‘?
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Review Problems

Problem 11.1

Use the method of induction to show that

244464+ ---+2n=n’+n
for all integers n > 1.

Problem 11.2

Use mathematical induction to prove that
1+2+2%2+...42n =21 _
for all integers n > 0.

Problem 11.3
Use mathematical induction to show that

n(n+1)(2n+ 1)

P+2°+. 4+ =
for all integers n > 1.

Problem 11.4

Use mathematical induction to show that

2
P28+ 4= (@)
for all integers n > 1.
Problem 11.5
Use mathematical induction to show that
1 i 1 5 n 1 _n
12 ~ 2:8 nn+1) n+1

for all integers n > 1.
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Problem 11.6
Use the formula

n(n+1)

Tl Bl & oy
+24:4+n 5

to find the value of the sum
3+4+---41,000.

Problem 11.7
Find the value of the geometric sum

jp 3, 1 1
+5+mtec o

Problem 11.8

Let S(n) = Y, ﬁ Evaluate S(1), S(2),5(3),S(4), and S(5). Make a
conjecture about a formula for this sum for general n, and prove your con-
jecture by mathematical induction.

Problem 11.9

For each positive integer n let P(n) be the proposition 4" — 1 is divisible by
3

a. Write P(1). Is P(1) true?

b. Write P(k).

c. Write P(k +1).

d. In a proof by mathematical induction that this divisibility property holds
for all integers n > 1, what must be shown in the induction step?

Problem 11.10
For each positive integer n let P(n) be the proposition 2°" — 1 is divisible by
7. Prove this property by mathematical induction.

Problem 11.11
Show that 2" < (n + 2)! for all integers n > 0.

Problem 11.12

a. Use mathematical induction to show that n® > 2n 4 1 for all integers
n.= 2,

b. Use mathematical induction to show that n! > n? for all integers n > 4.

Problem 11.13
A sequence a;,as,--- is defined recursively by a; = 3 and a, = 7a,_; for
n > 2. Show that a, = 3-7""! for all integers n > 1.
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Now, let A be a matrix of size m x n and entries a;;; B is a matrix of size
n x p and entries b;;. Then the product matrix is a matrix of size m x p and

entries
Cij = @inbij + aizby; + - -+ + Qb

that is ¢;; is obtained by multiplying componentwise the entries of the ith
row of A by the entries of the jth column of B. It is very important to keep

in mind that the number of columns of the first matrix must be equal to the
number of rows of the second matrix; otherwise the product is undefined.

Problem 14.6
Consider the matrices

4 1 4 3
A=(;§g),8= g -1 3 1
2 7 5 2

Compute, if possible, AB and BA.

Problem 14.7

Prove by induction on n > 1 that

2 1Y {20 n2r?
02/ \o 2o )
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22 Recursion

A recurrence relation for a sequence ag,a;,--- is a relation that defines
a, in terms of ay,a;,--- ,a,_;. The formula relating a, to earlier values in
the sequence is called the generating rule. The assignment of a value to
one of the a’s is called an initial condition.

;Example 22.1

The Fibonacci sequence

1, 1,2:3, 8, «+
is a sequence in which every number after the first two is the sum of the
preceding two numbers. Find the generating rule and the initial conditions.

Solution.
The initial conditions are ayp = a; = 1 and the generating rule is a, =

An-1 + Qp_2,M 2 2.m

Example 22.2
Let n > 0 and find the number s,, of words from the alphabet ¥ = {0,1} of

length n not containing the pattern 11 as a subword.

Solution.
Clearly, so = 1(empty word) and s; = 2. We will find a recurrence relation

for s,,n > 2. Any word of length n with letters from ¥ begins with either
0 or 1. If the word begins with 0, then the remaining n — 1 letters can be
any sequence of 0’s or 1’s except that 11 cannot happen. If the word begins
with 1 then the next letter must be 0 since 11 can not happen; the remaining
n — 2 letters can be any sequence of 0’s and 1’s with the exception that 11
is not allowed. Thus the above two categories form a partition of the set of
all words of length n with letters from ¥ and that do not contain 11. This
implies the recurrence relation

8n =8p—1+8p—2, N =201

A solution to a recurrence relation is an explicit formula for a,, in terms of
n.

The most basic method for finding the solution of a sequence defined recur-
sively is by using iteration. The iteration method consists of starting with
the initial values of the sequence and then calculate successive terms of the
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sequence until a pattern is observed. At that point one guesses an explicit
formula for the sequence and then uses mathematical induction to prove its

validity.

jExample 22.3
Find a solution for the recurrence relation

ag =1
an =0p_1+2, n>1

Solution.
Listing the first five terms of the sequence one finds

ag =1

a; =1+2
a =1+4
az =146
as =1+8

Hence, a guess is a,, = 2n + 1,n > 0. It remains to show that this formula is
valid by using mathematical induction.

Basis of induction: For n = 0,a5 =1 = 2(0) + 1.

Induction hypothesis: Suppose that a, = 2n + 1.

Induction step: We must show that a,4+; = 2(n+ 1) + 1. By the definition of
01 We have apyy = an+2=2n+14+2=2n+1)+1.m

Example 22.4

Consider the arithmetic sequence
Gp = 0n_1+d, n2>1
where ag is the initial value. Find an explicit formula for a,.

Solution. Listing the first four terms of the sequence after ay we find

a1 =dg+ d
as =ag + 2d
a3z =ag + 3d

ay =ag + 4d
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Hence, a guess is a, = ag + nd. Next, we prove the validity of this formula
by induction.

Basis of induction: For n = 0,ay = ag + (0)d.

Induction hypothesis: Suppose that a,, = ay + nd.

Induction step: We must show that a,; = ag + (n + 1)d. By the definition

of a,11 we have apyy =a,+d=0qy+nd+d=ao+(n+1)d. m HE‘V sahwas V\;\\f)ff(‘.
e 7

Example 22.5

Consider the geometric sequence

p =Tp-1, N 21

where a; is the initial value. Find an explicit formula for a,,.

Solution.
Listing the first four terms of the sequence after ag we find

Q) =rdy
a9 =?“20,0
as =TSCL(]
__4
g =T g

Hence, a guess is a, = r"ay. Next, we prove the validity of this formula by
induction.

Basis of induction: For n = 0, ag = r%ay.

Induction hypothesis: Suppose that a, = r"ay.

Induction step: We must show that a,.; = r"*'ag. By the definition of a,, Ii & |
AR N 2

we have a1 = ra, = r(r"ag) = ™ ap. B

Example 22.6

Find a solution to the recurrence relation

ag =0
ap =Gn-1+(n—-1), n>1
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Solution.
Writing the first five terms of the sequence we find

ag =0

a; =0

ar =041

a3 =0+1+2

ag =0+14+2+3

We guess that
n(n — 1)
5
We next show that the formula is valid by using induction on n > 0.

n=0+1+2+4+---+(n—-1)=

Basis of induction: ag =0 = %,;1—).

Induction hypothesis: Suppose that a, = :
Induction step: We must show that a,,; = ?—(’;ﬂ Indeed,

n{n—1)

Any1 =0y + 1

_n(n—1)
=
_n{n+1)
=——n

Example 22.7
Consider the recurrence relation

ap =1
an =20p1+1n, n=>1

Is it true that a,, = 2" + n is a solution to the given recurrence relation?

Solution.
This is false since as = 2a; +2=2(2ap+ 1) +2=8#22+2nm

Example 22.8
Define a sequence, ay,as,- -+ , recursively as follows:

ai =
ap, :2-11“2%, n>2
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a. Use iteration to guess an explicit formula for this sequence.
b. Use induction to prove the validity of the formula found in a.

Solution.
Computing the first few terms of the sequence we find

a =1
ay =2
az =2
Qg =4
as =4
ag =4
ar; =4
ag=---=a15=28

Hence, for 28 < n < 2! a, = 2'. Moreover, i < logyn < i+ 1 so that
i = |log, n| and a formula for a, is

a, = 28l n > 1.

b. We prove the above formula by mathematical induction.

Basis of induction: For n =1, a; = 1 = 2lle21),

Induction hypothesis: Suppose that a, = 2U°%2"J,

Induction step: We must show that a,,; = 2U°#(+D] Indeed, for n odd
(i.e. n+ 1 even) we have

an+1 =2 - Q| atl)

=2 An+1
2

n+1

=2. 2“0‘%2 2 J

=2|_Iog2 (n+1)—1]+1
:2Llog2 (n+1)]—-1+1

—ollogy (n+1)]

A similar argument holds when n is even. B
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When iteration does not apply, other methods are available for finding ex-
plicit formulas for special classes of recursively defined sequences. The method
explained below works for sequences of the form

an = Aap_1 + Ba,_o (22.1)

where n is greater than or equal to some fixed nonnegative integer £ and A
and B are real numbers with B # 0. Such an equation is called a second-
order linear homogeneous recurrence relation with constant coeffi-

cients.

Example 22.9
Does the Fibonacei sequence satisfy a second-order linear homogeneous re-

lation with constant coefficients?

Solution.
Recall that the Fibonacci sequence is defined recursively by a, = a,_; +a,_»
for n > 2 and ag = a; = 1. Thus, a, satisfies a second-order linear homoge-

neous relation with A=B=1g

The following theorem gives a technique for finding solutions to (22.1).

Theorem 22.1
Equation (22.1) is satisfied by the sequence 1,¢,#2 --- t" ... where t # 0 if
and only if ¢ is a solution to the characteristic equation

t?—~At—B=0 (22.2)
Proof.
(=): Suppose that t is a nonzero real number such that the sequence
1,¢,¢% - satisfies (22.1). We will show that ¢ satisfies the equation t2 —

At — B = 0. Indeed, for n > k we have
"= A" 4 B2,

Since ¢ # 0 we can divide through by "2 and obtain t2 — At — B = 0.
(<=) : Suppose that t is a nonzero real number such that t2 — Af — B = 0.
Multiply both sides of this equation by "2 to obtain

" = A"t + B2,

This says that the sequence 1,¢,%,-- - satisfies (22.1) m
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Example 22.10
Consider the recurrence relation

G =i ¥ 2Qpes, n.2 2,

Find two sequences that satisfy the given generating rule and have the form
1,t, LT

Solution.
According to the previous theorem t must satisfy the characteristic equation

t2—t—2=0.
Solving for t we find t = 2 or t = —1. So the two solutions to the given
recurrence sequence are 1,222 ... 2% ... and 1,-1,--- , (=)™, m

Are there other solutions than the ones provided by Theorem 22.17 The
answer is yes according to the following theorem.

Theorem 22.2
If s, and ¢, are solutions to (22.1) then for any real numbers C' and D the

sequence
g =08 + Dy, 20

1s also a solution.

Proof.
Since s, and t, are solutions to (22.1), for n > 2 we have

Sn =A3n—l I BSn—Q
ln :Atn—! =+ Btn—Q
Therefore,

.ACLn_l + B(ln_z =A(C5ﬂ,1 + Dtn-l) —+ B(CS-H_Q + Dtn_g)
:C(Asn—l I Bsn—Q) i D(Atn—l + Btn—?)
=Cs, + Dt;, = ay

so that a,, satisfies (22.1) m
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|Example 22.11
Find a solution to the recurrence relation

ap =].,Cl1 =8
Qn =Gn_1 + 252, N2> 2.

Solution.
By the previous theorem and Example 22.10, a,, = C2" + D(—1)", n > 2 is
a solution to the recurrence relation

On = Q-1 + 2Gp—3.
If a,, satisfies the system then we must have

ag = CQO+D(*1)U
a = C2'+ D(-1)!

This yields the system

C+D =1
20-D = 8
Solving this system to find C = 3 and D = —2. Hence, a, = 3-2" — 2(—-1)".

Example 22.12
Find an explicit formula for the Fibonacci sequence

ag =a; =1

QAp =0p_1 + Gp_3

Solution.
The roots of the characteristic equation

2—t—1=0
aret = % and t = 3?%1[5» Thus,

1++/5,, 1-+/5
3 ) Dl

an = C( )n

is a solution to
Ap = Ap-1 + Ap-2.
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Using the values of ay and a; we obtain the system

{ C+D = 1
C(5)+ D(E) = 1.

2

Solving this system to obtain

C=1+\/5 and D:—lm\/g.
25 25

Hence,
L( 1+ \/g)n+l _ _1_(1 — \/5)114-1.
VA VAR

Next, we discuss the case when the characteristic equation has a single root.

a, =

Theorem 22.3
Let A and B be real numbers and suppose that the characteristic equation

t2?—At—B=0

has a single root 7. Then the sequences {1,7,7% ---} and {0,7,2r% 373, --- ,nr™,- ..

both satisfy the recurrence relation

a, = Aa,_1 + Ba,_».

Proof.
Since 7 is a root to the characteristic equation, the sequence {1,r,7% ..} is

a solution to the recurrence relation
an = Aan_1 + Ba,_s.

Now, since r is the only solution to the characteristic equation we have
(t—r)>=t*— At - B.

This implies that A = 2r and B = —r%. Let s, = ™, n > 0. Then

Asy_1 + Bsp—y =A(n — 1)r""1 + B(n — 2)r"2
=2r(n — D)r"! — r?(n — 2)r"2
=2(n—-1)r" - (n—-2)r"

=" = dy

So s, is a solution to a, = Aa,—1 + Ba,—>. B
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Example 22.13

Find an explicit formula for

ap :11 a) = 3
an =4a,—1 — 42, N =2

Solution.
Solving the characteristic equation

2 —4t+4=0
we find the single root » = 2. Thus,
a, = C2" + Dn2"

is a solution to the equation a, = 4a,,_; — 4a,,_». Since ag = 1 and a; = 3,
we obtain the following system of equations:

C =1
2C +2D =3

Solving this system to obtain C' =1 and D = -é— Hence, a, = 2" + 22". m

Example 22.14

Let Ay, Ay, --- , A, be subsets of a set S.
a. Give a recursion definition for Uj_, 4;.
b. Give a recursion definition for M}, A;.

Solution.
a. U 4 = Ay and UL A = (UL A U A, 2> 2.
b. ﬂzl:lAi = Al and ﬂ?:lAi = (ﬂ?:_llAi) M An, n 2 2_.

Example 22.15
Use mathematical induction to prove the following generalized De Morgan’s

law.
(Ui 4i) = M Af

Solution.
Basis of induction: (Uj_;4;)¢ = A = N_, AS.
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Induction hypothesis: Suppose that (UL, A4;)¢ = N, AS.
Induction step: We must show that (U] 4;)¢ = N A¢. Indeed,

(U2 A =((Uiy A U Au)°
=(UR1 409 N A5,
=(NL A7) N AL
=N A

Example 22.16

Let a;,as,- -+ ,a, be numbers.

a. Give a recursion definition for 3", a;.
b. Give a recursion definition for IIi" a;.

Solution.
a. Z::I a;=aiand Yoo = (Z::ll a;) + a,, n>2.
b. IT_,a; = a; and % ;a; = (I''a;) - @n, n>2m

Example 22.17
A function is said to be defined recursively or to be a recursive function

if its rule of definition refers to itself. Define the factorial function recursively.

Solution.
We have
f(0) =1
f(n)=nf(n-1), n>1m

Example 22.18
Let G : IN — Z be the relation given by

1, fn=1
G(n)=4 1+G(3), ifniseven
G(3n—1), ifn>1isodd

Show that G is not a function.

Solution.
Assume that G is a function so that G(5) exists. Listing the first five values
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of G we find
(el L)l
(G(2) =2
G3)=G8)=14+G4)=24+G(2)=4
G(4) =1+G(2)=3
G(5) =G(14) = 1 + G(7)
=1+ G(20)
=2 + G(10)
=3 + G(5)

But the last equality implies that 0 = 3 which is impossible. Hence, G does
not define a function. m
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Review Problems

Problem 22.1
Find the first four terms of the following recursively defined sequence:

v =1,v9 =2
Up =Up_1+Uy_o+1, n>3.

Problem 22.2

Prove each of the following for the Fibonacci sequence:
a. FE - Fk2-1 = Fka_',] - Fk+1Fk_1, k > 1.

b. FZ,,—F}—F?  =2F.F;, k>1.

c. Fl?+l = sz = Fk—le-i-Za k < 1.

d. FhioF, — F2 , = (—1)" for all n > 0.

T

Problem 22.3
Find lim, e % where Fy, F, F5,-- - is the Fibonacci sequence. (Assume

that the limit exists.)

Problem 22.4
Define xg, x1, zs, - -+ as follows:

Ty = AS2F Ty Tp=10.

Find lim,, s Ty,

Problem 22.5
a. Make a list of all bit strings of lengths zero, one, two, three, and four that

do not contain the pattern 111.
b. For each n > 0 let d,, = the number of bit strings of length n that do not

contain the bit pattern 111. Find dy, d,. d», ds, and dy.

¢. Find a recurrence relation for dg, d;.ds, - - -
d. Use the results of (b) of (¢) to find the number of bit strings of length five

that do not contain the pattern 111.

Problem 22.6

Find a formula for each of the following sums:
a.l+24+---+(n-1), n>2
b.3+24+44+6+8+---+2n, n>1.

c. 3-1+3-24+3-3+---3-n, n>1.
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Problem 22.7

Find a formula for each of the following sums:

a. 1+2+224+...42"1 n>1.

b, 3" 4+3"2 4. 4+ 3243+1, n>1.
c.2"4+3-2"243.2" 3 4+...4+3.224+3.2+3, n>1

d. 2t —-2rlypon2_on=34 . 4 (-1)"1. 24 (=1)", n>1.

Problem 22.8
Use iteration to guess a formula for the following recursively defined sequence

and then use mathematical induction to prove the validity of your formula:
cp=1,¢, =3c,_1+1, foralln>2

Problem 22.9
Use iteration to guess a formula for the following recursively defined sequence

and then use mathematical induction to prove the validity of your formula:
wo = 1l,w, =2" —w,_;, for all n > 2.

Problem 22.10
Determine whether the recursively defined sequence: a; = 0 and a,, = 2a,_;+

n — 1 satisfies the recursive formula a, = (n — 1), n > 1.

Problem 22.11
Which of the following are second-order homogeneous recurrence relations
with constant coefficients?
a. a, = 20,_1 — 5Qn_o.
b. bﬂ = nbn—l + bn—‘z-

G = Bty * B2 s
;= 3dyi—y +dy-n.

Th =Tn-1 — Th—2 — 2.

Sp = 108n_2.

hoe oL o

Problem 22.12
Let ag, a1, ag, - -+ be the sequence defined by the recursive formula

an=C'2n+D, n =0

where C' and D are real numbers.
a. Find C and D so that ag = 1 and a; = 3. What is a, in this case?
b. Find C and D so that ag = 0 and a; = 2. What is a, in this case?
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Problem 22.13

Let ag,a,as,--- be the sequence defined by the recursive formula
a,=C-2"4+D, n>0
where C' and D are real numbers. Show that for any choice of C and D,
Un = 3Up_1 — 2Qp_3, n > 2.

Problem 22.14
Let ag, a1, as,- - be the sequence defined by the recursive formula

ag=1,a, =2
Qn I2‘55?1—1 + 3an—2> n = 2.

Find an explicit formula for the sequence.

Problem 22.15

Let ag,a,,az,--- be the sequence defined by the recursive formula

ap =1.,a1 =]

an =2ap-1 — Ay, N 2> 2.
Find an explicit formula for the sequence.

Problem 22.16

The triangle inequality for absolute value states that for all real numbers a
and b, |a+b| < |a|+|b|. Use the recursive definition of summation, the triangle
inequality, the definition of absolute value, and mathematical induction to
prove that for all positive integers n, if a;, as,- - ,a, are real numbers then

1D ekl <7 Jal.
k=1

k=1

Problem 22.17
Use the recursive definition of union and intersection to prove the following
general distributive law: For all positive integers n, if A and By, Bs,--- , B,

are sets then
AN (U Be) = U (AN By).
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Problem 22.18
Use mathematical induction to prove the following generalized De Morgan’s

law,
(NiAi)° = UL AS

Problem 22.19
Show that the relation ¥ : IN — Z given by the rule

i if'm = 1.
Fig) = Fi2) if n is even
1-F(Bn-9) ifnis oddand n > 1

does not define a function.



