Relations and Functions

The reader is familiar with many relations which are used in mathematics
and computer science, i.e. “is a subset of”, “ is less than” and so on.

One frequently wants to compare or contrast various members of a set, per-
haps to arrange them in some appropriate order or to group together those
with similar properties. The mathematical framework to describe this kind
of organization of sets is the theory of relations.

There are three kinds of relations which we discuss in this chapter: (i) equiv-
alence relations, (ii) order relations, (iii) functions.

18 Equivalence Relations

Let A be a given set. An ordered pair (a,b) of elements in A is defined
to be the set {a,{a,b}}. The element a (resp. b) is called the first (resp.
second) component.

‘Example 18.1
a. Show that if a # b then (a, b) # (b,a).
b. Show that (a,b) = (¢,d) if and only if a =c and b = d.

Solution.

a. If a # b then {a,{a,b}} # {b,{a,b}}. That is, (a,b) # (b,a).

b. (a,b) = (¢, d) if and only if {a, {a,b}} = {c,{c,d}} and this is equivalent
to a = c and {a, b} = {c,d} by the definition of equality of sets. Thus, a = ¢
and b=d m

Example 18.2
Find z and y such that (z + y,0) = (1,z — y).
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Solution.
By the previous exercise we have the system

z + y =1
r — y =0
!ISolving by the method of elimination one finds = 5 and y = ;. m

If A and B are sets, we let A x B denote the set of all ordered pairs (a, b)
where a € A and b € B. We call A x B the Cartesian product of A and

B.
Example 18.3

a. Show that if A is a set with m elements and B is a set of n elements then

A x B is a set of mn elements.
b. Show that if A x B =0 then A =0 or B = (.

Solution.
a. Consider an ordered pair (a,b). There are m possibilities for a. For each

fixed a, there are n possibilities for . Thus, there are m x n ordered pairs
(a,b). That is, |A x B| = mn.

b. We use the proof by contrapositive. Suppose that A # () and B # . Then
there is at least an a € A and an element b € B. That is, (a,b) € A x B
and this shows that A x B # (). A contradiction to the assumption that

Ax B=m
Example 18.4

Let A= {1,2}, B = {1}. Show that A x B # B x A.

Solution.
We have A x B = {(1,1),(2,1)} # {(1,1),(1,2)} = B x Am

A binary relation R from a set A to a set B is a subset of A x B. If
(a,b) € R we write aRb and we say that a is related to b. If a is not related
to b we write a Rb. In case A = B we call R a binary relation on A.

The set
Dom(R) = {a € A|(a,b) € R for some b € B}

is called the domain of R. The set
Range(R) = {b € B|(a,b) € R for some a € A}
is called the range of R.
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Example 18.5

a. Let A= {2,3,4} and B = {3,4,5,6,7}. Define the relation R by aRb if
and only if a divides b. Find, R, Dom(R), Range(R).

b. Let A = {1,2,3,4}. Define the relation R by aRb if and only if a < b.
Find, R, Dom(R), Range(R).

Solution.

a. R=1{(2,4),(2,6),(3,3),(3,6), (4,4)}, Dom(R) = {2, 3,4}, and Range(R) =
{3,4,6}.

b. R={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3), (3, 4), (4,4)}, Dom(R) =
A, Range(R) = A. m

A function is a special case of a relation. A function from A to B, de-
noted by f : A — B, is a relation from A to B such that for every r € A
there is a unique y € B such that (z,y) € f. The element y is called the
image of z and we write y = f(z). The set A is called the domain of f and
the set of all images of f is called the range of f. Functions will be discussed
in more detail in Section 20.

Example 18.6
a. Show that the relation

f={(1a),(2b),3 0}

defines a function from A = {1,2,3} to B = {a,b, c}. Find its range.
b. Show that the relation f = {(1,a),(2,b), (3,¢), (1,b)} does not define a
ffunction from A = {1,2,3} to B = {a,b,c}.

Solution.
a. Note that each element of A has exactly one image. Hence, f is a function

with domain A and range Range(f) = {a,b}.
b. The relation f does not define a function since the element 1 has two

images, namely a and b. B

An informative way to picture a relation on a set is to draw its digraph. To
draw a digraph of a relation on a set A, we first draw dots or vertices to
represent the elements of A. Next, if (a,b) € R we draw an arrow (called a
directed edge) from a to b. Finally, if (a,a) € R then the directed edge is

simply a loop.
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Example 18.7
Draw the directed graph of the relation in part (b) of Problem 18.5.

Solution.

Next we discuss three ways of building new relations from given ones. Let R
be a relation from a set A4 to a set B. The inverse of R is the relation R™*

from Range(R) to Dom(R) such that
R'={(ba) e Bx A:(a,b) € R}.

|| Example 18.8

Let R = {(1,%),(1,2),(3,y)} be a relation from A = {1,2,3} to B =
Lt 53

a. Find R™1.

b. Compare (R™')"! and R.

Solution.
a. R_l = {(y; l)? (zs 1): (y; 3)}
b.(R7)'=R.nm

Let R and S be two relations from a set A to a set B. Then we define
the relations RU S and RN S by

RUS = {(a,b) € A x B|(a,b) € R or (a,b) € S},

and
RN S ={(a,b) € A x Bl|(a,b) € R and (a,b) € S}.
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Example 18.9
Given the following two relations from A = {1,2,4} to B = {2,6,8,10} :

aRb if and only if alb.
aSb if and only if b — 4 = a.

List the elements of R, S,RU S, and RN S.

Solution.
We have

R :{(1> 2): (1-. 6)) (1 8) (13 10): (2? 2)1 (2= 6): (2= 8)! (27 10)7 (4 8)}
S ={(2,6),(4,8)}
RUS =R
RNS=Snm
Now, if we have a relation R from A to B and a relation S from B to C

we can define the relation S o R, called the composition relation, to be the
relation from A to C defined by

SoR = {(a,c)|(a,b) € R and (b,c) € S for some b € B}.

Example 18.10

Let
R={(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)}
S ={(2,w),(4,5),(4,1),(6,1), (8, u)}

Find So R.

Solution.

SoR={(1,u),(1,t),(2,s),(2,t),(3,5),(3,%), (3,u)}m

We next define four types of binary relations. A relation R on a set A is
called reflexive if (a,a) € R for all a € A. In this case, the digraph of R has

a loop at each vertex.
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|| Example 18.11
a. Show that the relation a < b on the set A = {1,2, 3,4} is reflexive.
b. Show that the relation on IR defined by aRb if and only if a < b is not

reflexive.

Solution.
a. By Example 18.7, each vertex has a loop.
b. Indeed, for any real number a we have a —a =0 andnota —a < 0. @

A relation R on A is called symmetric if whenever (a,b) € R then we
must have (b,a) € R. The digraph of a symmetric relation has the property
that whenever there is a directed edge from a to b, there is also a directed

edge from b to a.

Example 18.12

a. Let A = {a,b,c,d} and R = {(a,a), (b,¢), (c,b),(d,d)}. Show that R is
symmetric.
b. Let IR be the set of real numbers and R be the relation aRb if and only

if @ < b. Show that R is not symmetric.

Solution.
a. bRc and cRb so R is symmetric.
b.2<4but4<£2 m

A relation R on a set A is called antisymmetric if whenever (a,b) € R
and a # b then (b,a) € R. The digraph of an antisymmetric relation has the
property that between any two vertices there is at most one directed edge.

Example 18.13

a. Let IN be the set of nonnegative integers and R the relation aRb if and
only if a divides b. Show that R is antisymmetric.

b. Let A = {a,b,¢c,d} and R = {(a,a), (b,c),(c,b),(d,d)}. Show that R is
not antisymmetric.

Solution.
a. Suppose that a|b and bla. We must show that a = b. Indeed, by the def-

inition of division, there exist positive integers k; and ks, such that b = kya
and a = kob. This implies that @ = kokja and hence k1k, = 1. Since k; and
ks are positive integers, we must have k; = ky = 1. Hence, a = b.
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b. bRc and cRb with b# c. m

A relation R on a set A is called transitive if whenever (a,6) € R and
(b,c) € R then (a,c) € R. The digraph of a transitive relation has the prop-
erty that whenever there are directed edges from a to b and from b to ¢ then
there is also a directed edge from a to c.

| Example 18.14
a. Let A = {a,b,c,d} and R = {(a,a), (b,c), (c,b),(d,d)}. Show that R is

not transitive.
b. Let Z be the set of integers and R the relation aRb if a divides b. Show

that R is transitive.

Solution.

a. (b,c) € R and (¢,b) € R but (b,b) & R.

b. Suppose that a|b and blc. Then there exist integers k, and &y such that
b= kia and ¢ = kqb. Thus, ¢ = (k;1kz)a which means that alc. m

Now, let Aj, As,---, A, be a partition of a set A. That is, the Als are
subsets of A that satisfy

(1) U?:l‘/'li = A

(i) A;NA; =0 fori#j.

Define on A the binary relation z R y if and only if z and y belongs to the
same set A; for some 1 <i < n.

Theorem 18.1
The relation R defined above is reflexive, symmetric, and transitive.

Proof.
e R is reflexive: If z € A then by (i) z € A for some 1 < k < n. Thus, x

and z belong to Ay so that z R z.

e R is symmetric: Let z,y € A such that z R y. Then there is an index k
such that z,y € A;. But then y,z € A;. That is, y R z.

e R is transitive: Let z,y,z € A such that z R y and y R 2. Then there exist
indices ¢ and j such that z,y € A; and y,z € A;. Since y € A; N A;, by (ii)
we must have ¢ = j. This implies that z,y, 2 € A; and in particular z, z € A;.
Hence,z R z. m
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A relation that is reflexive, symmetric, and transitive on a set A is called
an equivalence relation on A. For example, the relation “=" is an equiv-
alence relation on IR.

| | Example 18.15
Let Z be the set of integers and n € Z. Let R be the relation on Z defined

by aRb if a — b is a multiple of n. We denote this relation by a = b (mod n)
read “a congruent to b modulo n.” Show that R is an equivalence relation

on Z.

Solution.

= is reflexive: Foralla € Z, a — a = 0- n. That is, a = a (mod n).

is symmetric: Let a,b € Z such that a = b (mod n). Then there is an
integer k such that a — b = kn. Multiply both sides of this equality by ( —1)
and letting &' = —k we find that b — a = k'n. That is b = a (mod n).

= is transitive: Let a,b, ¢ € Z be such that a = b (mod n) and b = ¢ (mod n).
Then there exist integers k) and ky such that a — b = kyn and b — ¢ = kon.
Adding these equalities together we find @ — ¢ = kn where k = k; + ky € Z

which shows that a = ¢ (mod n). m

Theorem 18.2
Let R be an equivalence relation on A. For each a € A let

la] = {z € A|zRa}
A/R = {[d]|la € A}.

Then the union of all the elements of A/R is equal to A and the intersection
of any two distinct members of A/R is the empty set. That is, the family
A/R forms a partition of A.

Proof.

By the definition of [a] we have that [a] C A. Hence, Uyc4[a] € A. We next
show that A € Ugcala]. Indeed, let a € A. Since A is reflexive, a € [a] and
consequently a € Upea[b]. Hence, A C Uyea(b]. It follows that A = U,c[al.
This establishes (i).

It remains to show that if [a] # [b] then [a] N [b] = @ for a,b € A. Suppose the
contrary. That is, suppose [a] N[b] # @. Then there is an element c € [a] N [3].
This means that ¢ € [a] and ¢ € [b]. Hence, a R c and b R c. Since R is sym-
metric and transitive, a R b. We will show that the conclusion a R b leads to
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[a] = [b]. The proof is by double inclusions. Let z € [a]. Then = R a. Since
a R band Ris transitive, z R b which means that = € [b]. Thus, [a] C [8].
Now interchange the letters a and b to show that [b] C [a]. Hence, [a] = [§]
which contradicts our assumption that [a] # [b]. This establishes (ii). Thus,

A/R is a partition of A.m

The sets [a] defined in the previous exercise are called the equivalence
classes of A given by the relation R. The element a in [a] is called a repre-

sentative of the equivalence class [a].
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Review Problems

Problem 18.1
Let X = {a,b,c}. Recall that P(X) is the power set of X. Define a binary

relation R on P(X) as follows:

A BeP(z), AR B |Al =B

a. Is {a, b} R{b,c}?
b. Is {a}R{a,b}?
c. Is {c}R{b}?

Problem 18.2
Let £ = {a,b}. Then =* is the set of all strings over ¥ of length 4. Define a

relation R on ¥¢ as follows:

s,t €X' s Rt< s has the same first two characters as t.

a. Is abaa R abba?
b. Is aabb R bbaa?
c. Is aaaa R aaab?

Problem 18.3
Let A ={4,5,6} and B = {5,6,7} and define the binary relations R, S, and

T from A to B as follows:

(z,y) € AXxB,(z,y) e Rz >y.

(z,y) e Ax B,z Sy 2|(x—y).
T=1{(4,7),(6,5),(6,7)}.
a. Draw arrow diagrams for R, S, and 7.

b. Indicate whether any of the relations S, R, or 7" are functions.

Problem 18.4
Let A = {3,4,5} and B = {4,5,6} and define the binary relation R as

follows:

(r,y) € AxB,(z,y) e R 1 < y.
List the elements of the sets R and R~1.
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Problem 18.5
Let A = {2,4} and B = {6,8,10} and define the binary relations R and S

from A to B as follows:

(z,y) € Ax B,(z,y) € R z|y.

(r,y)eAxBzSyey—4=z.
List the elements of A x B,R,S,RUS, and RN S.

Problem 18.6
Consider the binary relation on IR defined as follows:

,yeR s Ry x>y,
Is R reflexive? symmetric? transitive?

Problem 18.7
Consider the binary relation on IR defined as follows:

Ty ER & BRys 520,
Is R reflexive? symmetric? transitive?

Problem 18.8
Let £ = {0,1} and A = *. Consider the binary relation on A defined as

follows:
T,Yy€A z Rys |z| <y,

where [z| denotes the length of the string z. Is R reflexive? symmetric?

transitive?

Problem 18.9

Let A # () and P(A) be the power set of A. Consider the binary relation on
P(A) defined as follows:

X,YePA), XRY s XCY.

Is R reflexive? symmetric? transitive?
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Problem 18.10
Let E be the binary relation on Z defined as follows:

a Ebem=n(mod?2).

Show that E is an equivalence relation on Z and find the different equivalence
classes.

Problem 18.11
Let I be the binary relation on IR defined as follows:

albsa-beZ.

Show that [ is an equivalence relation on IR and find the different equivalence
classes.

Problem 18.12
Let A be the set all straight lines in the cartesian plane. Let || be the binary

relation on A defined as follows:

L||lz < 1y is parallel to .

Show that || is an equivalence relation on 4 and find the different equivalence
classes.

Problem 18.13

Let A = 1IN x IN. Define the binary relation R on A as follows:
(a,b) R (c,d) @ a+d=0b+c.

a. Show that R is reflexive.

b. Show that R is symmetric.

c. Show that R is transitive.

d. List five elements in [(1,1)].

e. List five elements in [(3,1)].

f. List five elements in (1, 2)].

g. Describe the distinct equivalence classes of R.

Problem 18.14
Let R be a binary relation on a set A and suppose that R is symmetric and

transitive. Prove the following: If for every z € A there is a y € A such that
x R y then R is reflexive and hence an equivalence relation on A.
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19 Partial Order Relations

A relation < on a set A is called a partial order if < is reflexive, antisym-
metric, and transitive. In this case we call A a poset.

Example 19.1
Show that the set Z of integers together with the relation of inequality < is

a poset.

Solution.

< is reflexive: For all z € Z we have ¥ < z since z = .

< is antisymmetric: By the trichotomy law of real numbers, for a given pair
of numbers x and y only one of the following is true: z < y,z =y, or z > y.
So if z < y and y < x then we must have x = y.

< is transitive: By the transitivity property of < in R if r < y and y < z
then z < z. Thus, if x < y and y < z then the definition of < and the above
property imply that z < 2. m

|Example 19.2

Show that the relation a|b in IN* is a partial order relation.

Solution.

Reflexivity: Since a = 1 - a, we have ala.

Antisymmetry: Suppose that a|b and bla. Then there exist positive integers
ki1 and ko, such that b = kja and a = kob. Hence, a = kjkoa which implies
that ki ks = 1. Since ky, ks € IN*, we must have k; = k; = 1; that is, a = b.
Transitivity: Suppose that a|b and blc. Then there exist positive integers k;
and ks, such that b = kja and ¢ = kxb. Thus, ¢ = kjksa which means that

alc. B

| Example 19.3
Let A be a collection of subsets. Let /2 be the relation defined by

ARB< ACB.
Show that A is a poset.

Solution.
C is reflexive: For any set X € A, X C X.
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C is antisymmetric: By the definitionof =if X C Y and Y C X then X =Y,
where XY € A.
C is transitive: We have seen in Chapter 3 that if X C Y and Y C Z then

XCZnm

To figure out which of two words comes first in an English dictionary, one
compares their letters one by one from left to right. If all the letters have
been the same to a certain point and one word runs out of letters, that word
comes first in the dictionary. For example, play comes before playground. If
all the letters up to a certain point are the same and the next letters differ,
then the word whose next letter is located earlier in the alphabet comes first
in the dictionary. For example, playground comes before playmate. This type
of order relation is called lexicographic or dictionary order. A general def-
inition is the following:

Let ¥* be the set of words with letters from an ordered set ¥. Define the
relation < on ¥* as follows: for all w, 2z € ¥*,w < z if and only if either

(a)z = wu for some u € £*, or

(b)w = zu and z = zv where u, v € £* such that the first letter of u precedes
the first letter of v in the ordering of X.

Then it can be shown that < is a partial order relation on X*.

Example 19.4
Let ¥ = {a,b} and suppose that ¥ has the partial order relation R =

{(a,a), (a,b),(b,b)}. Let < be the corresponding lexicographic order on £*.
Indicate which of the following statements are true.

a. aab < aaba.

b. bbab < bba.

c. € < aba.

d. aba < abb.

e. bbab < bbaa.

f. ababa < ababaa.
g. bbaba < bbabb.

Solution.
a. True since aaba = (aab)a.
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b. False since bba < bbab.

c¢. True since aba = eaba.

d. True since aba = (ab)a, abb = (ab)b and a R b.

e. False since bbaa < bbab.

f. True since ababaa = (ababa)a.

g. True since bbaba = (bbab)a, bbabb = (bbab)b and a R b. m

Another simple pictorial representation of a partial order is the so called
Hasse diagram. The Hasse diagram of a partial order on the set A is a
drawing of the points of A and some of the arrows of the digraph of the or-
der relation. We assume that the directed edges of the Hasse diagram point
upward. There are rules to determine which arrows are drawn and which are

omitted, namely,

e omit all arrows that can be inferred from transitivity

e omit all loops
e draw arrows without “heads”.

Example 19.5

Let A = {1,2,3,9,18} and the “divides” relation on A. Draw the Hasse
diagram of this relation.

Solution.

The directed graph of the given relation is
18,
T4

22

.
3

-
o
A
-

The corresponding Hasse diagram is given by
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S) e

Now, given the Hasse diagram of a partial order relation one can find the
digraph as follows:

e reinsert the direction markers on the arrows making all arrows point up-

ward
e add loops at each vertex
e for each sequence of arrows from one point to a second point and from that

second point to a third point, add an arrow from the first point to the third.

Example 19.6
Let A = {1,2,3,4} be a poset. Find the directed graph corresponding to the

following Hasse diagram on A.

Solution.

b
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Next, if A is a poset then we say that a and b are comparable if either
a < bor b < a. lf every pair of elements of A are comparable then we call <

a total order.

Example 19.7
Consider the “divides” relation defined on the set A = {5,15,30}. Prove that

this relation is a total order on A.

Solution.

The fact that the “divides” relation is a partial order is easy to verify. Since
5/15,5|30, and 15|30, any pair of elements in A are comparable. Thus, the
“divides” relation is a total order on A. m

{Example 19.8
Show that the “divides” relation on IN* is not a total order.

Solution.
A counterexample of two noncomparable numbers are 2 and 3, since 2 does

not divide 3 and 3 does not divide 2. ®
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Review Problems

Problem 19.1
Let ¥ = {a,b} and let =* be the set of all strings over L. Define the relation

R on ¥* as follows: for all s,t € 27,
s Rt e l(s) < U(t),

where I(x) denotes the length of the word z. Is R antisymmetric? Prove or
give a counterexample.

Problem 19.2
Define a relation R on Z as follows: for all m,n € Z

m Rn < m+4n s even.
Is R a partial order? Prove or give a counterexample.

Problem 19.3
Define a relation R on IR as follows: for all m,n € IR

m Rn < m?<ni
Is R a partial order? Prove or give a counterexample.
Problem 19.4

Let S = {0,1} and consider the partial order relation R defined on S x S as
follows: for all ordered pairs (a,b) and (c,d) in S x S

(a,b) R (¢,d) ©@a<cand b<d.
Draw the Hasse diagram for R.

Problem 19.5

Consider the “divides” relation defined on the set A = {1,2,2%.--,2"},
where n is a nonnegative integer.

a. Prove that this relation is a total order on A.

b. Draw the Hasse diagram for this relation when n = 3.



