20 FUNCTIONS: DEFINITIONS AND EXAMPLES

119

20 Functions: Definitions and Examples

A function is a special case of a relation. A function f from a set A to a set B is a relation from A to B such that for every $x \in A$ there is a unique $y \in B$ such that $(x,y) \in f$. For $(x,y) \in f$ we use the notation y = f(x). We call y the **image** of x under f. The set A is called the **domain** of f whereas B is called the **codomain**. The collection of all images of f is called the **range** of f.

Example 20.1

Show that the relation $f = \{(1, a), (2, b), (3, a)\}$ defines a function from $A = \{1, 2, 3\}$ to $B = \{a, b, c\}$. Find its range.

Solution.

Since every element of A has a unique image, f is a function. Its range consists of the elements a and b.

Example 20.2

Show that the relation $f = \{(1, a), (2, b), (3, c), (1, b)\}$ does not define a function from $A = \{1, 2, 3\}$ to $B = \{a, b, c\}$.

Solution.

Indeed, since 1 has two images in B, f is not a function.

Example 20.3

A sequence of elements of a set A is a function from \mathbb{N}^* to A. We write (a_n) and we call a_n the nth term of the sequence.

- a. Define the sequence $a_n = n, n \ge 1$. Compute $\sum_{k=1}^n a_k$.
- b. Define the sequence $a_n = n^2$. Compute the sum $\sum_{k=1}^n a_k$.

Solution.

a. Let $S_n = \sum_{k=1}^n a_k$. Then write S_n in two different ways, namely, $S_n = 1 + 2 + \cdots + n$ and $S_n = n + (n-1) + \cdots + 1$. Adding, we obtain $2S_n = (n+1) + (n+1) + \cdots + (n+1) = n(n+1)$. Thus, $S_n = \frac{n(n+1)}{2}$.

b. First note that $(n+1)^3 - n^3 = 3n^2 + 3n + 1$. From this we obtain the following chain of equalities:

$$2^{3} - 1^{3} = 3(1)^{2} + 3(1) + 1$$

$$3^{3} - 2^{3} = 3(2)^{2} + 3(2) + 1$$

$$\vdots$$

$$(n+1)^{3} - n^{3} = 3n^{2} + 3n + 1$$

Adding these equalities we find

$$3\sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + n = (n+1)^3 - 1.$$

Using a. we find

$$3\sum_{k=1}^{n} k^2 + \frac{3n(n+1)}{2} + n = n^3 + 3n^2 + 3n.$$

Simple arithmetic shows that

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.\blacksquare$$

Example 20.4

Let $A = \{a, b, c\}$. Define the function $f : \mathcal{P}(A) \to \mathbb{N}$ by f(X) = |X|. Find the range of f.

Solution.

By applying f to each member of $\mathcal{P}(A)$ we find $Range(f) = \{0, 1, 2, 3\}$.

Example 20.5

Consider the alphabet $\Sigma=\{a,b\}$ and the function $f:\Sigma^*\to \mathbb{Z}$ defined as follows: for any string $s\in\Sigma^*$

$$f(s) = the number of a's in s.$$

Find $f(\epsilon)$, f(ababb), and f(bbbaa).

Solution.

$$f(\epsilon) = 0, f(ababb) = 2, \text{ and } f(bbbaa) = 2.$$

Example 20.6 (Equality of Functions)

Two functions f and g defined on the same domain D are said to be **equal** if and only if f(x) = g(x) for all $x \in D$. Show that the functions $f, g : \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| and $g(x) = \sqrt{x^2}$ are equal.

Solution.

A simple argument by the method of proof by cases shows that $\sqrt{x^2} = |x|$.

and we define the decoding function $D: L \to \Sigma^*$ by

D(s) = the string obtained from s by replacing consecutive triple of bits of s by a single copy of that bit.

Find E(0110) and D(1111111000111).

Solution.

We have E(0110) = 0001111111000 and D(1111111000111) = 1101.

Now, let A and B be subsets of \mathbb{R} . A function $f:A\to B$ is called a **real-valued function of a real variable.** In this case, each ordered pair (x, f(x)) can be represented by a point in the Cartesian plane. The collection of all such points is called the **graph** of f.

Example 20.10

Consider the power function $f_a(x) = x^a$, where $a, x \in \mathbb{R}^+ \cup \{0\}$. Graph on the same Cartesian plane the functions $f_0(x), f_1(x), f_{\frac{1}{2}}(x)$, and $f_2(x)$.

Solution.

Example 20.11

Graph the functions $f(x) = \lfloor x \rfloor$ and $g(x) = \lceil x \rceil$ on the closed interval [-4, 4].

Solution.

Гх ¬

Example 20.12 Graph the function $f: \mathbb{N} \to \mathbb{R}$ defined by $f(n) = \sqrt{n}$.

Solution.

Example 20.13

Let D_f be the domain of a function f and $S \subseteq D_f$. We say that f is **increasing** on S if and only if, for all $x_1, x_2 \in S$, if $x_1 < x_2$ then $f(x_1) < f(x_2)$. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x - 3 is increasing on \mathbb{R} .

Solution.

Indeed, for any real numbers x_1 and x_2 such that $x_1 < x_2$, we have $2x_1 - 3 < 2x_2 - 3$. That is, $f(x_1) < f(x_2)$ so that f is increasing.

Example 20.14

Let D_f be the domain of a function f and $S \subseteq D_f$. We say that f is **decreasing** on S if and only if, for all $x_1, x_2 \in S$, if $x_1 < x_2$ then $f(x_1) > f(x_2)$. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x+2}{x+1}$ is decreasing on $(-\infty, -1)$ and $(-1, \infty)$.

Solution.

Indeed, for any real numbers $x_1, x_2 \in (-\infty, -1)$ or $x_1, x_2 \in (-1, \infty)$ such that $x_1 < x_2$, we have $(x_1 + 1)(x_2 + 1) > 0$. This implies, that $f(x_1) - f(x_2) = \frac{x_2 - x_1}{(x_1 + 1)(x_2 + 1)} > 0$. Thus, f is decreasing on the given intervals.

125

Review Problems

Problem 20.1

Let $f, g : \mathbb{R} \to \mathbb{R}$ be the functions f(x) = 2x and $g(x) = \frac{2x^3 + 2x}{x^2 + 1}$. Show that f = g.

Problem 20.2

Let $H, K : \mathbb{R} \to \mathbb{R}$ be the functions $H(x) = \lfloor x \rfloor + 1$ and $K(x) = \lceil x \rceil$. Does H = K? Explain.

Problem 20.3

Find functions defined on the set of nonnegative integers that define the sequences whose first six terms are given below.

a.
$$1, -\frac{1}{3}, \frac{1}{5}, -\frac{1}{7}, \frac{1}{9}, -\frac{1}{11}$$
.
b. $0, -2, 4, -6, 8, -10$.

Problem 20.4

Let $A = \{1, 2, 3, 4, 5\}$ and let $F : \mathcal{P}(A) \to \mathbf{Z}$ be defined as follows:

$$F(X) = \begin{cases} 0 & if X \text{ has an even number of elements} \\ 1 & if X \text{ has an odd number of elements} \end{cases}$$

Find the following

a.
$$F(\{1,3,4\})$$

b.
$$F(\emptyset)$$
.

c.
$$F(\{2,3\})$$
.

d.
$$F({2,3,4,5})$$
.

Problem 20.5

Let $\Sigma = \{a, b\}$ and Σ^* be the set of all strings over Σ .

a. Define $f: \Sigma^* \to \mathbf{Z}$ as follows:

$$f(s) = \begin{cases} the \ number \ of \ b's \ to \ the \ left \ of \ the \ leftmost \ a \ in \ s \\ 0 \ if \ s \ contains \ no \ a's \end{cases}$$

Find f(aba), f(bbab), and f(b). What is the range of f? b. Define $g: \Sigma^* \to \Sigma^*$ as follows:

g(s) = the string obtained by writing the characters of s in reverse order.

Find g(aba), g(bbab), and g(b). What is the range of g?

Problem 20.6

Let E and D be the encoding and decoding functions.

- a. Find E(0110) and D(1111111000111).
- b. Find E(1010) and D(0000001111111).

Problem 20.7

Let H denote the Hamming distance function on Σ^5 .

- a. Find H(10101, 00011).
- b. Find H(00110, 10111).

Problem 20.8

Consider the three-place Boolean function $f:\{0,1\}^3 \to \{0,1\}$ defined as follows:

$$f(x_1, x_2, x_3) = (3x_1 + x_2 + 2x_3) \bmod 2$$

- a. Find f(1, 1, 1) and f(0, 1, 1).
- b. Describe f using an input/output table.

Problem 20.9

Draw the graphs of the power functions $f_{\frac{1}{3}}(x)$ and $f_{\frac{1}{4}}(x)$ on the same set of axes. When, 0 < x < 1, which is greater: $x^{\frac{1}{3}}$ or $x^{\frac{1}{4}}$? When x > 1, which is greater $x^{\frac{1}{3}}$ or $x^{\frac{1}{4}}$?

Problem 20.10

Graph the function $f(x) = \lceil x \rceil - \lfloor x \rfloor$ on the interval $(-\infty, \infty)$.

Problem 20.11

Graph the function $f(x) = x - \lfloor x \rfloor$ on the interval $(-\infty, \infty)$.

Problem 20.12

Graph the function $h: \mathbb{N} \to \mathbb{R}$ defined by $h(n) = \lfloor \frac{n}{2} \rfloor$.

Problem 20.13

Let $k : \mathbb{R} \to \mathbb{R}$ be the function defined by the formula $k(x) = \frac{x-1}{x}$ for all nonzero real numbers x.

- a. Show that k is increasing on $(0, \infty)$.
- b. Is k increasing or decreasing on $(-\infty, 0)$? Prove your answer.

21 Bijective and Inverse Functions

Let $f: A \to B$ be a function. We say that f is **injective** or **one-to-one** if and only if for all $x, y \in A$, if f(x) = f(y) then x = y. Using the concept of contrapositive, a function f is injective if and only if for all $x, y \in A$, if $x \neq y$ then $f(x) \neq f(y)$. Taking the negation of this last conditional implication we see that f is not injective if and only if there exist two distinct elements a and b of A such that f(a) = f(b).

Example 21.1

- a. Show that the identity function I_A on a set A is injective.
- b. Show that the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2$ is not injective.

Solution.

- a. Let $x, y \in A$. If $I_A(x) = I_A(y)$ then x = y by the definition of I_A . This shows that I_A is injective.
- b. Since $1^2 = (-1)^2$ and $1 \neq -1$, f is not injective.

Example 21.2 (Hash Functions)

Let m > 1 be a positive integer. Show that the function $h : \mathbf{Z} \to \mathbf{Z}$ defined by $h(n) = n \mod m$ is not injective.

Solution.

Indeed, since m > 1, we have $2m+1 \neq m+1$ and h(m+1) = h(2m+1) = 1. So h is not injective. \blacksquare

Example 21.3

Show that if $f: \mathbb{R} \to \mathbb{R}$ is increasing then f is one-to-one.

Solution.

Suppose that $x_1 \neq x_2$. Then without loss of generality we can assume that $x_1 < x_2$. Since f is increasing, $f(x_1) < f(x_2)$. That is, $f(x_1) \neq f(x_2)$. Hence, f is one-to-one.

Example 21.4

Show that the composition of two injective functions is also injective.

Solution.

Let $f: A \to B$ and $g: B \to C$ be two injective functions. We will show that $g \circ f: A \to C$ is also injective. Indeed, suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$

for $x_1, x_2 \in A$. Then $g(f(x_1)) = g(f(x_2))$. Since g is injective, $f(x_1) = f(x_2)$. Now, since f is injective, $x_1 = x_2$. This completes the proof that $g \circ f$ is injective.

Now, for any function $f:A\to B$ we have $Range(f)\subseteq B$. If equality holds then we say that f is **surjective** or **onto.** It follows from this definition that a function f is surjective if and only if for each $y\in B$ there is an $x\in A$ such that f(x)=y. By taking the negation of this we see that f is not onto if there is a $y\in B$ such that $f(x)\neq y$ for all $x\in A$.

Example 21.5

a. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x - 5 is surjective. b. Show that the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 3n - 5 is not surjective.

Solution.

a. Let $y \in \mathbb{R}$. Is there an $x \in \mathbb{R}$ such that f(x) = y? That is, 3x - 5 = y. But solving for x we find $x = \frac{y+5}{3} \in \mathbb{R}$ and f(x) = y. Thus, f is onto. b. Take m = 3. If f is onto then there should be an $n \in \mathbb{Z}$ such that f(n) = 3. That is, 3n - 5 = 3. Solving for n we find $n = \frac{8}{3}$ which is not an integer. Hence, f is not onto. \blacksquare

Example 21.6 (Projection Functions)

Let A and B be two nonempty sets. The functions $pr_A: A \times B \to A$ defined by $pr_A(a,b) = a$ and $pr_B: A \times B \to B$ defined by $pr_B(a,b) = b$ are called **projection** functions. Show that pr_A and pr_B are surjective functions.

Solution.

We prove that pr_A is surjective. Indeed, let $a \in A$. Since B is not empty, there is a $b \in B$. But then $(a,b) \in A \times B$ and $pr_A(a,b) = a$. Hence, pr_A is surjective. The proof that pr_B is surjective is similar.

Example 21.7

Show that the composition of two surjective functions is also surjective.

Solution.

Let $f: A \to B$ and $g: B \to C$, where $Range(f) \subseteq C$, be two surjective functions. We will show that $g \circ f: A \to D$ is also surjective. Indeed, let $z \in D$. Since g is surjective, there is a $y \in B$ such that g(y) = z. Since f is

surjective, then there is an $x \in A$ such that f(x) = y. Thus, g(f(x)) = z. This shows that $g \circ f$ is surjective.

Now, we say that a function f is **bijective** or **one-to-one correspondence** if and only if f is both injective and surjective. A bijective function on a set A is called a **permutation**.

Example 21.8

- a. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x 5 is a bijective function.
- b. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not bijective.

Solution.

- a. First we show that f is injective. Indeed, suppose that $f(x_1) = f(x_2)$. Then $3x_1 5 = 3x_2 5$ and this implies that $x_1 = x_2$. Hence, f is injective. f is surjective by Example 21.5 (a).
- b. f is not injective since f(-1) = f(1) but $-1 \neq 1$. Hence, f is not bijective.

Example 21.9

Show that the composition of two bijective functions is also bijective.

Solution.

This follows from Example 21.4 and Example 21.7 ■

Theorem 21.1

Let $f: X \to Y$ be a bijective function. Then there is a function $f^{-1}: Y \to X$ with the following properties:

- a. $f^{-1}(y) = x$ if and only if f(x) = y.
- b. $f^{-1} \circ f = I_X$ and $f \circ f^{-1} = I_Y$ where I_X denotes the identity function on X.
- c. f^{-1} is bijective.

Proof.

For each $y \in Y$ there is a unique $x \in X$ such that f(x) = y since f is bijective. Thus, we can define a function $f^{-1}: Y \to X$ by $f^{-1}(y) = x$ where f(x) = y.

a. Follows from the definition of f^{-1} .

b. Indeed, let $x \in X$ such that f(x) = y. Then $f^{-1}(y) = x$ and $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x = I_X(x)$. Since x was arbitrary, $f^{-1} \circ f = I_X$. The proof that $f \circ f^{-1} = I_Y$ is similar.

c. We show first that f^{-1} is injective. Indeed, suppose $f^{-1}(y_1) = f^{-1}(y_2)$. Then $f(f^{-1}(y_1)) = f(f^{-1}(y_2))$; that is, $(f \circ f^{-1})(y_1) = (f \circ f^{-1})(y_2)$. By b. we have $I_Y(y_1) = I_Y(y_2)$. From the definition of I_Y we obtain $y_1 = y_2$. Hence, f^{-1} is injective. We next show that f^{-1} is surjective. Indeed, let $y \in Y$. Since f is onto there is a unique $x \in X$ such that f(x) = y. By the definition of f^{-1} , $f^{-1}(y) = x$. Thus, for every element $y \in Y$ there is an element $x \in X$ such that $f^{-1}(y) = x$. This says that f^{-1} is surjective and completes a proof of the theorem \blacksquare

Example 21.10

Show that $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x - 5 is bijective and find a formula for its inverse function.

Solution.

We have already proved that f is bijective. We will just find the formula for its inverse function f^{-1} . Indeed, if $y \in Y$ we want to find $x \in X$ such that $f^{-1}(y) = x$, or equivalently, f(x) = y. This implies that 3x - 5 = y and solving for x we find $x = \frac{y+5}{3}$. Thus, $f^{-1}(y) = \frac{y+5}{3}$

Review Problems

Problem 21.1

- a. Define $g: \mathbf{Z} \to \mathbf{Z}$ by g(n) = 3n 2.
- (i) Is g one-to-one? Prove or give a counterexample.
- (ii) Is g onto? Prove or give a counterexample.
- b. Define $G: \mathbb{R} \to \mathbb{R}$ by G(x) = 3x 2. Is G onto? Prove or give a counterexample.

Problem 21.2

Determine whether the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x+1}{x}$ is one-to-one or not.

Problem 21.3

Determine whether the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x}{x^2+1}$ is one-to-one or not.

Problem 21.4

Let $f: \mathbb{R} \to \mathbb{Z}$ be the floor function f(x) = |x|.

a. Is f one-to-one? Prove or give a counterexample.

b. Is f onto? Prove or give a counterexample.

Problem 21.5

Let $\Sigma = \{0, 1\}$ and let $l: \Sigma^* \to \mathbb{N}$ denote the length function.

a. Is l one-to-one? Prove or give a counterexample.

b. Is *l* onto? Prove or give a counterexample.

Problem 21.6

If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are one-to-one functions, is f+g also one-to-one? Justify your answer.

Problem 21.7

Define $F: \mathcal{P}\{a, b, c\} \to \mathbb{N}$ to be the number of elements of a subset of $\mathcal{P}\{a, b, c\}$.

a. Is F one-to-one? Prove or give a counterexample.

b. Is F onto? Prove or give a counterexample.

Problem 21.8

If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are onto functions, is f+g also onto? Justify your answer.

Problem 21.9

Let $\Sigma = \{a, b\}$ and let $l : \Sigma^* \to \mathbb{N}$ be the length function. Let $f : \mathbb{N} \to \{0, 1, 2\}$ be the hash function $f(n) = n \mod 3$. Find $(f \circ l)(abaa), (f \circ l)(baaab)$, and $(f \circ l)(aaa)$.

Problem 21.10

Show that the function $F^{-1}: \mathbb{R} \to \mathbb{R}$ given by $F^{-1}(y) = \frac{y-2}{3}$ is the inverse of the function F(x) = 3x + 2.

Problem 21.11

If $f: X \to Y$ and $g: Y \to Z$ are functions and $g \circ f: X \to Z$ is one-to-one, must both f and g be one-to-one? Prove or give a counterexample.

Problem 21.12

If $f: X \to Y$ and $g: Y \to Z$ are functions and $g \circ f: X \to Z$ is onto, must both f and g be onto? Prove or give a counterexample.

Problem 21.13

If $f: X \to Y$ and $g: Y \to Z$ are functions and $g \circ f: X \to Z$ is one-to-one, must f be one-to-one? Prove or give a counterexample.

Problem 21.14

If $f: X \to Y$ and $g: Y \to Z$ are functions and $g \circ f: X \to Z$ is onto, must g be onto? Prove or give a counterexample.

Problem 21.15

Let $f: W \to X, g: X \to Y$ and $h: Y \to Z$ be functions. Must $h \circ (g \circ f) = (h \circ g) \circ f$? Prove or give a counterexample.

Problem 21.16

Let $f: X \to Y$ and $g: Y \to Z$ be two bijective functions. Show that $(g \circ f)^{-1}$ exists and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.