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20 Functions: Definitions and Examples

A function is a special case of a relation. A function f from a set A to a
set B is a relation from A to B such that for every z € A there is a unique
y € B such that (z,y) € f. For (z,y) € f we use the notation y = f(z). We
call y the image of z under f. The set A is called the domain of f whereas
B is called the codomain. The collection of all images of f is called the
range of f.

‘Example 20.1
Show that the relation f = {(1,a),(2,b),(3,a)} defines a function from A =

{1,2,3} to B = {a,b,c}. Find its range.

Solution.
Since every element of A has a unique image, f is a function. Its range
consists of the elements a and b. B

Example 20.2
Show that the relation f = {(1,a),(2,b),(3,¢),(1,b)} does not define a func-
tion from A = {1,2,3} to B = {a,b,c}.

Solution.
Indeed, since 1 has two images in B, f is not a function. m

Example 20.3
A sequence of elements of a set A is a function from IN* to A. We write

(a,) and we call a, the nth term of the sequence.
a. Define the sequence a,, = n,n > 1. Compute > |'_, a;.
b. Define the sequence a,, = n?. Compute the sum >_,_, aj.

Solution.
a. Let 5, = ZL ay. Then write S,, in two different ways, namely, S, =
1+24+---+nand S, =n+(n—1)+---+ 1. Adding, we obtain 25, =
m+1)+(n+1)+ +(n+1)—n(n+l) Thus, S, = 22,
b. First note that (n +1)* — n® = 3n® + 3n + 1. From this we obtain the
following chain of equalities:

77 - ¥ = 3(1)?2 + 3(1) + 1

+ 1

33— 28 = 3(2)2 + 3(2)

n+12® — n® = 3 + 3n + 1
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Adding these equalities we find

SZk2+BZk+n: (n4+1)% - 1,
k=1 k=1

Using a. we find

; : 1 )
3 Z k? + % +n=n%+3n%+3n.

Simple arithmetic shows that

ikz B n(n+1)(2n+1)

{Example 20.4
et A = {a,b,c}. Define the function f : P(A) - N by f(X) = |X|. Find
he range of f.

Solution.
By applying f to each member of P(A) we find Range(f) = {0,1,2,3}. m

Example 20.5
Consider the alphabet ¥ = {a,b} and the function f : ¥* — Z defined as
follows: for any string s € X*

f(s) = the number of d's in s.

Find f(e), f(ababb), and f(bbbaa).

Solution.
f(e) =0, f(ababb) = 2, and f(bbbaa) = 2. m

| {Example 20.6 (Equality of Functions)

Two functions f and g defined on the same domain D are said to be equal if
and only if f(z) = g(x) for all z € D. Show that the functions f,¢ : IR — R
defined by f(x) = |r| and g(x) = /22 are equal.

'Solution.
| /A simple argument by the method of proof by cases shows that V22 = |z|. m
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and we define the decoding function D : L — ¥* by

D(s) = the string obtained from s by replacing consecutive triple of bits
of s by a single copy of that bit.

Find E(0110) and D(111111000111).

Solution.
We have E(0110) = 000111111000 and D(111111000111) = 1101. m

Now, let A and B be subsets of IR. A function f : A — B is called a
real-valued function of a real variable. In this case, each ordered pair
(x, f(z)) can be represented by a point in the Cartesian plane. The collection
of all such points is called the graph of f.

[{Example 20.10
Consider the power function f,(z) = z%, where a,z € R" U {0}. Graph on
the same Cartesian plane the functions fo(z), fi(z), f% (x), and fo(z).

Solution.
£
y e f
o B2
§ - t,
V4
0 X

| Example 20.11
| Graph the functions f(z) = |z| and g(z) = [z] on the closed interval [—4, 4].
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Solution.

=7

Example 20.12

Solution.

bichendocnd

LI B S |

Graph the function f: IN — IR defined by f(n) = /n.

123
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| Example 20.13
Let Dy be the domain of a function f and S € D;. We say that f is increas-

ing on § if and only if, for all z;,2, € S, if x; < 29 then f(x)) < f(x2).
Show that the function f : IR — IR defined by f(z) = 2x — 3 is increasing
on IR.

Solution.
Indeed, for any real numbers x; and x5 such that r; < x5, we have 22, —3 <

229 — 3. That is, f(x1) < f(z2) so that f is increasing. m

Example 20.14

Let Dy be the domain of a function f and S C Dj. We say that f is de-
| creasing on S if and only if, for all z,, x> € S, if 7; < 3 then f(z1) > f(x2).
| Show that the function f : IR — IR defined by f(zr) = i% is decreasing on
(—o0,—1) and (—1,00).

| Solution.
| Indeed, for any real numbers z;, x5 € (—oo, —1) or 21, 22 € (—1, 0c) such that
||z < xg, we have (21 + 1)(z2 + 1) > 0. This implies, that f(z;) — f(z2) =

Gl—fﬁm > (. Thus, f is decreasing on the given intervals. m
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Review Problems

Problem 20.1

Let f,g : IR — IR be the functions f(x) = 2z and g(z) = 2—1;2—::% Show that
f=9

Problem 20.2
Let H, K : IR — IR be the functions H(z) = |z| + 1 and K(z) = [z]. Does
H = K7 Explain.

Problem 20.3
Find functions defined on the set of nonnegative integers that define the

sequences whose first six terms are given below.
1 1 1

Problem 20.4
Let A= {1,2,3,4,5} and let F : P(A) — Z be defined as follows:

f 1S an e umber en
F(X) = { 0 if X has an even number of elements

1 if X has an odd number of elements

Find the following

a. F({1,3,4})

b. F(0).

c. F({2,3}).

d. F{{2;3,4,5}).

Problem 20.5
Let ¥ = {a,b} and * be the set of all strings over X.
a. Define f : ¥* — Z as follows:

the number of U's to the left of the leftmost a in s
)= S o e B s ot
0 ¢f s contains no a's

Find f(aba), f(bbab), and f(b). What is the range of f?
b. Define g : ¥* — ¥* as follows:

g(s) = the string obtained by writing the characters of s in reverse order.

Find g(aba), g(bbab), and g(b). What is the range of g7
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Problem 20.6

Let E and D) be the encoding and decoding functions.
a. Find £(0110) and D(111111000111).

b. Find E(1010) and D(000000111111).

Problem 20.7

Let H denote the Hamming distance function on X°.
a. Find H(10101,00011).

b. Find H(00110,10111).

Problem 20.8
Consider the three-place Boolean function f : {0,1}* — {0,1} defined as
follows:

flx1, 29, 23) = (321 + 22 + 223) Mod 2

a. Find f(1,1,1) and f(0,1,1).
b. Describe f using an input/output table.

Problem 20.9

Draw the graphs of the power functions f 1 (z) and f 1 (z) on the same set of
N 1 1, C
axes. When, 0 < z < 1, which is greater: 23 or £17? When x > 1, which is
1 1
greater T3 or xi7

Problem 20.10

Graph the function f(z) = [2] — |z] on the interval (—oo,00).

Problem 20.11
Graph the function f(z) = x — |z] on the interval (—o0, 00).

Problem 20.12
Graph the function & : IN — IR defined by h(n) = [§].

Problem 20.13

Let k£ : IR — IR be the function defined by the formula k(z) = 2 for all
nonzero real numbers .

a. Show that £ is increasing on (0, co).

b. Is k increasing or decreasing on (—oc,0)? Prove your answer.
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21 Bijective and Inverse Functions

Let f: A — B be a function. We say that f is injective or one-to-one if
and only if for all z,y € A, if f(z) = f(y) then x = y. Using the concept of
contrapositive, a function f is injective if and only if for all z,y € A, if x # y
then f(z) # f(y). Taking the negation of this last conditional implication
we see that f is not injective if and only if there exist two distinct elements
a and b of A such that f(a) = f(b).

iExample 21.1
a. Show that the identity function 74 on a set A is injective.
b. Show that the function f : Z — Z defined by f(n) = n? is not injective.

Solution.

a. Let z,y € A. If I1(x) = I4(y) then x = y by the definition of I4. This
shows that I, is injective.

'b. Since 12 = (—1)%? and 1 # —1, f is not injective.m

Example 21.2 (Hash Functions)
Let m > 1 be a positive integer . Show that the function h : Z — Z defined
by h(n) = n mod m is not injective.

Solution.
Indeed, since m > 1, we have 2m+1# m+1and h(m+1) = h(2m+1) = 1.
So h is not injective. W

| Example 21.3
Show that if f : IR — IR is increasing then f is one-to-one.

Solution.
|Suppose that x; # x5. Then without loss of generality we can assume that

r; < 3. Since f is increasing, f(x;) < f(x2). That is, f(z;) # f(z2). Hence,
| f is one-to-one. m

! [Example 21.4
Show that the composition of two injective functions is also injective.

|

‘Solution.

Let f: A— Band g: B — C be two injective functions. We will show that
;gOf : A — C'is also injective. Indeed, suppose that (go f)(z1) = (go f)(z2)
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{f{for z1, 25 € A. Then g(f(x1)) = g(f(x2)). Since g is injective, f(z;) = f(x2).
Now, since f is injective, 1 = x». This completes the proof that g o f is
injective. ®

Now, for any function f: A — B we have Range(f) C B. If equality holds
then we say that f is surjective or onto. It follows from this definition that
a function f is surjective if and only if for each y € B there is an z € A such
that f(z) = y. By taking the negation of this we see that f is not onto if
there is a y € B such that f(z) # y for all z € A.

'Example 21.5
a. Show that the function f : R — IR defined by f(z) = 3z — 5 is surjective.
b. Show that the function f : Z — Z defined by f(n) = 3n — 5 is not

surjective.

Solution.

a. Let y € IR. Is there an x € IR such that f(z) = y? That is, 3z — 5 = y.
But solving for = we find x = 3%5 € R and f(r) =y. Thus, f is onto.

: |b. Take m = 3.1f f is onto then there should be an n € Z such that f(n) = 3.
|| That is, 3n — 5 = 3. Solving for n we find n = £ which is not an integer.
|Hence, f is not onto. m

‘fExample 21.6 (Projection Functions)

| Let A and B be two nonempty sets. The functions prs : A x B — A defined
|Iby pra(a,b) = a and prg : A x B — B defined by prg(a,b) = b are called
. Iprojection functions. Show that pr4 and prp are surjective functions.

}Solution.

‘We prove that pr, is surjective. Indeed, let a € A. Since B is not empty,
there is a b € B. But then (a,b) € A x B and pra(a,b) = a. Hence, pry is
:surjective. The proof that prg is surjective is similar. m

iExample 21.7
Show that the composition of two surjective functions is also surjective.

Solution.

let f: A— Band g: B — C, where Range(f) C C, be two surjective
functions. We will show that go f : A — D is also surjective. Indeed, let
| b € D. Since g is surjective, there is a y € B such that ¢g(y) = z. Since f is




|

o ——————————————————— =

21 BIJECTIVE AND INVERSE FUNCTIONS 129

surjective, then there is an = € A such that f(z) = y. Thus, g(f(z)) = =.
This shows that g o f is surjective. B

Now, we say that a function f is bijective or one-to-one correspondence
if and only if f is both injective and surjective. A bijective function on a set
A is called a permutation.

Example 21.8

a. Show that the function f : R — IR defined by f(x) = 3z — 5 is a bijective
function.

b. Show that the function f: IR — IR defined by f(z) = z* is not bijective.

Solution.

a. First we show that f is injective. Indeed, suppose that f(z1) = f(z2).
Then 3z; — 5 = 3x5 — 5 and this implies that z; = x,. Hence, f is injective.
f is surjective by Example 21.5 (a).

b. f is not injective since f(—1) = f(1) but —1 # 1. Hence, f is not bijective.
||

Example 21.9

Show that the composition of two bijective functions is also bijective.

Solution.

This follows from Example 21.4 and Example 21.7 m

Theorem 21.1
Let f : X — Y be a bijective function. Then there is a function f~!: Y — X

with the following properties:

a. f~l(y) = z if and only if f(z) = y.

b. f7'o f=1Ix and fo f~' = Iy where Iy denotes the identity function on
X.

c. f~!is bijective.

Proof.

For each y € Y there is a unique r € X such that f(z) = y since f is
bijective. Thus, we can define a function f~' : Y — X by f~!(y) = x where
fl@)=y.

a. Follows from the definition of f~!.
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b. Indeed, let € X such that f(z) = y. Then f~!(y) = z and (f~lo f)(z) =
FYf () = fY(y) = z = Ix(z). Since = was arbitrary, f~' o f = Ix. The
proof that f o f~! = Iy is similar.

¢. We show first that f~! is injective. Indeed, suppose f~(y1) = f~(y).
Then f(f~ (1)) = f(f 7' (y2)); that is, (fo f7')(y1) = (f o f7!)(y2). By b.
we have Iy (y;) = Iy (ye). From the definition of Iy we obtain y; = y». Hence,
f~1 is injective. We next show that f~! is surjective. Indeed, let y € Y.
Since f is onto there is a unique z € X such that f(z) = y. By the definition
of f71, f71(y) = z. Thus, for every element y € Y there is an element z € X
such that f~!(y) = z. This says that f~' is surjective and completes a proof
of the theorem m

Example 21.10

Show that f : IR — IR defined by f(z) = 3z — 5 is bijective and find a
formula for its inverse function.

Solution.

We have already proved that f is bijective. We will just find the formula
for its inverse function f~'. Indeed, if y € Y we want to find x € X such
that f~!(y) = z, or equivalently, f(xz) = y. This implies that 3z — 5 = y and
solving for x we find x = yg—f’ Thus, f~H(y) = m
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Review Problems

Problem 21.1

a. Define g: Z — Z by g(n) =3n — 2.

(i) Is g one-to-one? Prove or give a counterexample.

(ii) Is g onto? Prove or give a counterexample.

b. Define G : R — IR by G(z) = 3z — 2. Is G onto? Prove or give a
counterexample.

Problem 21.2

Determine whether the function f : R — R given by f(z) = %1 is one-to-
one or not.

Problem 21.3
Determine whether the function f : IR — IR given by f(z) = %5 is one-to-
one or not.

Problem 21.4

Let f: IR — Z be the floor function f(z) = |z].

a. Is f one-to-one? Prove or give a counterexample.
b. Is f onto? Prove or give a counterexample.

Problem 21.5
Let £ = {0,1} and let / : ¥* — IN denote the length function.

a. Is [ one-to-one? Prove or give a counterexample.
b. Is [ onto? Prove or give a counterexample.

Problem 21.6

If f:IR — R and g : IR — IR are one-to-one functions, is f + g also
one-to-one? Justify your answer.

Problem 21.7

Define F : P{a,b,c} — IN to be the number of elements of a subset of
P{a,b,c}.

a. Is I one-to-one? Prove or give a counterexample.

b. Is F onto? Prove or give a counterexample.

Problem 21.8
If f:IR — IR and ¢ : IR — IR are onto functions, is f + g also onto? Justify
YOur answer.




132 RELATIONS AND FUNCTIONS

Problem 21.9

Let ¥ = {a,b} and let [ : ¥* — IN be the length function. Let f : IN —
{0, 1,2} be the hash function f(n) = n mod 3. Find ( fol)(abaa), ( fol)(baaab),
and (f ol)(aaa).

Problem 21.10

Show that the function F~! : IR — IR given by F~!(y) = % is the inverse
of the function F(x) = 3z + 2.

Problem 21.11
If f: X —>Yand g:Y — Z are functions and go f : X = Z is one-to-one,
must both f and g be one-to-one? Prove or give a counterexample.

Problem 21.12
If f: X —>Yand g:Y — Z are functions and go f : X = Z is onto, must
both f and g be onto? Prove or give a counterexample.

Problem 21.13
If f: X =Y and g:Y — Z are functions and go f : X — Z is one-to-one,
must f be one-to-one? Prove or give a counterexample.

Problem 21.14
If f: X ->Y and g:Y — Z are functions and go f : X — Z is onto, must
g be onto? Prove or give a counterexample.

Problem 21.15
Let f:W — X,g: X =Y and h:Y — Z be functions. Must ho (go f) =
(ho g)o f? Prove or give a counterexample.

Problem 21.16
Let f: X — Y and g : Y — Z be two bijective functions. Show that (go f)™*

exists and (go f)"! = flog™L




