5. Permutations

In this chapter we are going to study permutations, that is, reorderings of
elements. There are aspects on permutations pertinent to both algebra, com-
puter science, and combinatorics.

The algebraic ones derive from the fact that permutations of a set of elements
form a group, the symmetric group, which we studied in chapter 2.

Computer science is of course relevant when sorting, which is a special kind
of permutation. Some of the sorting algorithms that turned up in chapter 4
are performing a new role here.

Using the theory of permutations, we'll also treat some combinatorial prob-
lems — such as solving the fifteen puzzle — and determine how many different,
necklaces you can make from black and white beads.

Highlights from this chapter

» Different ways of describing a permutation:  one-line form
. 1 2 3 45
[3 4 5 2 1], two-line  form {3 45 9 1J, cycle form

(1 3 5} (2 4} and matrix form
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* Permutations are multiplied using function composition. The set of
permutations of n elements forms the symmetric group S,,.

o The type of a permutation is its multiset of cycle lengths, so
(I 3 5){(4 2) has the type {3,2}.

e The order of a permutation is the number of times the permutation
has to be carried out before the original order is restored.

* A transposition is letting two elements switch places, that is, a cy-
cle of length 2. Every permutation can be made up by a sequence
of transpositions. If an even number of transpositions is needed
the permutation is called ewven, otherwise it’s odd For instance,
3 4 5 2 1]=(1 5) (1 3)(4 2) is an odd permutation.

» In the Fifteen puzzle all even permutations can be solved, but no odd
permutations.

¢ Using Burnside’s lemma, combinatorial problems concerning symme-
tries can be solved.
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76 5.1. REPRESENTATION OF PERMUTATIONS

5.1 Representation of Permutations

A permutation is an ordering of a set of elements. Since it’s always possible
to start by assigning numbers to the elements, studies frequently focus on
permutations of numbers, but the conclusions apply to all finite sets.

There exist several ways of representing a permutation. The most simple is of

course just to write down the elements in the order given by the permutation.
For instance

[3 4 5 2 1] and  cdeba

are permutations of the numbers 12345 and the letters abede, respecively.
This way of writing a permutation is called one-line form and is suitable
when regarding the permutation as an sequence. You can for instance calcu-
late that there are 5! = 120 five-letter words using the letters abede.

In other cases it’s prefered to regard the permutation as the mepping that
transforms 12345 into 34521. Then two-line notation is used:

1 2 3 45
345 21

The interpretation is that 1 is mapped onto 2, that 2 is mapped onto 4, etc.
On two-line form we can thus rearrange the columns and still describe the

same permutation:

bised

31 4 5 2
3 4 5 21

5 3 2 1 4
Another way of describing the relationship is to draw arrows like this:

Trs3
2+ 4
3= 5
4+ 2
51

This diagram describes the permutation as a mapping where every element
is mapped on another one. The mapping is an bijection from the set outo
itself, so we can also describe the mapping in a graphical way like this:

1—3
2754

This is called the cycle diagram of the permutation, since the mapping gives
a number of closed paths, so-called cycles. We can describe each cycle by
choosing an element to use as a starting point and then follow the arrows. If
we write down each cycle surrounded by parentheses we get the permutation
on cycle form:

(1 3 5 (2 4

which is interpreted as “1 is mapped onto 3, which is mapped oato 5, which
is mapped onto the start of the cycle, 1. And 2 is mapped onto 4 which is
mapped back onto 27. Note that the cycle form isn’t unigue, which means that
there are several different ways of describing one and the same permutation
on cycle form. (For the rest, see exercise 5.4.)
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5. PERMUTATIONS 77

Exercise 5.1 What does the permutation

|

look like written on one-line form and cycle form, respecively?

3 6
6 7

o

2 1 7 4
2 3 4 5

-y

Exercise 5.2 Write the permutation
5 217 4 3 6

on cycle form.

Exercise 5.3 Write the permutation
(53 2)(1)(7 4 3 6

on one-line form.

Exercise 5.4 In the cycle form of a permutation the cycles can come
in an arbitrary order and in each cycle an abritrary element can be
placed first. In how many ways can

(5 2)(1)(r 4 3 6

be written on cycle form?

Exercise 5.5: Important! A cycle of the length £ is called a k-cycle.
If a permutation has e; l-cycles, ex 2-cycles, etc., in how many ways
can it then be written on cycle form?

5.1.1 Multiplication and Inversion of Permutations

There is a natural way of defining a kind of composition, we can call it multi-
plication, of two permutations. H you regard permutations as mappings of
a set onto itself you can simply combine the mappings one after the other.

Agsume that we have two permutations, which we denote by the Greek letters
7 and 7. We let n(i) denote the value 7 has on place 7. In other words, the
permutation # maps the element { onto the element 7 (i). Using composition
of functions, we now get a new permutation by first performing 7 and then r,
and this mapping is denoted v (or 7ox if you want to really emphasise that
this is a case of composition of functions). Note that the permutations are
carried out right to left — that is the way with composition of functions — but
are usually drawn left to right, an inconsequence that mathematics has to

live with.
Example 5.1 Composition of two mappings 7 and ¢ is done like this:

145355
2343
3= 52
421
Srr1m 4

This corresponds to the following multiplication of permutations:

34521“12345J [12345] »

7r0":[5321434521 532 1 4
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78 5.1. REPRESENTATION OF PERMUTATIONS

Exercise 5.6 Carry out the following multiplications of permutations:

(a) two-line form:

23 4 5 11|12 3 4 5
5 3 4 2 1

(b} two-line form:
12 3 4 5712 15 3 4
1 53 3 4 2((3 21 45
(c) one-line form:

1 5 3 4 2|[3 2 1 4 5

(d) cycle form:
5 2 1 4 305 21)(4 3)

As we saw in chapter 2, multiplication of permutations is a group operation.
The set of permutations of a set A is denoted 5S4, but usually A is the
set {1,2,...,n}, in which case we use the notatation S, and the name the
symmetric group of n elements. S, has nl! elements since there are
nl permutations of n elements. For instance we have

g J[t 23] 123123
ST 2 3|71 3 21’2 1 3

23l a2 i)

Observe that in the group S,,, the identity element is the permutation id
which maps every number onto itself:

g1 2 ... n
’d[1 2 ... n]

The inverse m~1 of a permutation 7 in S, we get by swapping the upper and
lower rows in the two-line form:

11 2 ... mn . ~1_ |=(1) =(2) ... =(n)
”—[w(l) T(2) ... f,-r(n)J BYSST "=1 1 2 ... n
Exercise 5.7 Determine on cycle form the inverses of the following
permutations:

(a) 1 2 3 45

2 3 4 5 1

() [3 2 1 4 5]

() (5 2(1)(¢ 3

() 5 2 1 4 3

Exercise 5.8: Important! How do you in a simple way invert a per-
mutation written on cycle form?

Exercise 5.9: I'mportant! What does the identity permutation id €
Sy, look like on one-line form and cycle form?
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5. PERMUTATIONS 79

5.1.2 Permutation Matrices

Another way of representing permutations and multiplication of permutations
is with the help of matrices. A permutation matrix is a square matrix
where all the elements are zeros except for exactly one element in each row
and column, which instead is one. There are six permutation matrices of
size 3 x 3:

1 0 0 1 0 0 01 0
01 0}, 00 1), 10 0],
0 0 1 0 1 0 0 01
0 01 01 0 0 0 1
10 o}, 00 1}, 0 1 0
O 1 0 1 0 0 1 0 0
The permutation m# = [r; m ... Tn] is now represented by the n x n-

matrix My, where the one in the first column is on row 71, the one in the
second column is on row =3, and so on. Multiplication of permutations does
now correspond to ordinary matrix multiplication of permutation matrices.
For instance, the permutation multiplication

1234512345_12345
4 1 5 3 213 45 21 (5321 4

corresponds to the matrix multiplication

01000 00001 000610
00 0 01 090 0 1 0 001t oo
00010 100 00|=]01000
10000 1 00 0 0060 01
0010 0 0 01 060 10000

Exercise 5.10: Important!

(a) Show that there are the same number of permutations of n elements
as there are permutation matrices of size n x n.

(b) Show that multiplication of permutations corresponds exactly to
matrix multiplication of the corresponding permutation matrices.

(¢) Show that the inversion of a permutation corresponds to the trans-
position of the permutation matrix.

9.1.3 Order and Type of Permutations

Card masters learn to perform a shufle of the pack of cards in exactly the
same way each time. One advantage of this is that they then can be sure
that the cards after a certain number of shuffles are in exactly the same order
as they were at the start. We’'ll now see how it’s possible ~ by writing the
shuffle as a permutation on cycle form — to determine how many shuffles that
are needed.

Example 5.2 A small pack with six cards numbered 1 to 6 is shuffled in the
following way:

1. The pack is divided into two halves, first and second half.

2. The two halves are riffle shuffled, that is, the cards are taken alternatly
from the second and the first half. Thus, in the first position a card from
the second half will end up.
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The figure above shows how the shuffle is done. Apparently it can be sum-
marised as “the card in place 1 is moved to place 2, the card in place 2 is
moved to place 4, ...”, which in two-line form is represented as

1 2 3 45 8

2 46 1 3 5|’

Note that a card shuffle switches the places (and not the values) of the cards,
80 it’s the way in which the places are changed that the permutation is to

describe. If we make the shuffle 7 several times it's easiest to see what
happens when looking at the cycle form:

m =

7=(1 2 4(3 6 5).

How many shuflles of this kind are needed before the cards are back in their
original order? Start by following what happens with the card on place 1.
The cycle (1 2 4) ensures that it gets back to place 1 after three shuffles.

Using the same line of reasoning we can note that every element in a cycle of
length three will have returned to its original position after three shuffles but
not before that point. Since all the cards are included in one of the 3-cycles,
the whole pack will be in its original order after three shuffles. [ ]

The number of times that a permutation has to be repeated before all el-
ements are at their original places (the identity permutation) is called the
order of the permiitation. (Note that this is exactly the same concept order
as the one we intioduced for group elements in chapter 2.)

We found in the example that the order of a cycle is equal to the length of
the cycle. If there are several cycles but all of them have the same length the
order is the same as well. But what is the order of a permutation with cycles
of different lengths?

Example 5.3 Now we make a luxury version of the shuffle in the previous
example:

1. The pack is divided into two halves.

2. The two halves are riffle shuffled.
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5. PERMUTATIONS 81

3. Then the first card is placed last.
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This version of the shuffle is represented by the permutation

i g g g g EJ , which on cycle formis (1) (2 3 5)(4 6).

How many shuffles of this kind are needed before the card pack returns to
its original order? We have one 1-cycle, one 2-cycle, and one 3-cycle. The
card in the 1-cycle remains in the same place during the whole process. The
cards in the 2-cycle are at their right places after every second shuffle. The
cards in the 3-cycle are in their right places after every third shuffle. The
first time all the cards are back at their right places at the same time is after
six shuffles, when the 2-cycle has made three revolutions and the 3-cycle has

made two revolutions. [ |

In general, if a permutation « has a cycle of length ¢ then the order of 7 has
to be a multiple of £, since the elements in the cycle are in their right places
only every £th time the permutation is repeated. Thus the order of = is the
least common multiple of all the cycle lengths:

order(w) = lem{¢ | = has a cycle of length #}.
In the two examples above we had

order((1 4 2)(3 5 6))=1lem{3,3} =3
and

order((1) (2 5 3)(4 6)) =lem{1,3,2} = 6.

Here we have listed the lengths of all the cycles, even when there are several
ones of the same length, as in {3,3}. This multiset of cycle lengths is called
the type of the permutation. The sum of the cycle lengths is of course
the total number of elements in the permutation. Using a concept that is
discussed more in detail in chapter 6, the type of a permutation in S, is is
an integer partition of n.

Exercise 5.11 Determine the type and order of the following permu-

tations:
(a)

L 72 5@ 6
(b)

176 492 5 3
(c)

176425 3
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82 5.1. REPRESENTATION OF PERMUTATIONS

Exercise 5.12 How many times do you have to riffle shuffle an or-
dinary pack of cards containing 52 cards before the original order is
restored?

Exercise 5.13: Important! Provethat two permutations of the same
type always have the same order.

Exercise 5.14 Find two permutations in Sg that have the same order
but not the same type.

Exercise 5.15: Important! A common partitioning of groups is into
equivalence classes that are called conjugacy classes. The conjugacy
class of a permutation n € S, consists of all permutations on the form
o 'ro. Intuitively conjugation is to be percieved in the following way:
First o changes the names of the symbols that are to be permuted.
Then the symbols are permuted by 7. Finally =" changes the names
of the symbols back to the original state. If for instance

13425
0'::[1 5 3 4 5] and  7={1 4){2 5 3)

we get o~ 1w by:

1% 15 4% 2
23411
33255
43—2—3
S5+ bHm 34

Thus o~ 'no = (1 2)(3 5 4). The type of 0~ 1xe is thereby 12,3},
just like the type of w. Prove that all the elements in a conjugacy class
have to be of the same type!

5.1.4 Even and Odd Permutations and Factorisation
into 2-cycles

Single-person games where the point is first to mix up something so that it
looks completely unordered and then try to put it back into order are popular.
Rubik’s cube and the Fifteen puzzle are two well-known examples. Both
these games can be studied using the theory of permutations. Here, we’ll
take a closer look at the Fifteen puzzle.

Example 5.4: The Fifteen Puzzle The Fifteen puzzle is played within a
4 x 4-frame that contains fifteen tiles numbered 1,2, ... , 15 and an empty
space. A move in the game consists of sliding a tile into the empty space
(which thereby moves to previous position of the tile). The goal is to get the
tiles placed in numerical order. The figure shows a starting position and a
sequence of moves that results in the final position.
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5. PERMUTATIONS 33

A common programming exercise is to write a program that solves the Fifteen
puzzle from arbitrary starting positions. Anyone who succeeds in writing such
a program will find while testing that some starting positions can’t be solved.
For instance you won’t find any solution to the position where just 14 and 15
have exchanged places.

But, as one programming teacher asked, how can you know that it isn’t just
the program that is deficient? Is it possible to prove mathematically that
some starting positions in the Fifteen puzzle can’t be solved? ]

A position in the Fifteen puzzle can be modeled as a permutation of sixteen
elements, namely the fifteen numbered tiles and the empty space. Making a
move means exchanging the places of the empty space and a neighbouring
tile. A permutation that just switches the places of two elements is usually
called a transposition, and a transposition is thus the same thing as a 2-
cycle. A move in the Fifteen puzzle can thus be modelled by a transposition,
and a sequence of moves is then a product of several transpositions.

A first question to pose is whether all permutations can be factorised into
transpositions — and the answer is yes, since that follows from the fact that
all permutations can be sorted using Bubble-Sort. Let’s look at an example.

Example 5.5 We are going to factorise [4 21 3} into transpositions.
We start by checking how Bubble-Sort sorts this permutation and note which
transpositions it carries out, that is, which places it is that exchange their
elements. (We don’t bother to draw steps where nothing is moved.}

[2, 1 31 (2 3)
1 2 3 (1 2
[1 :X 3] (2 3)
n 2 ] (3 4)

So we have the following factorisation into transpositions:
4 2 1 3]=(2 3)(1 2)(2 3)(3 4).

But this factorisation is not unique. A shorter one can be found using
Straight-Selection:

[
1
[1

which gives

MX;

£
oW
b

(3

(3 4)

o

5]

Loy
i

[4 2 1 3]=(1 3)}{3 4). |

Exercise 5.16 Factorise [4 1 5 3 2] into transpositions using
Bubble-Sort.
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84 5.1. REPRESENTATION OF PERMUTATIONS

Exercise 5.17 Try to find the shortest possible factorisation of
[4 1 5 3 2] into transpositions.

So there are several different ways to factorise one and the same permutation
into transpositions. In the above example, two different factorisations had
four and two transpositions, repectively. As a matier of fact, all factorisations
of this permutaiton consist of an even munber of transpositions. This is a
consequence of a general theorem:

Theorem 5.1 The factorisations of a permutation infto transpositions will
either all be of even length or all of odd lenght. |

The proof is given as an exercise below. It's based on the concept inversion,
which means that a larger number is placed before a smaller one in the
permutatiton. In 41532 there are for instance six inversions, 41, 43, 42, 53,
92, and 32. An even permutation is a permutation with an even number
of inversions. The concept odd permutation is defined in a corresponding
way.

Exercise 5.18: Important! Prove that the number of inversion in a
permutation will always change by an odd number when a transposition
is performed. Prove using this fact theorem 5.1,

Project excercise 5.19 Prove that the number of cycles in a per-
mutation is always changed by exactly 1 when you multiply it by a
transposition! More precisely, if ¢(m) denotes the number of cycles in
the permutation 7 and if 7 = (z ) is a transposition you are to prove
that

e c(rr)=c(r)+1ifz and y belong to the same cycle in 7

o c{n7) =c(m) ~ 1ifz and y belong to different cycles in 7.

After that, show that the shortest factorisation of a permutation 7 € S
has the length n — c(x). *

Example 5.6 Is 7 = [4 6 5 2 7 1 3] an even or an odd permuta-
tion?

We count the inversions: 42, 41, 43, 65, 62, 61, 63, 92, 51, 53, 21, 71, 73, that
is, thirteen. Thus 7 is an odd permutation. [ |

Example 5.7 Is v = (1 4 2 6) (3 5 7) an even or an odd permuta-
tion?

One method is to go from cycle form to one-line form and then count the
inversions as in the example above. An alternative method is to count the
cycles and use the result of project exercise 5.19. The number of cycles in o
is ¢(r) = 2. The shortest factorisation into transposition will then have the
length n — ¢(x) =7 — 2 = 5 which is odd, so 7 is an odd permutation. n

Example 5.8: The Fifteen puzzle once more The theory about even
and odd permutations can be used to prove that some positions in the Fifteen
puzzle can’t be solved, for instance the position where just 14 and 15 have
exchanged places. :
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5. PERMUTATIONS 85

Assume that in the starting position, the empty space Is placed bottom right,
just as in the desired final position. Every move means that the space is
moved one step heightwise or sidewise. If the empty space is to end up in
the place where it was at start, it must have been moved the same number of
steps upwards as downwards (in total an even number of steps) and the same
aumber of steps to the left as to the right (also an even number of steps),
80 there must be an even number of moves from the starting position to the
final position,

Since each move is a transposition, it has to be possible to get to the starting
position using a sequence consisting of an even number of transpositions, so
the starting position has to be an even permutation of the final position. In
other words, only even permutations can be solved in the Fifteen puzzle!

Since the position where just 14 and 15 have exchanged places can be written
as a single transposition, it is an odd permutation of the final position and
can thus not be solved. |

Exercise 5.20 Determine whether the following permutations are odd
Or even:

(@) 3 5 2 1 4]
(b} [3 6 5 2 1 4

(¢} [8 6 5 2 7 1 4

Exercise 5.21 Can the Fifteen puzzle be solved from the following
positions?

Project excercise 5.22 In example 5.8 we showed that only even per-
mutations of the tiles can be solved (given that the empty space is
placed bottom right). But can all even permutations be solved? The
answer i8 yes. Try to prove this in the following way:

(a) Prove that you using the Fifteen puzzle can permute three tiles
that are bordering to each other in an L-formation in a 3-cycle.

{b) Prove using induction (over the total distance between the three
tiles) that you using the Fifteen puzzle can permute any three tiles
in a 3-cycle. The previous exercise was the base case.

(¢) Prove that cvery cven permutation can be factorised into 3-cycles
and thereby be solved in the Fifteen puzzle. *
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