3. Codes and Cryptos

In many contexts, especially where computers are involved, it’s necessary to
store and transmit information. Then a couple of problems arise: you have to
choose a format to use when storing the information (computers only speak
zeros and ones, a language you don’t master yourself). You have to code your
material in some way. An important aspect is that the coding mustn’t be
too prone to errors — it's a good thing if you are able to repair at least minor
damages to the material. I'urthermore, some material is secret; you don’t
want just anyone to be able to read it. In that case you have to encrypt it,
in some way or another.

Both these problems, coding and eneryption, are possible to tackle using
mathematical methods — and on top of it using stuff that was earlier believed
to be of purely theoretical interest, like group theory and the theory of prime
numbers. Here we are going to study some versions of coding and encryption
that show how theory and practice can be elegantly merged into something
really useful. (Additionally, much of the history is exciting. We recommend
for instance the book Alan Turing: the Enigma by Andrew Hodges, where
you among other things can read about how the allied powers broke the
crypto system used by the German forces.)

Highlights from this chapter

s A binary error-correcting code with the distance § is a collection of
code words with the property that every code word differs from every
other code word in at least & places. If a code word is corrupted so
that less than é/2 bits are affected, the error can be corrected using
the nearest neighbour principle.

» A linear code is a code where the sum of any two code words is a code
word as well. Linear codes can be created using algebra. A binary
linear code is always made up of 2% code words for some integer k,
which is called the dimension of the code. You can check whether
a given word is a correct code word by multiplying it by the check
matriz of the code.

¢ Fncryption means making a message unreadable to outsiders. Autho-
rised readers have to know how the message is to be decrypted, that
is, made readable again. The tool used for encyption and decryption
is called a key.

e Two in practical applications common methods for encryption are
RS5A and DES.

31

32 3.1. ENCODING

3.1 Encoding

What exactly is meant by encoding? The word may give you associations
to stories about spies, but the technical definition is not af all that secretive.
Encoding concerns packaging a message in a format that can be transmitted
and unpacked by a recipient. This text is a code, where thoughts have been
turned into words, which have been turned into letters, which are put back
into words by the reader, and hopefully made into thoughts. On the way, it
has made some stops in the computer, where it has been coded as sequences of
zeros and ones. In a first stage, these have told what letters there should be;
later the material has been recoded into a description of where the printer’s
ink should be placed on the paper.

Of primary inferest when using codes is that the recipient should get the
same message as the one that was sent. Unfortunately, there can occur
trouble during transmission. In the following section, we will look at some
kinds of errors that can occur, how you can detect them, and how, if possible,
they can be corrected so that the message sent is recreated.

3.1.1 Error-Correcting Codes

In this text, we will focus on binary codes, where the code words are
binary strings. Furthermore, we add the restriction that all the code words
should have the same length, which is simply called the length of the code.

Exercise 3.1

(a) Do you know any binary code that isn’t made up according to the
principle above?

b} Do you know any binar Y code that is made up according to the
g
principle above?

Exercise 3.2 Assume that you have n different messages that you
want to be able to transmit. How many bits (that is, binary digits) do
vou at least need in the code words?

When transmitting coded messages there can be transmission errors, where
one or more components of the message are corrupted into something else.

Depending on the transmission channel, the errors may either occur singly
or in bursts. If they occur just once in a while, you can assume that it’s
relatively unlikely that a short message wiil be the subject of more than one
error, and that is the situation that we will study from now on. (Burst
errors — such as lighting striking the hard drive — we will refrain from trying
10 analyse.)

Exercise 3.3 We are sending a message consisting of ten bits. The
probability for a bit to be corrupted during transmission is 1 % for
each bit, and the probabilities are independent.

(a) How great is the probability that the message will be transmitted
without any errors?

{(b) How great is the probability that the message will be transmitted
with exactly one error?

(c) How great is the probability that we’ll get exactly two errors?

© Studentlitteratur

3. CODES AND CRYPTOS 33

Figure 3.1: Transmisssion error. (The message “you are cute” is turned into “you
¥
are plump”.)

Now let’s assume that we have got a code consisting of the words {00, 01, 10,
11} and that we are affected by a transmission error when sending a message
to the recipient. A transmission error means that a digit that was supposed
to be one is turned into zero, or vice versa. Are we able to detect this?
No, since if for instance the code word 10 during transmission is changed
to 11 this is a completely valid code word, but with a different meaning. The
problem seems to be that the difference between the code words is too small!
But how do you measure differences between code words?

Definition 3.1: Distance By the distance between two code words is
meant the number of places where they differ. The distance between the
two code words x; and x» we denote by 6(%;,x2). By the minimum dis-
tance (or just distance) § of a code € is meant the shortest distance between
two words in the code,

§ = min{d(x1,x2) | x1,%2 € C} n

In the code above §(00, 11) = 2, since they differ ai, two places. Still, the code
has the minimum distance 1, since there are code words (such as 00 and 01)
that only differ at one place.

Exercise 3.4 What would it mean if a code had the minimum distance
zero?

Exercise 3.5 Determine the minimum distance of this code;

{010101, 101010, 111000, 000111}

We can divide the problem of error analysis into two subproblems: to detect
that an error has occured, and to correct the error. The following thecrem
will, hopefully, feel fairly obvious:

Theorem 3.1 If the distance of the code is k you can detect all errors that
affect at most & — 1 bits. m

If our code consists of the words {00,11} and a 00 that we have sent during
transmission is turned into 10 we know that something has gone wrong, since
no such message exists. On the other hand, it’s not possible to determine
what was sent.

© Studentlitteratur

34 3.1. ENCODING

Exercise 3.6 Prove theorem 3.1.

Example 3.1: Personal Identily Numbers Swedish personal identity
numbers consist of ten digits, where the tenth is a check digit. It’s calculated
from the other digits. The idea is that it’s fairly unlikely that a mistyped
or invented number will get the check digit right, and that makes it possible
to detect many errors (both cased by carelessness and by fraud) that would
otherwise have caused trouble.]

Example 3.2: 7-bit ASCII In the original American character encoding
ASCII (American Standard Code for Information Interchange) every char-
acter was given eight bits of space (called one byte). But the Americans
didn’t have 2% = 256 different characters that they wanted to encode, and
settled for 128. That way, the first bit positition (the 128-digit) was lelt over,
and it was frequently used for error control. The most common versions were
odd and even parity, respectively, where it had been decided that all the
code words should contain an odd (alternatively even) number of ones. If
the word already satified this, the first bit, the parity bit, was set to zero,
otherwise to one.

Nowadays all the bits are required for information, since we Europeans need
to be able to code weird things like 446 as well. Unfortunately, there are
a number of parallel standards available. One of the authors of this book
was for instance affected by a collision between IBM-standard and Apple-
standard which made the computer, without promting, turn a whole chapter
from Discrete Mathematics and Discrete Models into 7-bit ASCIL. .. |

Detecting errors is a good thing, especially if you are able to request retrans-
mission of the broken message. But even better is being able to recreate the
message.

Assume that we have the code {000,111} and recieve the message 001. H
it really is more likely that there is an error at one place than that there
are errors at two places, then it’s more likely that the message sent was 000,
which only differs from the recieved one at one place, than that the message
was 111, which differs at two places. Because of this, we can correct the
messsage to 000. This way of reasoning is called the nearest neighbour
principle.

This reasoning gives us another theorem:

Theorem 3.2 If the minimum distance of the code is 2k-+1 we can correctly
correct errors affecting up to & bits.]

Exercise 3.7 Prove the theorem.

Exercise 3.8 Our code consists of the words {111000, 000111, 111111},
We have recieved 100110, Which code word is most likely the one sent,
by the sender?

Exercise 3.9 We have 2 code consisting of the words {00000, 00111,
11100, 11011}. Look at all the strings of length 5. Partition them into
equivalence classes based on which code word they will be interpreted
as according to the nearest neighbour principle.

{© Studentlitteratur

3. CODES AND CRYPTOS 33

3.1.2 Linear Codes

If you make up a code by choosing code words in an unsystematic way,
vou have to compare all the code words to each other to find the minimum
distance. If there are n code words in the code, that means (}) tests. In
this section we’ll see how it’s possible, using group theory, to make codes in
a systematic way that makes them more easy to analyse.

We are going to calculate with the set of binary strings of length n by adding
component by component modulo 2. Then we have an Abelian group, which

is denoted (Z)™.

Exercise 3.10 Check that this really is an Abelian group!

Exercise 3.311 What do the inverses look like in this group?

Those who have studied linear algebra realise that (Z;)™ can be seen as a
vector space as well. The dimension of it is n since the smallest set that can
be used to generate all the elements in (Z»)"™ contains n strings. {100...0,
010...0,001...0,...,000...1} is an example of such a basis of the space.

Exercise 3.12 Check that it's true that it’s possible to generate all
the strings in (Z2)™ using the indicated basis, while it isn’t possible if
we remove one of the strings from it. *

Now we choose our code as a subgroup of (Z2)". Such a code is called a
linear code, since it has the group property that the sum of two code words
is a code word as well. According to Lagrange’s theorem, the number of
elements in a subgroup is a divisor of the number of elements in the main
group, and thus the number of code words that the code contains has to be
a power of two, let’s say 2% words. This subgroup is isomorphic to (Zs}*, so
we say that the dimension of the code is £.

Now we'll see how we in a simple way are able to compute the minimum
distance of a binary linear code. In a binary code, the difference between two
words is the same thing as the sum. In a linear code, the sum of two code
words is a code word as well. That means that the set of code words at the
same time is a list of the places where the code words pairwise differ.

Every code word differs at zero places from itself, which corresponds to the
neutral element of the group, the word consisting of zeros only. The code
word with the least number of zeros, not counting the zero word, tells what
the minimum distance between the code words is.

In a linear code we thus just have to count the number of ones in the n code
words instead of the number of ones in the (}) differences, and that’s a lot

less work.

Exercise 3.13 How can the set of (3) pairwise differences between
words at the same time be a set of n words?

Exercise 3.14 Try to find two linear codes with the dimension 1 from

(Zz)*: one that is as stupid as possible from an error analysis point of
view, and one that is as clever as possible.

3.1.3 Design of Linear Codes

In exercise 2.1 in the previous chapter we established that the solution set of
a homogeneous system of linear equations is a group. If we solve a system of

© Studentlitteratur

36 3.1. ENCODING

equations modulo two, the solution set will be a group of binary strings, just
like the codes we discussed above. We can thus use linear algebra as a tool
to generate a group to use as a code.

Example 3.3 We start with this system of equations:

T3 + To +x4+25=0
T1 + 3 + x5 =10
T + 3+ x4 =0

or on matrix form

T3
1 101 1 Ta 0
1 0 1 01 za | = |0
1 01 1 ¢ Tq 0
5

x1 represents the first bit of the code word, and so on. Since the system has
five unknowns but only three equations we’ll get (at least) two parameters in
the solution, since we'll be able to solve the system for three of the unknowns,
which will be expressed using the remaining two. We can tidy the system
using Gaussian elimination, and then keep in mind that +1 = ~1 (mod 2),
so we don’t have to bother writing down any minus signs. We get

Zy
1 01 0 1 T2 0
601 1 01 gl =0
0 00 11 T4 0
I5

which rewritten as a system of equations becomes

T + a3 +x5 =10 1 =3+ s
To + X3 +z5=0 = Ty = I3+ Ty
T4 +x5 =0 Ty = Iy

We have, as stated, been able to express three of the unknowns (one from each
equation) using the remaining two: z3 and x5. If we assign all possible values
to these two parameters we get all the solutions of the system. Since there
are only two different values in Zg, there are in total 22 = 4 combinations of

values:

Z3 @5 | @1 72 w4 | code word
O 010 9 0 00000
0 1 1 1 i 11011
1 011 1 0 11100
1 110 0 1 00111

We have aquired a linear code with the dimension 2. The least number of
ones in a code word is 3, so the minimum distance of the code is 3. That
means that we are able to correct all singe bit errors, and detect all errors
affecting two bits. [|

Exercise 3.15 Check the calculations in the example. Do the whole
Gaussian elimination by hand, and check that you get, the same answer.
Check as well that the set of code words obtained really is a group, and
that is solves the system of equations.

Exercise 3.16 Figure out some other method for finding a subgroup
of (Zg)"’

@& Studentlitteratur

3. CODES AND CRYPTOS 37

One point of the particular method for designing codes described here is that
correct code words are solutions to a system of equations. If a code word
is damaged in transmission it is no longer a solution. To check whether a
recieved message is a code word we can thus simply check whether it satisfies
the system of equations. That is done by multiplying by the coefficient matrix
and check whether the result is a zero vector, because if so it was a correct
word (and otherwise not). Because of this, the coefficient matrix is called the
check matrix of the code.

Exercise 3.17 Determine whether the strings below belong to the
code with the check matrix

1
0 01
1 11

(a) 0010101.
{(b) 1110111

Here comes another feature! An incorrect message can be partitioned into
the original message and an error vector. The error vector has ones in
the places that have been corrupted, and zeros in the others. If for instance
101010 is corrupted to 101011 the error vector is 000001, since it's the last

bit that is wrong.

Now we'll use some matrix algebra, where we assume that the check matrix
is named H, the message x, and the error e:

Hix+e)=Hx+He=0+He=He

The most common error type is the one where just a single bit is wrong.
In that case the error vector e contains just a single one {in the position
where the error has occured) and zeros for the rest. I you multiply a vector
with a one in position i and zeros for the rest by a matrix, the result will be
column number ¢ in the matrix. If He is identical to column ¢ it’s thus bit ¢
in the recieved message that has to be changed. (Errors in more than one bit
are somewhat more complicated $o handle, but this elegant method works in
most cases.)

Exercise 3.18 Determine what the faulty code word in the previous
exercise ought to have been.

A particularly frequently used check matrix is the one we get by using the
binary code for one as column one, the binary code for 2 as column 2, and so
on. Then the errors tell directly where they have occured, without any com-
parisons to the matrix being necessary! A code like this is called a Hamming
code.

3.1.4 Design of Error-Correcting Linear Codes

Above we have seen what linear codes are. The most interesting parameters
we have been discussing are:

e 7, the length of the code, which tells how many bits there are in each code
word
s k, the dimension of the code, which tells how many code words we have

(namely 2¥)

(© Studentlitteratur

38 3.1. ENCODING

e §, the distance of the code, which determines how many errors we can
correct

How should these parameters be chosen to get a good code? Short code words
are from many aspects (particularily storage requirements) to prefere to long
ones, but at the same time long code words increase the opportunities to get
a large distance. In exercise 3.14 we designed codes with the same n and k
but different 4, so the relationship between the parameters is apparently not
trivial. Resonable questions to pose are thus firstly which length n that is
demanded in theory to achieve a certain distance §, and secondly how to
actually achieve the said distance.

Example 3.4: Design of o code with distance § = 3 Let’s here aim at
achieving the distance § = 3, which according to theorem 3.2 is enough to
ensure that it’s possible to correct all singel-bit errors. What should the
matrix look like if we want this distance?

The minimum distance of the code is equal to the least number of ones
occuring in non-zero code words. Because of this, for a start we wish that
the code shouldn’t contain any words with just a single one and zeros for the
rest. If the homogenous system were to have such a solution, what would
the matrix then look like? We've just noted that if we multiply the matrix
by a vector with a single one we get one of the columns of the matrix as the
result. If the vector in question is a solution of the homogenous system the
result will consist of zeros only. A matrix that allows for code words with a
single one will thus have a column consisting of zeros only!

When we are aiming for a code with the minimum distance 3 we can’t allow
words with exactly two ones either. A word with two ones can be regarded
as the sum of two words with exactly one one each, and if we multiply by the
matrix we get

HXtwo ones = H(xone one + Xother one)
= Hx;ne one + HXather one

= one column + other column
If Xtwo anes 18 & solution to the system of equations then
one column + other column = 0,

that is, the columns are identical.

A matrix that generates a code with the minimum distance 3 must thus not
include any columns with only zeros, nor two columns that are alike. Besides,
this is sufficient; if the matrix satisfles these two conditions you get a code
with the desired distance.]

Exercise 3.19 We want to design a check matrix for a code with the
minimum distance 3. The matrix is to have four rows. What is the
largest possible number of columns we can use?

Now we know how to achieve a certain distance. The second question con-
cerned the relationship between the length and the dimension of the code.

If you solve a homogeneous system of equations with m equations and n un-
knowns you will get an answer with n — r parameters, where 7 is the number
of linearly independent rows in the matrix (the rank of the matrix). The
number of parameters equals the dimension of the zero space. And the zero
space, that is the set of solutions to the homogeneous system, that is, our
code.

(© Studentlitteratur

3. CODES AND CRYPTOS 39

A matrix will always have the same number of independent, columns as of
rows. If you want all the m rows to be independent you can achieve this
by using m independent columns, for instance {100...0, 010...0, 001...0,
-+, 000...1} (but written vertically). If you want a code of length n and
dimension k you can get this from a matrix with m = n — & rows, if you
just ensure that it has m independent columns, let’s say the ones previously
listed and another k ones.

Example 3.5 We want to make up a code with the dimension 3 (that is,
8 code words), the length 5 and maximum distance.

The length 5 gives us five unknowns in the system, the dimension 3 that we
need two equations, so that we can express two of the unknowns using the
remaining three.

Since we have to solve the system ourselves we might as well make it easy to
solve. When you use Gaussian elimination on a matrix, the goal is usually to
get a first column with a one on top and zeros for the rest, a second column
with a one in the second row and zeros for the rest, and s0 on. We may just
as well give the matrix this structure from start, and thereby avoid the whole
Gaussian elimination!

(69 7)

Then we want maximum distance. To get distance § = 3 we firstly can’t
have any columns consisting of only zeros, and secondly not two identical
columns. Unfortunately this can’t be done here, since we need five columns
in the matrix and there are only 22 = 4 ways that a column with two elements
can look (and one of these is the column with only zeros). Since distance 2 at
least is better than distance 1, we choose to use some of the columns twice.

101 10
01101
‘The associated system of equations has the solution

code word
00000
01001
100106
11011
11100
10101
01119
00111

g
[
o
[y
b

Ty = T3 -+Xyg
Ty =13+ T5

e el oo olB
H 2O Ok - o ol R
= O DO O e o) B
= R S e =Y A
[e R S S o

The code has as stated the minimum distance 2, which we can detect from
the second and third code word, which have two ones each. Besides, we can
note that the placement of the ones indicate which of the columns it is that
are alike. This code can’t correct any errors, but at least we can detect all
singel-bit ones. N

Exercise 3.20: Important! The reason why we couldn’t get the min-
imum distance 3 in the example above was obviously that we were too
stingy with the length. If you want this many this short code word you
can’t get any error correction as well,

(a) Which length would the code words need to have if we are to get
single-bit error correction, if we really want 8 code words?

(b) Design a matrix that fix this!

© Studentlitteratur

40 3.1. ENCODING

(c) H we absolutely want code words of this length, how many words
can we get if we want single-bit error correction?

{d) Design a matrix that fix this!

(e) Alternatively, if we want words of this length and feel happy with
this distance, how many code words can we get?

(f) Design a matrix that fix this!

(g) Lastly: assume that we completely abandon the whole error-control
idea, and decide to take as many code words as we can get. How
many are they and what does the matrix look like?

Exercise 3.21 Design mafrices for the two codes that were designed
in exercise 3.14, and check that they seem to match the theory we have
been deducing.

Exercise 3.22: I'mportant! We have now focused on codes that cor-
rect singel-bit errors. But if the channel for transmission is bad that
might not be enough. How should a matrix that generates a code where
two-bit errors as well can be corrected be designed?

Exercise 3.23 Is it possible to design a linear code that corrects all
errors?

A theroretical upper limit on the number of errors that can be corrected in a,
code of length n and dimension k is given by the so-called sphere-packing
theorem:

Theorem 3.3: Sphere-Packing theorem A code oflength n, dimension &,
and distance ¢ = 2d+-1 (where d is the number of errors that can be corrected)
has to satisfy the inequality

w21 ()+() ()

Proof. In the space (Z2)" consisting of all possible words, we correct each
incorrect word to the correct code word that is closest. Given certain correct
code word x, we will correct all words that differ from x at at most d places
to x. There are of course (77) words that differ from x at exactly 7 places, so
in total that is

1+@)+(g)+...+(g)

words that are corrected to x. We can imagine that these words are placed
in & sphere with the radius d around x. Since there are 2* real code words
that means that there are

fn ()0 () ()

words that can be corrected in this way. That number can at most be equal
to 2", the total number of words that exist in the space. The theorem fol-
lows. []

People working with code theory do among other things spend their time on
finding smart error-correcting codes that are as close to this theoretical upper
limit as possible. There exist a rich litterature on error-correcting codes, for
instance Introduction to the Theory of Error-Correcting Codes by Vera Pless.

© Studentlitteratur

- TSNS,

3. CODES AND CRYPTOS 41

3.2 Encryption

So the point of coding is to get a message transmitted correctly. Encryp-
tion also concerns transmission of & message, but with the constraint that

bled and recreated, repectively. These operations are called encryption and
decryption or ciphering and deciphering,

Exercise 3.24 If we need encryption because we have to send top se-
cref messages through an unsafe channel, can you think of any problem
about the agreement in question?

The simplest form of encryption consists of changing every letter into sorme
other symbol. But longer messages encrypted in this way fend to be fairly

simple to decipher, since the different letters occur with different frequencies

Is found in Edgar Allan Poe’s The Gold Bug.

A special case of encryption by changing every letter into some other symbol
is called a Caesar cipher, after the most famous user. The System is based
on shifting the alphabet a number of steps, for instance changing a to b, 4
to ¢, and so on. When you reach the end you restart from the beginning, so

Exercise 3.25 You have intercepted the message “Xs fi sv rsx xs fi,
xlex mw xli uyiwxmsr”, which you suspect is encrypted using Caesar
cipher. How should you go about it to break the cipher, and what ig
the message?

Exercise 3.26 In English-speaking environments it’s common to uge
ROT 13, which is a Caesar cipher shifted 13 steps. What can be the
point of that?

One of the first, things you should demand from a good encryption scheme S
1s that every character in the encrypted message should depend on all other ; g
characters in the original message. That makes code-breaking methods of iy
this kind impossible, and has the further advantage that messages that closely

the largest users of encryption (banking and military, among others} send lots
of messages with very standardised appearances (often the only difference is
the date), and if they are encrypted into largely the same thing it can give a i
Spy many clues to what is happening. el
We will look at some of these more advanced encryption schemes. But then e
we'll need to calculate powers in modular arithmetic, so we start with a
section covering that.

3.2.1 Calculation of Powers

In several contexts, one of them encryption, you need to calculate large pow-
ers of numbers in modulay arithmetic. (“Large” means exponents in the

© Studentlitteratur

42 3.2. ENCRYPTION

range of several hundred decimal digits!) Here, you have every reason to
check whether there is any way to speed up the calculations.

Method 3.1: Periodicity Calculate
737 (mod 9)

One method is to write 317 7:s and sit down and start to multiply. (You get
316 times signs, and the same number of multiplications.) We start like this,
and note that the calculations become a lot easier if we reduce modulo 9 in
every step instead of saving that operation for last. We write down all the
intermediate results.

P=7 T =77=49=5.91+4=4

P77 7227 4=28=3.9+1=1

=7 P=71=7

T 7. 74=7-7T=49=5-9+4=4

P =7.7=7.4=28=3.9+1=1 {(mod 9)

Here something interesting has happened! The fourth row contain the same
end result as the first one, from which follows that the table becomes periodic.
Every third number is 7, every third 4, and every third 1. We get 7 when
the exponent modulo 3 is equal to 1, 4 when it’s equal to 2, and 1 when it’s
equal to 0.

Since 317 = 105-3 + 2 = 2 (mod 3) we see that

7 =7"=4 (mod 9) |

The answers becoming periodic must always occur sooner or later, since there
is only a limited number of numbers in Z,, while the number of possible
exponents is unlimited. (An application of the pigeonhole principle!)

But if the modular base is large as well, it may take quite a lot of time
before the periodicity starts showing, and then it’s fairly inefficient to save
all intemediate results and compare every new result to the list, to see if it
has appeared before.

Exercise 3.27

(a}) Why do we say that we have to save the whole list? Won’t saving
the first element be enough?

(b} When will saving the {irst element be enough?

There exists another method, which is useful when performing non-modular
calculations as well:

Method 3.2: Ezponentiation by repected squaring We take the same
problem as before: calculate

7317 (mod 9)

© Studentlitieratur

3. CODES AND CRYPTOS 43

We start by converting the exponent into binary:

317 = 2. 158 +1
158=2-79 40
79=2-39 +1
39=2-19 +1
19=2-9 41
Q=2-4 +1
4=2.2 40
2=2.1 +0
1=2.0 +1

From this we se that

317 =
=1-2240-274+0.25 1. 25+ 1. 2% +1.28 1.2240. 21 +1.90 =
= 256432+ 16+8+4 11

This partitioning of 317 into powers of two we use in the following way:

7317 7256+32+16+8+4+1 7256732716?8747

Now we calculate the different powers of 7:

=7

7= 49 =4

= (1) =4 =16=—2
78 = (742 = (~2)? =
6:(7‘3)2:42— 16 = 2
—2)2 =4

7128 — (764)2 = (_2)2 = 4
726~ (718)? = 42 = 16 = —2 (mod 9)

These values now give that

T = (-2)-4-(=2)-4-(-2)-T=
= (~8)(-8)-(~14)=1-1-4=4 (mod 9).

In this calculation we thus succeded in reducing the number of multiplications
from 316 to just 13, out of which eight were when squaring and five when we
put it all together. |

Exercise 3.28 How many multiplications are needed if the exponent
is n?

Exercise 3.29 Calculate 172°° (mod 33).

Exercise 3.30 Implement exponentiation by repeated squaring. Write
a function that exponentiates by repeated multiplication as well. Make
test runs for values in different ranges, until you find some where the
difference in time is noticable. Calculate the same thing using the pre-
programmed exponentiation that is included in the programming lan-
guage. Which of the two calculation methods does the pre-programmed
funetion seem to he using?

© Studentlitteratur

44 3.2. ENCRYPTION

3.2.2 RSA-Cryptography

Inn a group consisting of » persons who want to send encrypted messages to
each other, in the normal case (7} agreements are needed, one for each pair
of persons. That’s quite a lot to keep track of and all of it has to be kept
secret, otherwise some unauthorised person can unpack the messages.

There is another way of organising cryptography, which is to encrypt using
a public key. Each person has publicly declared: “H you want to send me
a message, encrypt it like this.” For this to be secure, a requirement is that
knowledge about the encryption key doesn’t automatically give knowledge
about the decryption.

Every user of the system has an encryption key that is public and a decryption
key that only she knows. A person who wants to send a secref message
through an unsafe channel encrypts the message using the recipients public
key. The message, which now locks like pure nonsense, is sent. The recipient
decrypts the message using her secret key and gets the message in plaintext.
Anyone not having the decryption key is unable to decipher the message.

If this is to work we have to find two operations, encryption and decryption,
that firstly cancel out, secondly give a completely weird intermediate result,
and thirdly don’t give any information ahout each other,

The most commonly used method of this kind was invented in 1977 by Ronald
L. Rivest, Adi Shamir, and Leonard Adleman, and is called RSA-encryption,
after the inventors. It’s based on prime number theory and modular arith-
metic. They have not succeded completely in making knowledge about the
encryption key not giving knowledge about the decryption key, but they have
succeded in making the work of generating the decryption key so time con-
suming that it isn’t worth starting,.

Mathematical Background To cover RSA-encryption we need some lem-
mas:

Theorem 3.4: Fermat’s little theorem If p is prime and this prime isn't
a factor in @ then

a?"1=1 (mod p)

Proof. We start by calculating (a + b)? (mod p):
(a+b)P :(g)ap + G)ap“lb + (g) e

O L W
p—2 p-1 D

All the binomial coefficients except for the first one hag the prime number p in
the denominator. None of them except for the last one has p in the numerator.
That means that all the binomial coefficients except for the first and last ones
will be multiples of p, and then they are equivalent to zero when calculating
modulo p. Remaining are the first and the last terms, so we have

(a+b) =aP + 07 (mod p).
From this follows by induction that aP = a for all integers a > 0, since

this statement is trivially true in the base case a = 0, and if it is true that
(¢ —1)? = (& — 1) we can derive that

@ =((a-1)+1)’=@-1P+1"=(a—1)+1=a.

So now we know that a? = ¢ for all positive integers a. If o besides isn’t a
multiple of p we can find a number a~?, and if we multiply both sides of the
equation by that we get

1 i

?=a = alef=¢la = ¢ '=1 (modp) [|

© Studentlitteratur

,———ﬁ

3. CODES AND CRYPTOS 45

We need a generalisation of this theorem as well:

Theorem 3.5
aP VU =1 (mod g}

provided that p and g are different prime numbers and that a doesn’t include
either of them as a factor.

Proof. By applying the just proved Fermat’s little theorem and the normal
calculation rules for powers we get

a1y (@ N1 =171 =1 (mod p)
o a@DED
a®P DD = (gr=lyp1 = Pl =1 (mpod g)

= gP DN _gp

From this we see that rp is the same number as sg, and since p and ¢ are
different primes, the number is divisible by both p and ¢ at the same time.
So we have that

alam D=1 —gpp + 1 o gle -1 =1 (mod pg) |

Designing the Encryptor With the mathematical background as sup-
port, we are now able to design the encrypicr. First we choose the two
different prime numbers, p and q. Using them we calculate the two numbers
n=pgand m=(p—1}(g—1).

Then we pick two numbers, ¢ and d, that have to have the property that
ed = 1 (mod m), that is to say, ed = km + 1. This is possible, because you
can always find some number e that is coprime to m, and then you can work
out d using the Buclidian algorithm. {See the example below.)

Now we have that ed = k(p — 1)(¢ — 1) + 1. We take our secret message a,
and start by rising it to e, after which we rise the result to 4

(ae)d - aed . akm+1 — a'k(p—l)(q—l)‘l'l - I!Ink:(p——1}{(1—1} .

=a-{aP ez g b — g1 =g (mod pq)

We get back what we had at start! But the intermediate result a* (mod pq)
will probably not have any resemblance to a. This is the way the encryption
is carried out.

The number e is the public encryption key, the number d is the secret, decryp-
tion key. The number n is public as well, while it’s prime factorisation isn’t.
The file that is to be encrypted is divided into pieces of a suitable size (some-
what smaller than n). Each piece is interpreted as a number in binary and
run through the first part of the calculation. The encrypted pieces are then
sent, and the reciever runs them through the second part of the calculation
and puts the file back together.

Example 3.6 Here we are going to show how keys can be designed and how
encryption and decryption is carried out. (The numbers we are going to
use are unrealistically small, so that they will be readable. Real keys are
_ in the order of size 1024 binary digits, corresponding to a little more than
~ 300 decimal ones.)

First we need two primes, and we choose p = 47 and g = 11. That gives us
n=pg=47-11 =517, and m = (p — 1)(g — 1) = 46 - 10 = 460 as well.

(© Studentlitteratur

46 3.2. ENCRYPTION

Then we need an encryption key, and that has to be a number coprime to m.
If we pick a prime number here as well we ought to be safe. We choose
e = 97. The associated decryption key d must have the property d-e = 1
mod m, that is, e = d~! (mod m). The inverse of e we can find using the
Euclidian algorthm, by searching for ged(460, 97) and expressing it as a linear
combination of the numbers:

460 =4-97+72 1=22-7-3 =22 — 7(25 - 22)

97 =1-72+25 =8§.22-7.25 =8(72—2.25)—7.25
72 =225+ 22 =8.72-23.25 =872 23(97 — 72)

25 =122+ 3 =31-72—23-97 =31(460—4.97) —23-97
22=7-3+1 = 31 - 460 — 147 - 97

97(—147)=1—31-460 = 977' = —147=313 (mod 460)

Thus the decryption key is 313.

An acquaintance now wants to send us the secret message 50. She knows
that n = 517 and e = 97 = 64 4+ 32 + 1. She calculates 50°7 (mod 517) using
exponentiation by repeated squaring:

501 = 50

50% = 2500 = —85
50% = (—85)* = 13
50% = (~13)* = 169
50'% = 169% = 126
50%% = 1262 = —151
5004 = (—151)% = 53

50%7 = 50043241 = 53. (~151) . 50 =8 (mod 517)

The encrypted message became 8 which is sent to us. We unpack it using
the decryption key d = 313 =256+ 32+ 16+ 8+ 1.

gl =8

8% =64

8% — 4% = —40

8% = (—40)% = 49
8'6 = 49? = 184

832 = 184? = 951
8%% =251 = —73
812 = (—73)% = —159
8256 = (~.159)? = 52

g313 — g206H32H1848+] = 59 . 951.184.49.8 =50 (mod 517)

‘We may note that the decryption took more time than the encryption, since
the decryption key was larger. Often keys are chosen deliberately with this
in mind, since the same message is often distributed to a number of different
persons, each with their own encryption key. To make this reasonable, the
encryption keys have to be simple. [|

Exercise 3.31 Encrypt and decrypt 88 using the same set of keys
(Calculator recommended.}

© Studentlitteratur

3. CODES AND CRYPTOS 47

Exercise 3.32 Implement RSA-encryption of numbers. Use the func-
tion for exponentiation that you wrote in exercise 3.30. *

Exercise 3.33 When we are working with numbers this small, can you
invent some method of breaking the crypto, that isn’t based on prime
factorisation of n?

The safety of the encryption scheme is coupled to the fact that there doesn’t
exist any (known) fast method for prime-factorising of numbers, while it on
the other hand is possible to calculate large powers in modular arithmetic.
That makes it possible to choose p and ¢ (and therehy n) large enough to
make it impossible to prime-factorise n in a reasonable amount time. (If
vou have succeded in doing the factorisation you can find m, and using m
and e find d in the same way as the designer of the cipher did, and then you
have broken the code.) On the other hand, nobody has yet proved that there
doesn’t exist some other way of breaking the crypto that doesn’t require that
you factorise n — but the belief is that no such method exists.

Exercise 3.34 You have intercepted the encrypted message 444, from
a person whose public key is e = 797, n = 1961. You have also succeded
in spying out that g = 53. Decipher the message!

To keep up to date with the latest development on the prime-factorisation
front, the company that market RSA-encryption runs a competition in fac-
torising large composite numbers. The prizes are in the range of several
thousand dollars. When this text was written, the largest completed number
consisted of 512 bits (155 decimal digits), and the computation (which was
distributed over a number of machines) took about 7.4 months and was fin-
ished 22 August 1999. The development of algorithms for factorisation has
by the way been a lot faster than anticipated — in 1985 it was stated that the
factorisation of a 100-digit number would take 74 years of computations.

The encryption method is also dependent on the feasibility of finding large
prime numbers, otherwise there wouldn’t be anything to base it on. The
method used is to generate a random number in the right range and check
whether it by chance is prime. I not one generates a different number,
and keep on like that until success. There are fail-proof primality-checking
algorithms that don’t take too much time. And in these circumstances it’s
possible to manage using numbers that with great but not a hundred percent
probability are prime. These test are a lot faster.

Most primality tests are too theoretically complicated to be covered here,
but we can look at one of them, the Fermat test, that is based on Fermat’s

little theorem. That says that
a®1=1 (mod p)

if p is prime and a doesn’t include p as a factor. If we have a number ¢ that
we wonder whether it is prime we can insert it into the theorem. If

a®1#1 (modg)

we can at least be a hundred percent sure that ¢ isn’t prime. H it passes
the test it’s probably (but not certainly) prime. A composite number that
sneaks through a test like this is called a pseudoprime. If we test using
several different values of o the probability that the number really is prime
increases. Still there exist sneaky composite numbers that pass the Fermat
test for all numbers a except the ones containing one of the factors of the
number! Such numbers are called Carmichael numbers. The smallest of
them is 561, that can be factorised as 3-11 - 17.

(© Studentlitteratur

48 3.2. ENCRYPTION

Exercise 3.35 Check whether 91 seems to be prime by running the
Fermat test, first using the base 3 and then the base 2,

Exercise 3.36 Do you know of, or are you able to invent, some other
primality tests?

In some cases one isn’t just anxious that nobody should be able to intercept
data — one is also anxious that nobody should be able to lake a message. If
the local office of the bank gets a message telling them to transfer ten billions
to an account in Irkutsk they probably want to feel sure that the order really
originated at the main office.

In this situation it is possible to use the fact that not only {a®)? = a but
(a%)® == a as well. If the sender starts by running the message through her
own decryptor before encrypting it using the key of the intended recipient,
the recipient can unpack the message by firstiy decrypting it in the normal
way, and then encrypting it using key of the purporied sender. If you get an
intelligible message it’s with high probability really the stated person who
sent the message. This is called electronic signature.

3.2.3 DES-Encryption

RSA-encryption is, as shown, mathematically elegant, but it has a draw-
back: encryption and decryption take time. (That they take time is perhaps
unavoidable, but they take a long time.) An alternative system is DES-
encryption (Data Encryption Standard)'. This system is based on secret
keys. The two participants have access to the same key, which is used both for
encryption and decryption. The key is usually encrypted using RSA or some
other public-key system and transmitted before the message. That makes it
possible to change the key often, which increases the security.

The system has a rather amusing backstory. In the USA there is an organi-
sation, NSA (National Security Association), that among other things works
with cryptography. They are for reasons of principle opposed to anyone else
being able to encrypt anything, since that complicates their activities. Still,
there was a need for working cryptography in the USA (it’s among other
things a necessity in computerised banking), and in the 1970s the American
National Standards Institute announced a competition to invent a crypto-
system that met certain criteria. The second time around they got hold of
something useful, and a design from IBM was used as a base for the system.
Then NSA went through the algorithm and changed a number of details.
But they refused to explain why, so the public opinion was that they had
added a backdoor making it possible for them to identify the encryption key
and decrypt anything they wanted. As a matter of fact, they had enhanced
the system so that it became impervious to a crypto-breaking method that
they alone know about — but that wasn’t anything they wanted to explain
publicly.

The Standards Institute then as usual made public how an encypter was to
be made to confirm to the DES standard, which NSA hadn’t intended at
all. Their plan was that the encryptor should be distributed in the form of
ready-made chips to be plugged into the computers. But not everyone is that
keen on buying a black box that the country’s spying authorities asssure is
completely reliable, so that the material was made public probably contibuted
a lot to the popularity of the system. Still, the most common thing is that
the encryptor is installed in form of a ready-made chip, since custom-made

1By now mostly replaced by AES-encryption, Advanced Encryption Standard, which
uses longer keys.

© Studentlitteratur

3. CODES AND CRYPTOS 49

hardware works a lot faster than software. The code method is furthermore
optimised to be easily implemented in hardware, and uses operations that
are very time consuming on an ordinary processor.

How DES Works DES is not at all as mathematically elegant as RSA,
but we will give a short sketch of the way it works. For a start you have
a key consisting of 64 bits, out of which 8 are parity bits, used for error
control. There are thus 2%478 = 256 ~ 79 . 10! possible keys. To break
an encrypted message by simply test decrypt it using all existing keys, and
choosing the result that seems reasonable, is thus rather time-consuming (but
by now entirely feasible, which it wasn’t when the standard was introduced).

The document that is to be decrypted is divided into 64-bit blocks. Each
plaintext block is transformed into an ciphertext block of the same length.
The block passes through the encryptor sixteen times, and each time some of
the bits are moved and some of the bits are changed, based on the way the
key locks. The original key is used to make 16 different subkeys, and each
pass uses one of them. The decryption is done in the same way, except that
the subkeys are used in the opposite order, which means that you move back
and change back everything you changed during encryption.

To make it even more difficult for spies, each block is added to the encrypted
version of the previous block before encryption. That means that one and the
same plaintext will be encrypted into completely different things depending
on where in the document it appears.

DES-encryption is between a hundred and a thousand times faster than RSA-
encryptions, and thanks to the existence of RSA-encryption the handling of
keys is simple.

Still, there exists a fairly simple method of breaking this: A spy who already
knows that she want to intercept messages sent to a certain person can in
advance test-encrypt all the 25 possible DES-keys using the recipient’s public
key, and store the results. Then she intercepts the encrypted key when it’s
sent, and compares it to the database. That gives her the key in plaintext,
and then she can peacefully decrypt the intercepted message. The American
authorities have already decided to switch to longer keys, so that the database
over encrypted keys becomes unreasonably large, to prevent this. If you
switch to for instance 256-bit keys, the database would need to contain more
posts than there are atoms in the Milky Way, and it doesn’t seem likely that
technology will ever bring about efficient computers with memory capacity
on this scale.

A from a mathematical point of view interesting question that remained
unanswered for a long time is whether DES-encryption is a group operation.
One way of extra-specially encrypt something is to run it twice through the
encryption, using two different keys. But the question is whether the whole
thing gets any more secure by this. If the operation is a group operation
the set is closed, so the combination of two operations is an operation. In
that case, encryption using two keys consecutively would be equivalent to
encryption using a third key, and in that case the only thing gained in the
process would be that it has taken twice as much time. Now it has been
found that DES isn’t a group (but there exist other encryption systems that
are).

3.2.4 Crypto-Breaking

As shown by the description of the systems, encryption is used when one
wants to keep things secret. Secrets are things that some people are interested
in. How thoroughly you have to cipher depends on how secret things are,

and even mere on for how long they will remain secret. Lots of messages,

(© Studentlitteratur

a0 3.2. ENCRYPTION

like “attack at dawn” and “sell, damn it, Ericsson is going burst” will be out-
of-date the next day, and then it doesn’t matter much if the crypto can he
broken in a week. Other kinds of material, like the secret archive of MI-6,
may be of interest even if you have to spend several years unpacking it after
stealing it. The RSA-company recommends for instance 2048-bit modulos
for things that you really don’t want to be known ever, while 1024-bits are
enough for every-day applications.

Most crypto-breaking is by the way not done using mathematical methods.
A crowbar, pistol, or a couple of thousand dollars in cash are often more
efficient means. Looking through garbage or making use of people’s tendency
to choose super simple passwords or writing them on a piece of paper tacked
to the computer is efficient as well.

If you really want to be mathematical you can use the fact that codebreaking
is an activity that is eminently fit to be parallelised, that is to say, to
divide into several separate calculations that can run on separate computers.
If you can distribute the calculations to a thousand machines it will take a
thousand of the time, and the difference between one week and 19 years is
from a practical point of view rather large. Adding the calculation to screen-
savers works fine, so that the computers work on this while not used for
something else. In that way it isn't disturbing, which increases the chance
that people will let you borrow their computers for this purpose. One special
version of this is not asking for permission, but writing a small virus that
goes around, installs itself on the computers and multiply, and runs its part
of the calculation and when it’s finished sends in the results and uninstalls
itself. (How common this is is hard to say, but it’s an interesting possibility.)

Anyone who wants to read more about encryption and code-breaking is
warmly recommended The Code Book by Simon Singh.

© Studentlitteratur

3. CODES AND CRYPTOS 51

3.3 More Exercises

Encoding
Exercise 3.37 We have the code

{0000000000,21111111111,0000011111, 1111100000}

(a) Verify that the code is linear.

(b) Which is the minimum distance of the code, and how many errors will
it correct?

(c) Design a check matrix for the code.

(d) You recieve (001100111, How many errors does this word include (at
least) and to what would you correct it? And how does this answer
match the answer on (b)?

(e) Is it possible to design a code with this length and dimension that cor-
rects three errors?

(f) What does the sphere packing theorem say about the question in (e)?
Exercise 3.38 Assume that we want to send 256 different messages using a
binary code that corrects single-bit errors.

{(a) What is the least possible length of such a code?

(b) Write a suitable check matrix for such a code of minimum length.

Exercise 3.39 Here you are going to analyse a non-binary code with error
detection:

Each published bool has a so-called ISBN-code. The ISBN-code? is a string
aiay...ap of integers where 0 < a; < 9if 1 <1 < 9, while 0 < a1 < 10.
(But instead of 10 the letter X is used.) ayq is a check digit that is calculated
according to the formula

9
aip ZZ%G,Z (H].Od 11)

i=1

Show that if two different digits a; and a; exchange places or if a digit a; is
changed the check digit will be wrong. (Hint! It’s easier to study Zilgl i,
(mod 11).) *

Encryption

Exercise 3.40 Assume that the professors A and B participate in a system
for RSA-cryptography and have the following public keys:

'I'LA:QL GA:S, ﬂ3335, eg = 1

Unfortunately 91 and 35 are small enough numbers to make it possible for a
proficient person to break the crypto.

(a) Determine the decryption keys ds and djg.

2This system has been replaced with one with longer codes, ISBN-13, since the number
of published book started to exceed the number of possible codes.

(© Studentlitteratur

(b) B wants to send the message 23 to 4 coded using electronic signature
What should B send? '

Exercise 3.41 One big problem when using cryptography is that by en.
crypting something you have at the same time shown that you have S0me.
thing to hide. Ponder upon whether you know of any methods to get aroung
that problem!

© Studentlitteratur

