2.3 Least Elements Problem

Definitions

Claim:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}, \Longrightarrow$ there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Reflexivity:
Totality:
Transitivity:
Antisymmetry:

2.3 Least Elements Problem

Definitions

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Reflexivity: $\forall x \in X: x R x$
\square
Totality:
Transitivity:
Antisymmetry:

2.3 Least Elements Problem

Definitions

Note: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Reflexivity: $\forall x \in X: x R x$ Totality:

Transitivity:

Antisymmetry:

2.3 Least Elements Problem

Definitions

Note: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity:

Antisymmetry:

2.3 Least Elements Problem

Definitions

Reflexivity: $\forall x \in X: x R x$
Nоте: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$

Antisymmetry:

2.3 Least Elements Problem

Definitions

Reflexivity: $\forall x \in X: x R x$
Nоте: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

Reflexivity: $\forall x \in X: x R x$
Nоте: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

Reflexivity: $\forall x \in X: x R x$
Nоте: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

Reflexivity: $\forall x \in X: x R x$
NOTE: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Reflexivity: $\forall x \in X: x R x$
NOTE: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Reflexivity: $\forall x \in X: x R x$
Note: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

NOTE: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

```
ClAIM:
For every non-empty, finite set \(X\) with a total order \(R \subseteq X^{2}\), there exists exactly one \(a \in X\) such that \(\forall_{x \in X}(a, x) \in R\).
Reflexivity: \(\forall x \in X: x R x\)
```

NOTE: $x R y \Longleftrightarrow(x, y) \in R$

``` \(x \bar{R} y \Longleftrightarrow(x, y) \notin R\)
Totality: \(\forall x, y \in X: x R y \vee y R x\)
Transitivity: \(\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z\)
Antisymmetry: \(\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y\)
```


2.3 Least Elements Problem

Definitions

```
ClAIM:
For every non-empty, finite set \(X\) with a total order \(R \subseteq X^{2}\), there exists exactly one \(a \in X\) such that \(\forall_{x \in X}(a, x) \in R\).
Reflexivity: \(\forall x \in X: x R x\)
```

Note: $x R y \Longleftrightarrow(x, y) \in R$

``` \(x \bar{R} y \Longleftrightarrow(x, y) \notin R\)
Totality: \(\forall x, y \in X: x R y \vee y R x\)
Transitivity: \(\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z\)
Antisymmetry: \(\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y\)
```


Note:

2.3 Least Elements Problem

Definitions

```
ClAIM:
For every non-empty, finite set \(X\) with a total order \(R \subseteq X^{2}\), there exists exactly one \(a \in X\) such that \(\forall_{x \in X}(a, x) \in R\).
Reflexivity: \(\forall x \in X: x R x\)
```

NOTE: $x R y \Longleftrightarrow(x, y) \in R$

``` \(x \bar{R} y \Longleftrightarrow(x, y) \notin R\)
Totality: \(\forall x, y \in X: x R y \vee y R x\)
Transitivity: \(\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z\)
Antisymmetry: \(\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y\)
```


Note:

2.3 Least Elements Problem

Definitions

```
ClAIM:
For every non-empty, finite set \(X\) with a total order \(R \subseteq X^{2}\), there exists exactly one \(a \in X\) such that \(\forall_{x \in X}(a, x) \in R\).
Reflexivity: \(\forall x \in X: x R x\)
```

NOTE: $x R y \Longleftrightarrow(x, y) \in R$

``` \(x \bar{R} y \Longleftrightarrow(x, y) \notin R\)
Totality: \(\forall x, y \in X: x R y \vee y R x\)
Transitivity: \(\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z\)
Antisymmetry: \(\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y\)
```


Note:

2.3 Least Elements Problem

Definitions

```
ClAIM:
Reflexivity: \(\forall x \in X: x R x\)
Nоте: \(x R y \Longleftrightarrow(x, y) \in R\) \(x \bar{R} y \Longleftrightarrow(x, y) \notin R\)
Totality: \(\forall x, y \in X: x R y \vee y R x\)
Transitivity: \(\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z\)
Antisymmetry: \(\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y\)
```


Note:

2.3 Least Elements Problem

Definitions

```
ClAIM:
Reflexivity: \(\forall x \in X: x R x\)
Nоте: \(x R y \Longleftrightarrow(x, y) \in R\) \(x \bar{R} y \Longleftrightarrow(x, y) \notin R\)
Totality: \(\forall x, y \in X: x R y \vee y R x\)
Transitivity: \(\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z\)
Antisymmetry: \(\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y\)
```


Note:

2.3 Least Elements Problem

Definitions

```
ClAIM:
```

Reflexivity: $\forall x \in X: x R x$
Nоте: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Note:

2.3 Least Elements Problem

Definitions

```
ClAIM:
```

Reflexivity: $\forall x \in X: x R x$
Nоте: $x R y \Longleftrightarrow(x, y) \in R$ $x \bar{R} y \Longleftrightarrow(x, y) \notin R$
Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Note:

2.3 Least Elements Problem

Definitions

CLAIM:

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$

Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Note: $\Delta R \bigcirc \Longleftrightarrow \Delta$

2.3 Least Elements Problem

Definitions

Claim:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Note:

2.3 Least Elements Problem

Definitions

Claim:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$

Note: $\Delta R \bigcirc \Longleftrightarrow \Delta$

2.3 Least Elements Problem

Definitions

Claim:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Note:

2.3 Least Elements Problem

Definitions

Claim:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Note:

2.3 Least Elements Problem

Definitions

Claim:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective

(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

Note: $\Delta R \bigcirc \Longleftrightarrow \Delta$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$
Bijective Injective
(Injective and surjective) (General)
Every $\mathbb{N}_{|X|}$ has Every B has
exactly one X at most one A

Note:

 $\Delta R \bigcirc \Longleftrightarrow \Delta$
2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X
Injective
(General)
Every B has
at most one A

Note: $\Delta R \bigcirc \Longleftrightarrow \Delta$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq p o s(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X
Injective
(General) Every B has at most one A

Surjective
(General) Every B has at least one A

General

Every A has exactly one B

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq p o s(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

Surjective
(General) Every B has at least one A

General
Every A has exactly one B

Note:

 $\Delta R \bigcirc \Longleftrightarrow \Delta$
2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq p o s(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

Surjective
(General) Every B has at least one A

General
Every A has exactly one B

Note:

 $\Delta R \bigcirc \Longleftrightarrow \Delta$
2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

Surjective
(General) Every B has at least one A

General
Every A has exactly one B

Note:

 $\Delta R \bigcirc \Longleftrightarrow \Delta$
2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

Surjective
(General) Every B has at least one A

General
Every A has exactly one B

$B \Longleftrightarrow I \wedge S_{\otimes_{S}^{\pi}}^{\pi I} G$

Note:

 $\Delta R \bigcirc \Longleftrightarrow \Delta$
2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

Injective
(General)
Every B has
at most one A

Surjective
(General) Every B has at least one A

General
Every A has exactly one B

$B \Longleftrightarrow I \wedge S_{\forall}^{\pi v^{\pi}} G$

Note:

 $\Delta R \bigcirc \Longleftrightarrow \Delta$
2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$
By transitivity, $\forall_{z \in X} z R x \Longrightarrow z R y$ and $\operatorname{pos}(x)<\operatorname{pos}(y)$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$,
there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$
By transitivity, $\forall_{z \in X} z R x \Longrightarrow z R y$ and $\operatorname{pos}(x)<\operatorname{pos}(y)^{4}$

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$,
there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$
By transitivity, $\forall_{z \in X} z R x \Longrightarrow z R y$ and $\operatorname{pos}(x)<\operatorname{pos}(y)^{4}$
CASE 3: $x \bar{R} y \wedge y R x \Longrightarrow$ Isomorphic to CASE 2

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$
By transitivity, $\forall_{z \in X} z R x \Longrightarrow z R y$ and $\operatorname{pos}(x)<\operatorname{pos}(y)^{4}$
Case 3: $x \bar{R} y \wedge y R x \Longrightarrow$ Isomorphic to Case 2
Proof pos is surjective (existence):

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$
By transitivity, $\forall_{z \in X} z R x \Longrightarrow z R y$ and $\operatorname{pos}(x)<\operatorname{pos}(y)^{4}$
CASE 3: $x \bar{R} y \wedge y R x \Longrightarrow$ Isomorphic to CASE 2
Proof pos is surjective (existence):
By injectivity and $\mathbb{N}_{|X|}=|X|$, pos must also be surjective

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective Injective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

\mathbb{N}

Note: $\Delta R \bigcirc \Longleftrightarrow \longrightarrow$

Surjective
(General) Every B has at least one A

General

Every A has exactly one B

$$
B \Longleftrightarrow I \wedge S_{\otimes_{S}^{\pi}}^{\pi \otimes^{\pi}} G
$$

2.3 Least Elements Problem

Definitions

CLAIM:

For every non-empty, finite set X with a total order $R \subseteq X^{2}$, there exists exactly one $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let $\mathbb{N}_{|X|}=\{1, \ldots,|X|\} \subset \mathbb{N}$
Let pos: $X \rightarrow \mathbb{N}_{|X|}, x \mapsto|\{i R x \mid i \in X\}|$
Since R is reflexive and X is finite, $1 \leq \operatorname{pos}(x) \leq|X|$
Let $a \in X: \operatorname{pos}(a)=1$
By reflexivity, $\{i R a \mid i \in X\}=\{a R a\}$
By totality, $\forall_{x \in X} a R x$
If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Proof pos is injective:
Assume $x, y \in X: \operatorname{pos}(x)=\operatorname{pos}(y) \Longrightarrow x=y$
By totality, $x R y \vee y R x$
CASE 1: $x R y \wedge y R x$, then by antisymmetry, $x=y$
CASE 2: $x R y \wedge y \bar{R} x$, then by reflexivity $x \neq y$
By transitivity, $\forall_{z \in X} z R x \Longrightarrow z R y$ and $\operatorname{pos}(x)<\operatorname{pos}(y)^{4}$
CASE 3: $x \bar{R} y \wedge y R x \Longrightarrow$ Isomorphic to CASE 2
Proof pos is surjective (existence):
By injectivity and $\mathbb{N}_{|X|}=|X|$, pos must also be surjective

Reflexivity: $\forall x \in X: x R x$

$$
\text { Nоте: } x R y \Longleftrightarrow(x, y) \in R
$$

$$
x \bar{R} y \Longleftrightarrow(x, y) \notin R
$$

Totality: $\forall x, y \in X: x R y \vee y R x$
Transitivity: $\forall x, y, z \in X: x R y \wedge y R z \Longrightarrow x R z$
Antisymmetry: $\forall x, y \in X: x R y \wedge y R x \Longrightarrow x=y$

Bijective Injective
(Injective and surjective)
Every $\mathbb{N}_{|X|}$ has
exactly one X

\mathbb{N}

Note:

Surjective
(General) Every B has at least one A

General

Every A has exactly one B

$$
B \Longleftrightarrow I \wedge S_{\otimes_{S}^{\pi}}^{\pi \otimes^{\pi}} G
$$

