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unique (injectivity)
a

 PROOF pos is injective:
 Assume  pos posx, y ∈ X : (x) = (y) ⟹ x = y
 By totality, xRy ∨ yRx
 CASE 1: , then by antisymmetry, xRy ∧ yRx x = y
 CASE 2: , then by reflexivity xRy ∧ ¯yRx x ≠ y
 By transitivity,  and pos pos∀z∈X zRx ⟹ zRy (x) < (y)
 CASE 3: Isomorphic to CASE 2¯xRy ∧ yRx ⟹
 PROOF pos is surjective (existence):
 By injectivity and , pos must also be surjectiveℕ|X| = |X |

Bijective 
(Injective and surjective) 

Every  has 
exactly one 

ℕ|X|

X

1

2

3

4

BA

5

6

Injective 
(General) 

Every B has

at most one A

1

2

3

4

BA

Surjective 
(General) 

Every B has

at least one A

1

2

3

4

BA

5

General 
Every A has 

exactly one B

B
I

S
G⇒⇒

⇒

⇒
I S⟺ ∧

∀x ∈ X : xRx

∀x, y ∈ X : xRy ∨ yRx

∀x, y, z ∈ X : xRy ∧ yRz ⟹ xRz

∀x, y ∈ X : xRy ∧ yRx ⟹ x = y

Reflexivity:

Totality:

Transitivity:

Antisymmetry:

R ⟺NOTE: 


xRy ⟺ (x, y) ∈ R
¯xRy ⟺ (x, y) ∉ R

NOTE:

Definitions




