CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity:

Totality:

Transitivity:

Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

Totality:

Transitivity:

Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality:

Transitivity:

Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity:

Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \vee yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Definitions

CLAIM:

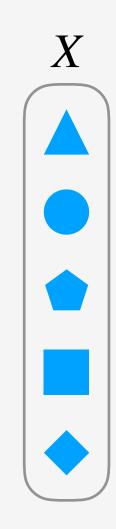
For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



Definitions

CLAIM:

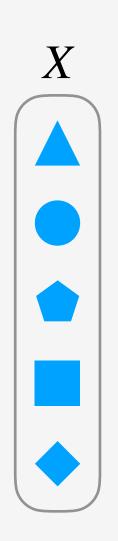
For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



Definitions

CLAIM:

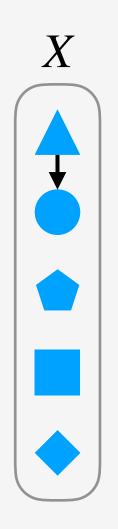
For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

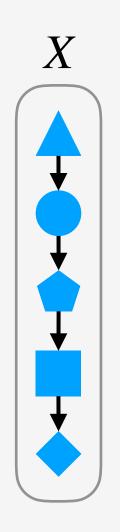
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

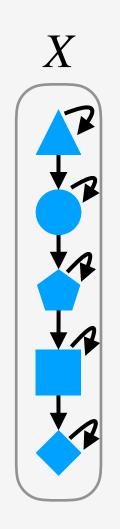
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

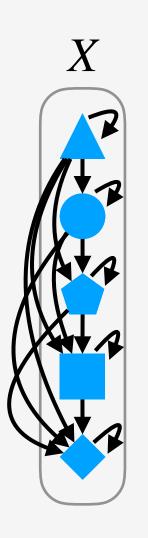
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

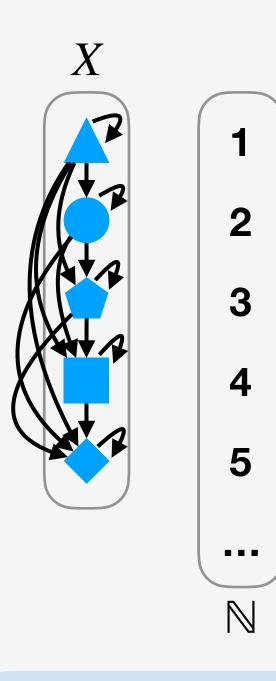
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

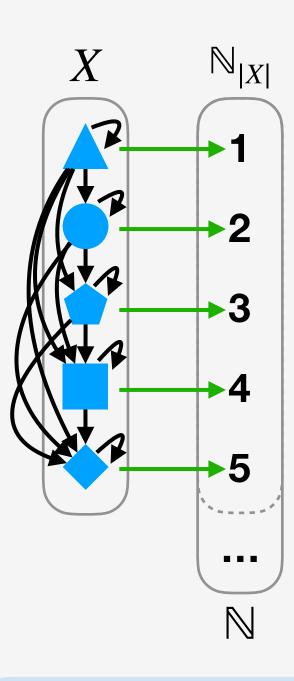
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

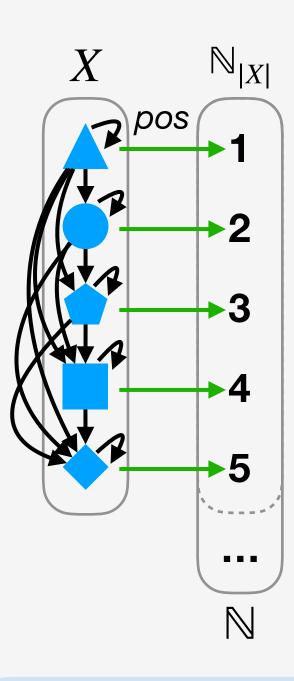
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



Definitions

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

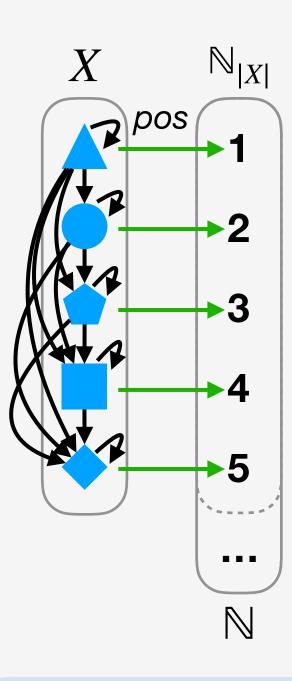
Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

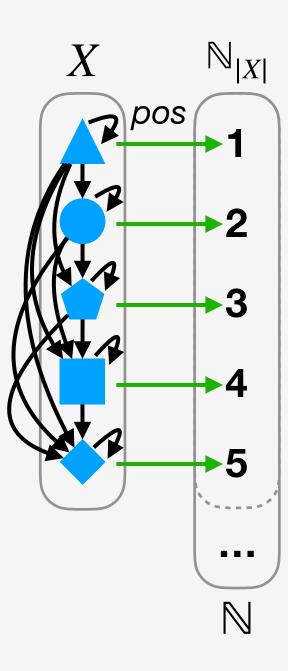
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

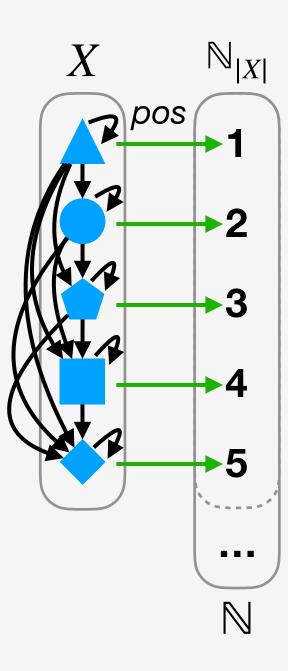
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let $pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$

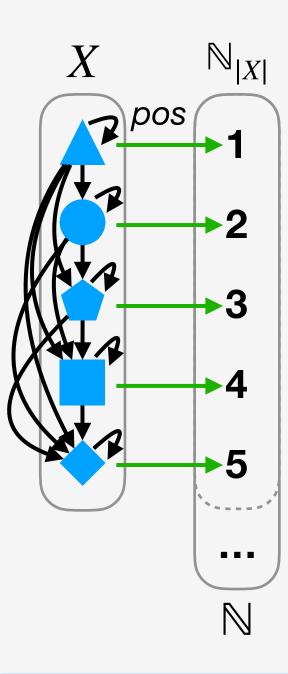
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since R is *reflexive* and X is *finite*, $1 \le pos(x) \le |X|$

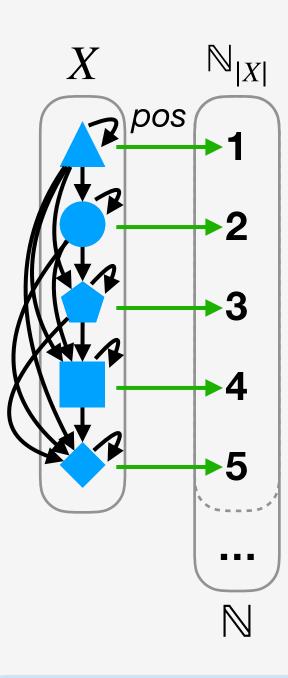
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since R is **reflexive** and X is **finite**, $1 \le pos(x) \le |X|$

Let $a \in X : pos(a) = 1$

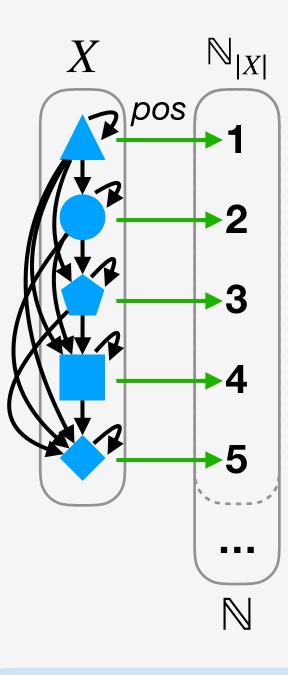
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \ldots, |X|\} \subset \mathbb{N}$$

Let $pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$
Since R is **reflexive** and X is **finite**, $1 \le pos(x) \le |X|$
Let $a \in X : pos(a) = 1$
By **reflexivity**, $\{iRa \mid i \in X\} = \{aRa\}$

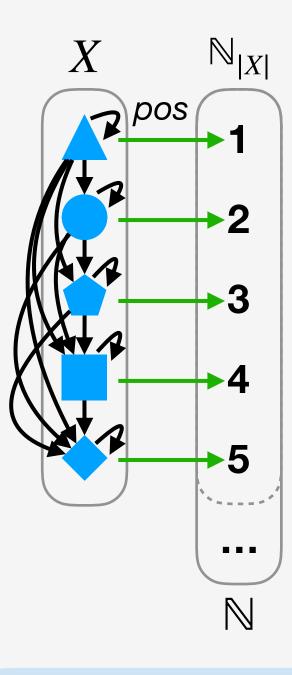
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let $pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$
Since R is **reflexive** and X is **finite**, $1 \leq pos(x) \leq |X|$
Let $a \in X : pos(a) = 1$
By **reflexivity**, $\{iRa \mid i \in X\} = \{aRa\}$
By **totality**, $\forall_{x \in X} aRx$

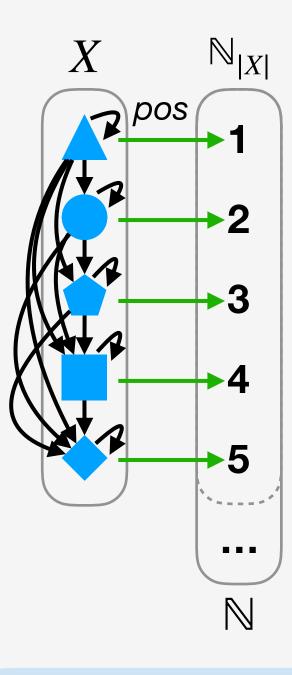
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**, $\forall_{x \in X} aRx$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

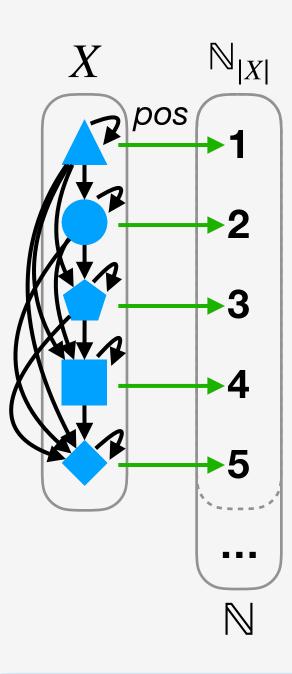
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let $pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let $a \in X : pos(a) = 1$

By *reflexivity,* $\{iRa \mid i \in X\} = \{aRa\}$

By **totality**, $\forall_{x \in X} aRx$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

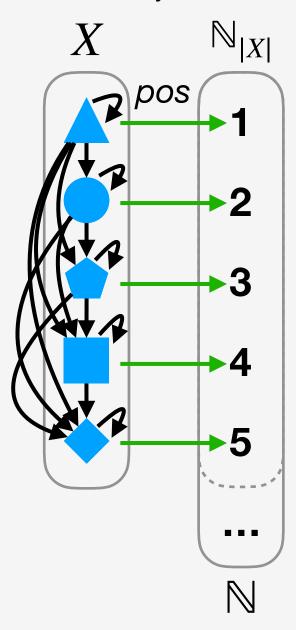
Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$

Bijective

(Injective and surjective)

Every $\mathbb{N}_{|X|}$ has exactly one X



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X}(a, x) \in R$.

Proof claim is true:

By **totality**, $\forall_{x \in X} aRx$

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let $pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$
Since R is **reflexive** and X is **finite**, $1 \le pos(x) \le |X|$
Let $a \in X : pos(a) = 1$
By **reflexivity**, $\{iRa \mid i \in X\} = \{aRa\}$

If pos is bijective, then we know a exists (surjectivity) and is unique (injectivity)

Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

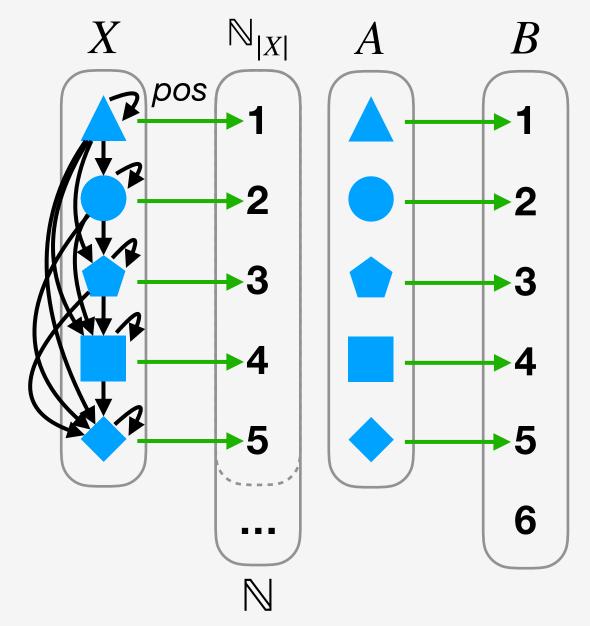
Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

Antisymmetry: $\forall x, y \in X : xRy \land yRx \implies x = y$

Bijective Injective (Injective and surjective) (General) Every B has Every $\mathbb{N}_{|X|}$ has

at most one A exactly one X



NOTE: $R \iff \longrightarrow$

CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,* $\{iRa \mid i \in X\} = \{aRa\}$

By **totality**, $\forall_{x \in X} aRx$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

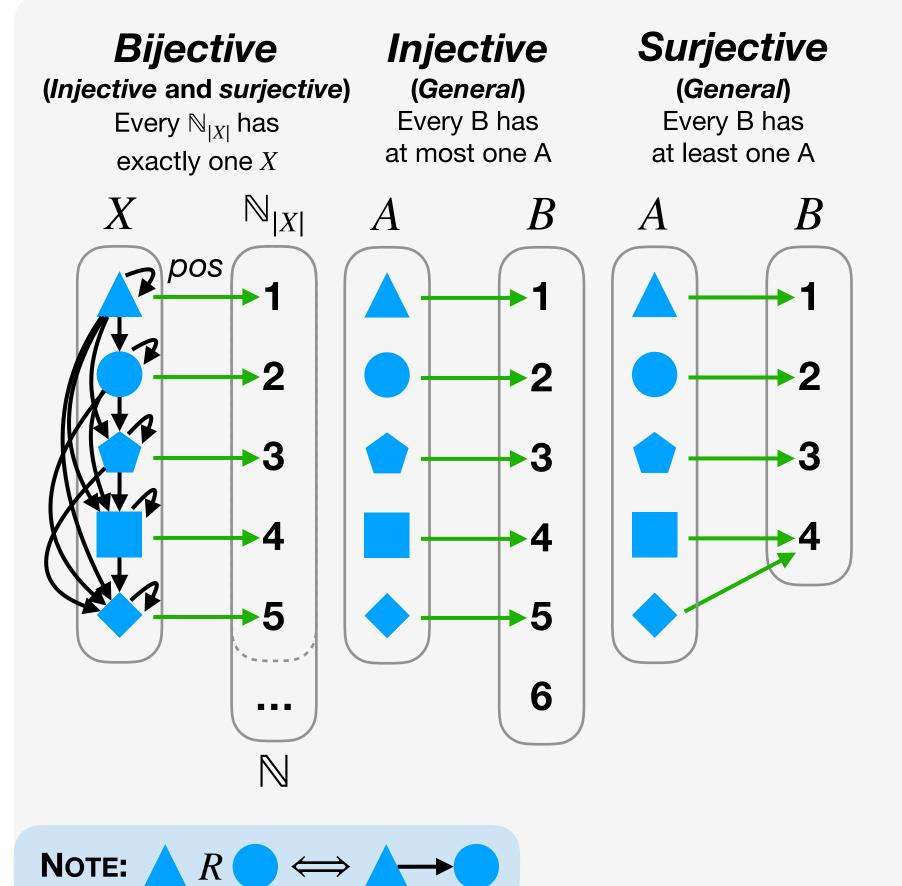
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since R is *reflexive* and X is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,* $\{iRa \mid i \in X\} = \{aRa\}$

By **totality**, $\forall_{x \in X} aRx$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

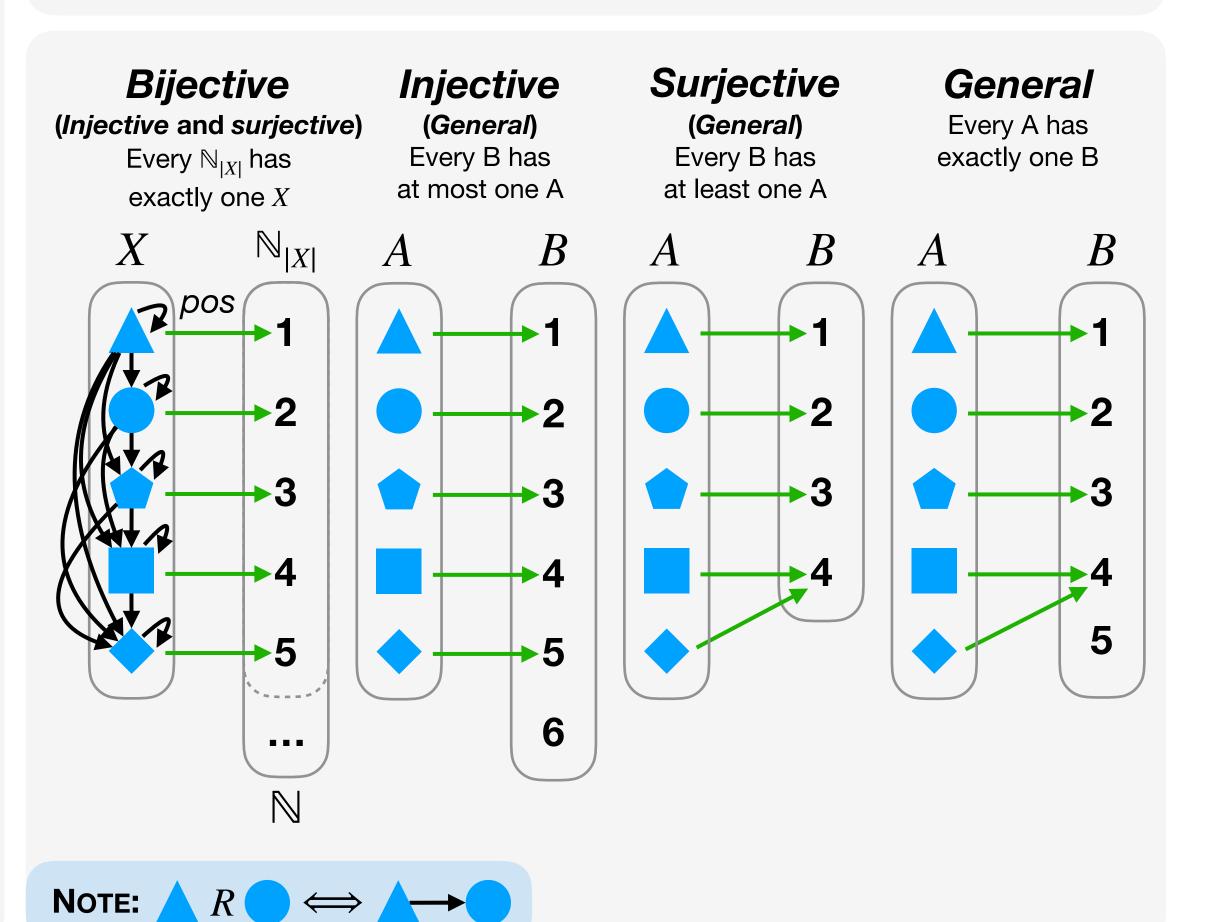
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,* $\{iRa \mid i \in X\} = \{aRa\}$

By **totality**, $\forall_{x \in X} aRx$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

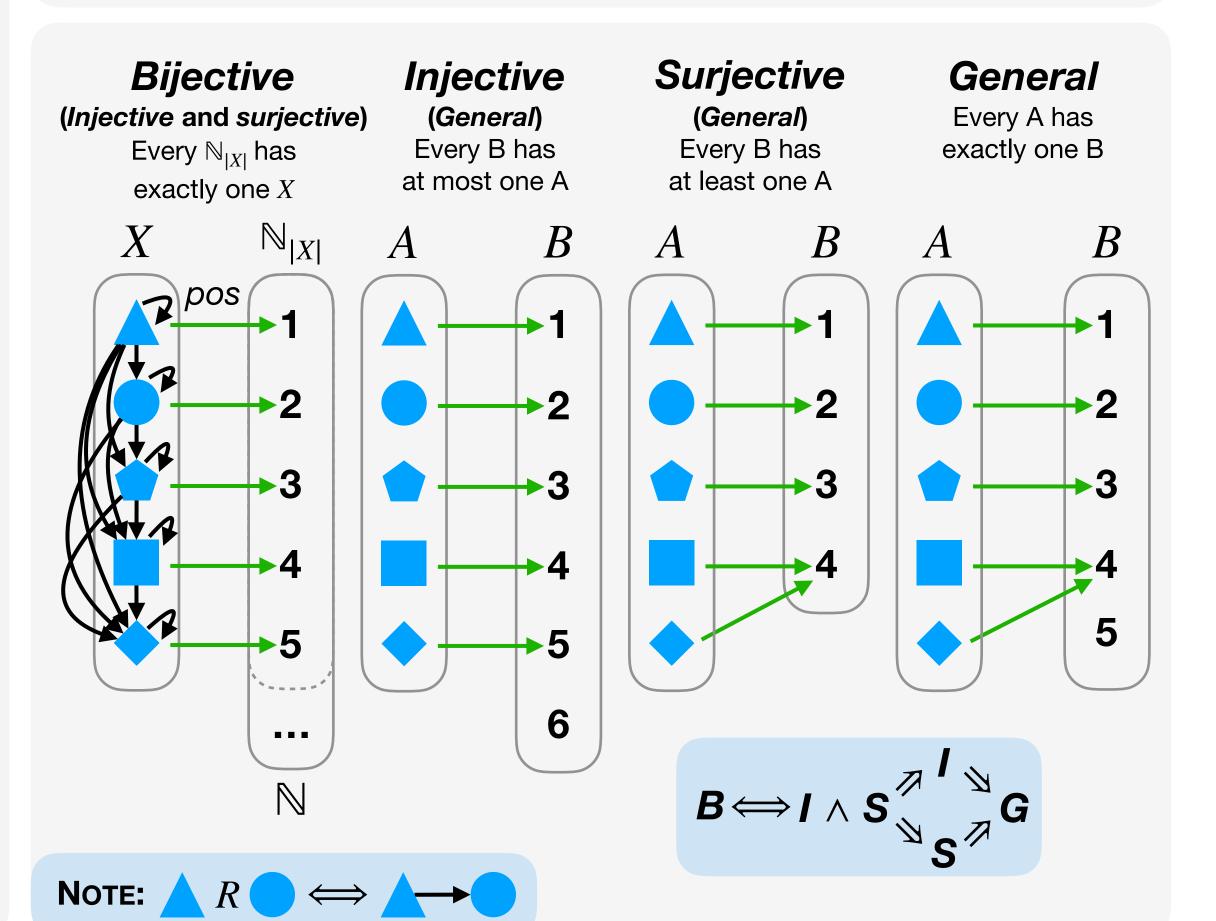
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**, $\forall_{x \in X} aRx$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

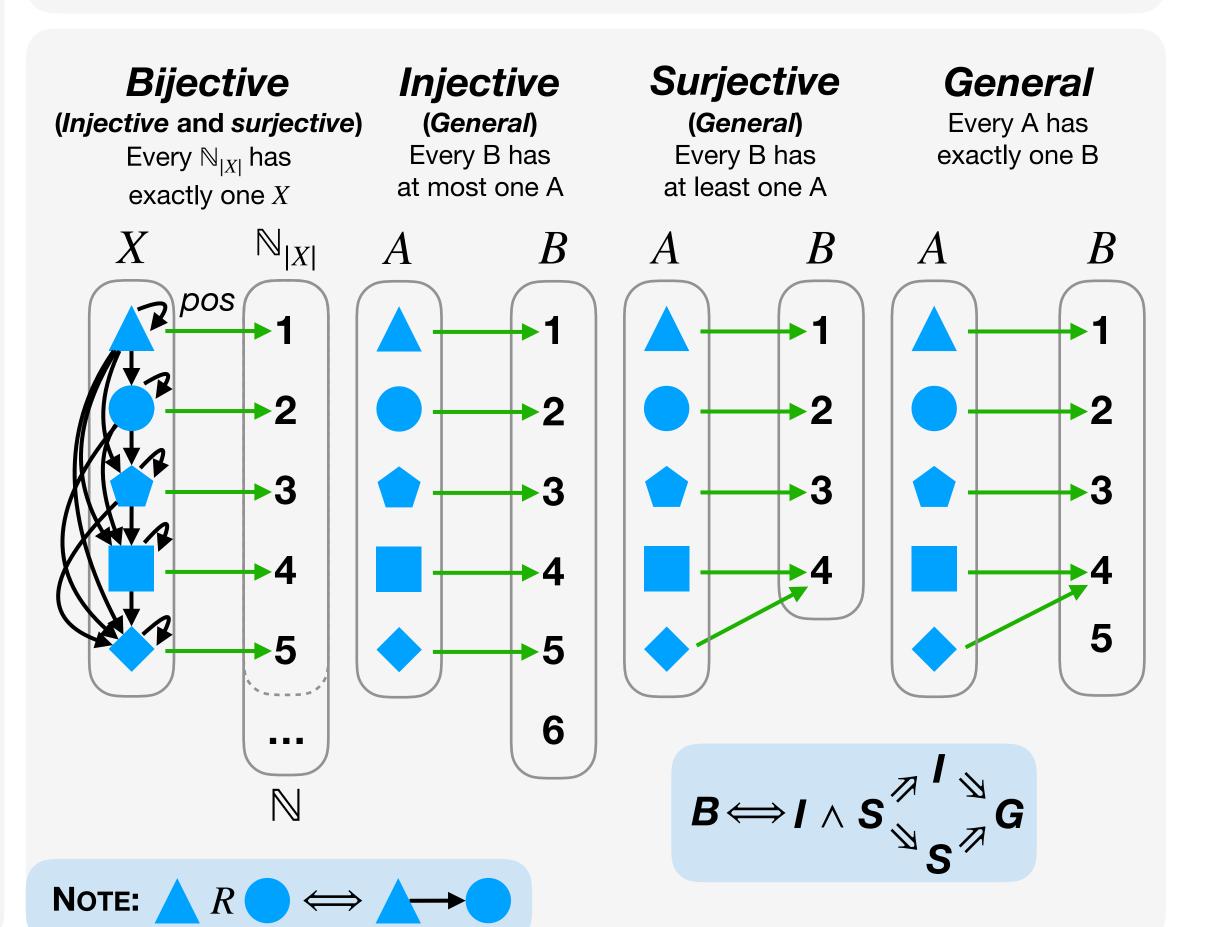
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

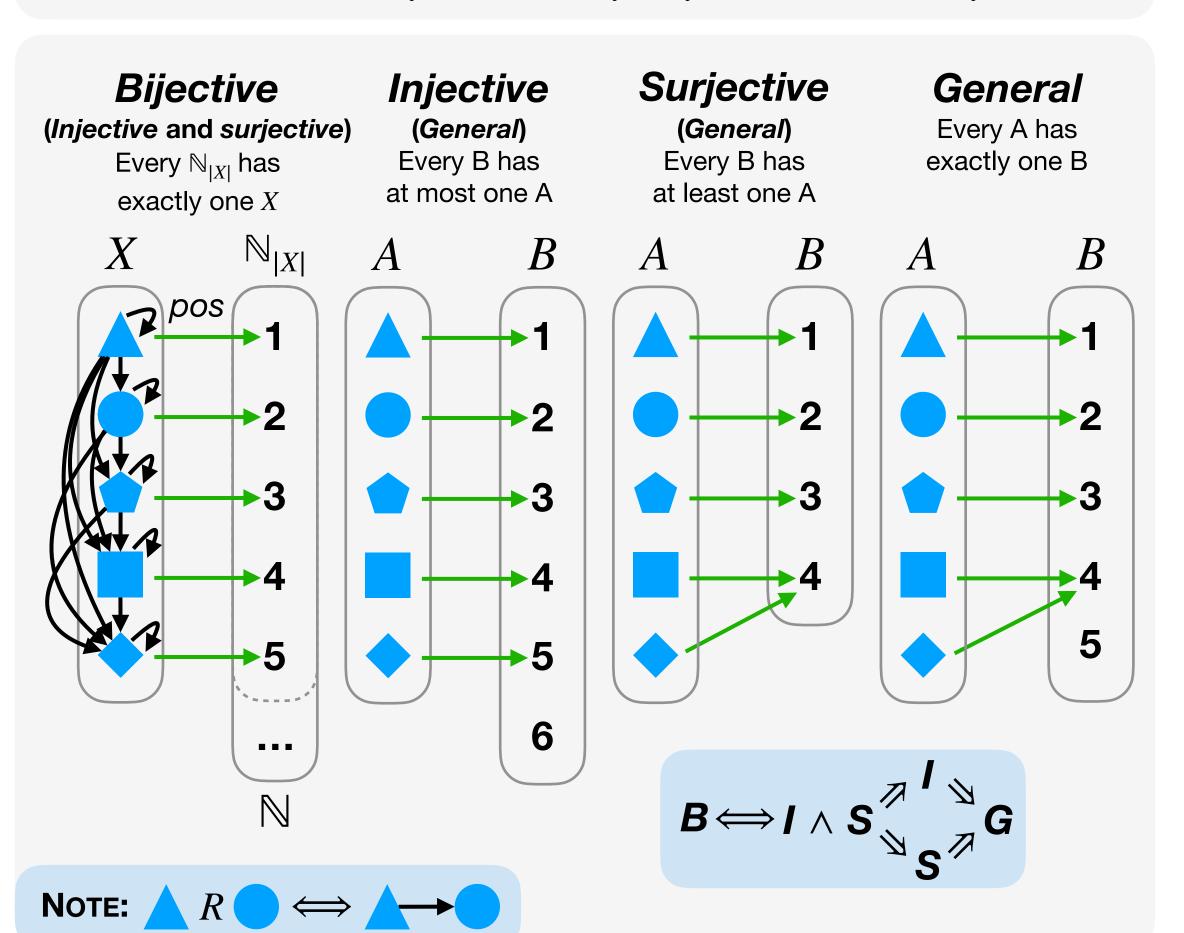
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**, $xRy \lor yRx$

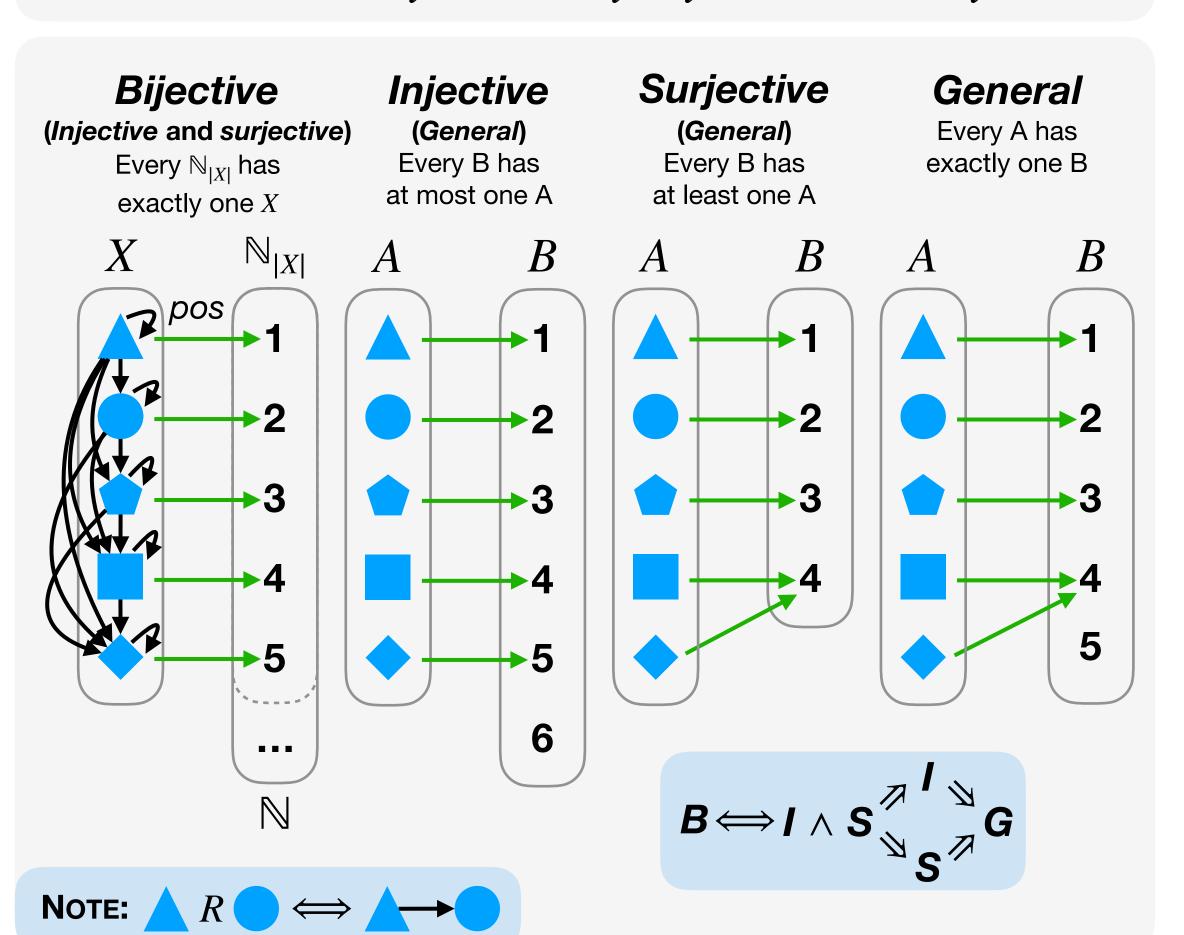
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By *totality*, $xRy \lor yRx$

Case 1: $xRy \wedge yRx$, then by antisymmetry, x = y

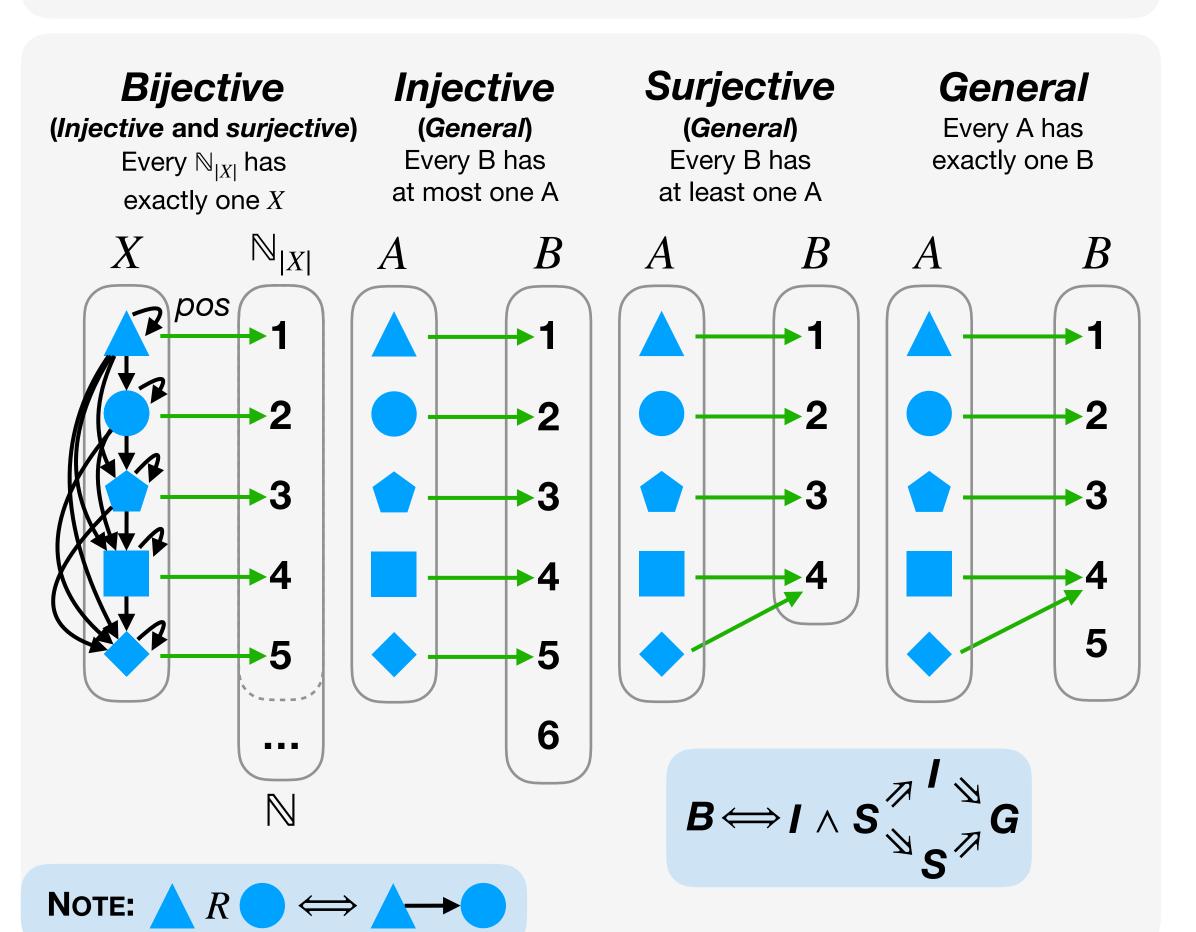
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**, $xRy \lor yRx$

CASE 1: $xRy \wedge yRx$, then by antisymmetry, x = y

Case 2: $xRy \wedge y\overline{R}x$, then by **reflexivity** $x \neq y$

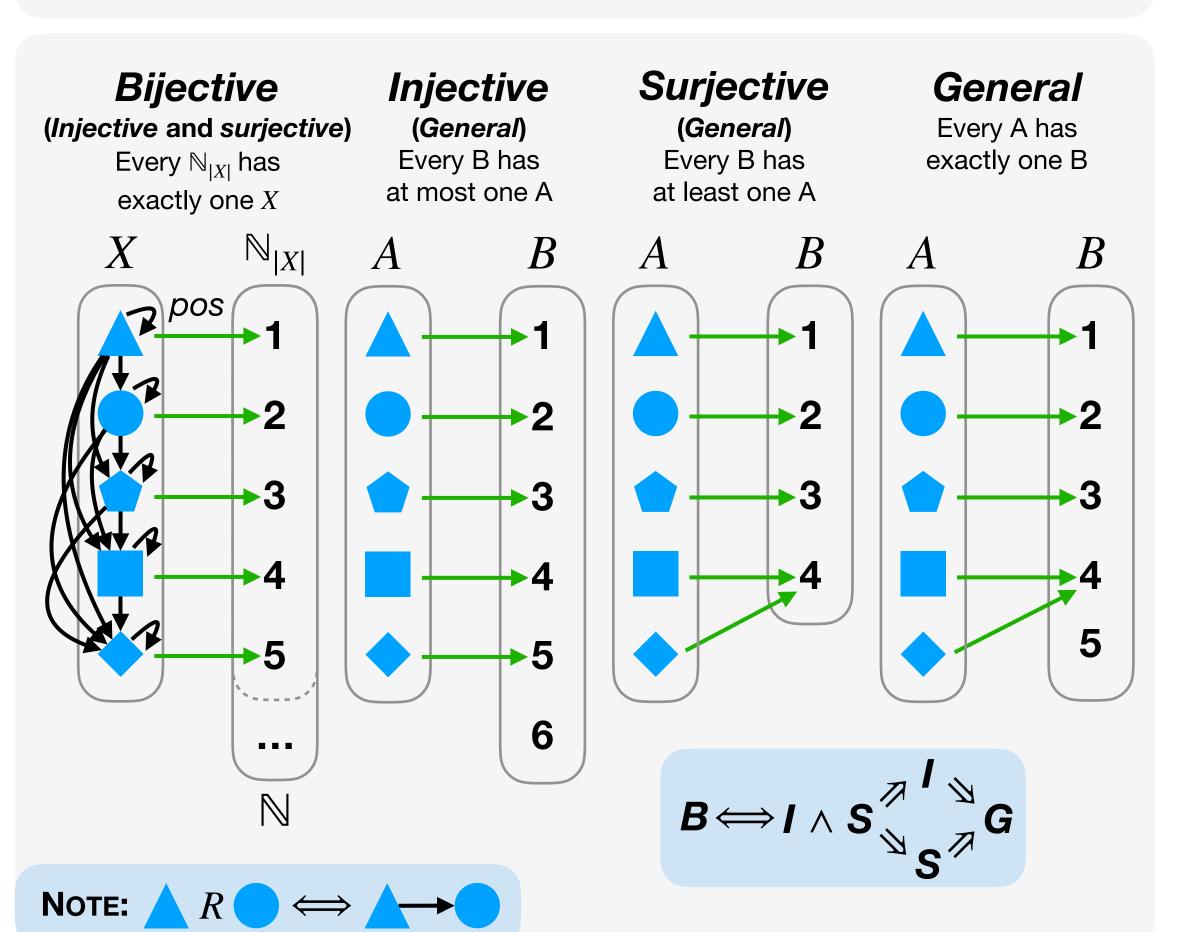
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**,
$$xRy \lor yRx$$

CASE 1: $xRy \wedge yRx$, then by **antisymmetry**, x = y

Case 2: $xRy \wedge y\overline{R}x$, then by **reflexivity** $x \neq y$

By *transitivity*, $\forall_{z \in X} zRx \implies zRy$ and pos(x) < pos(y)

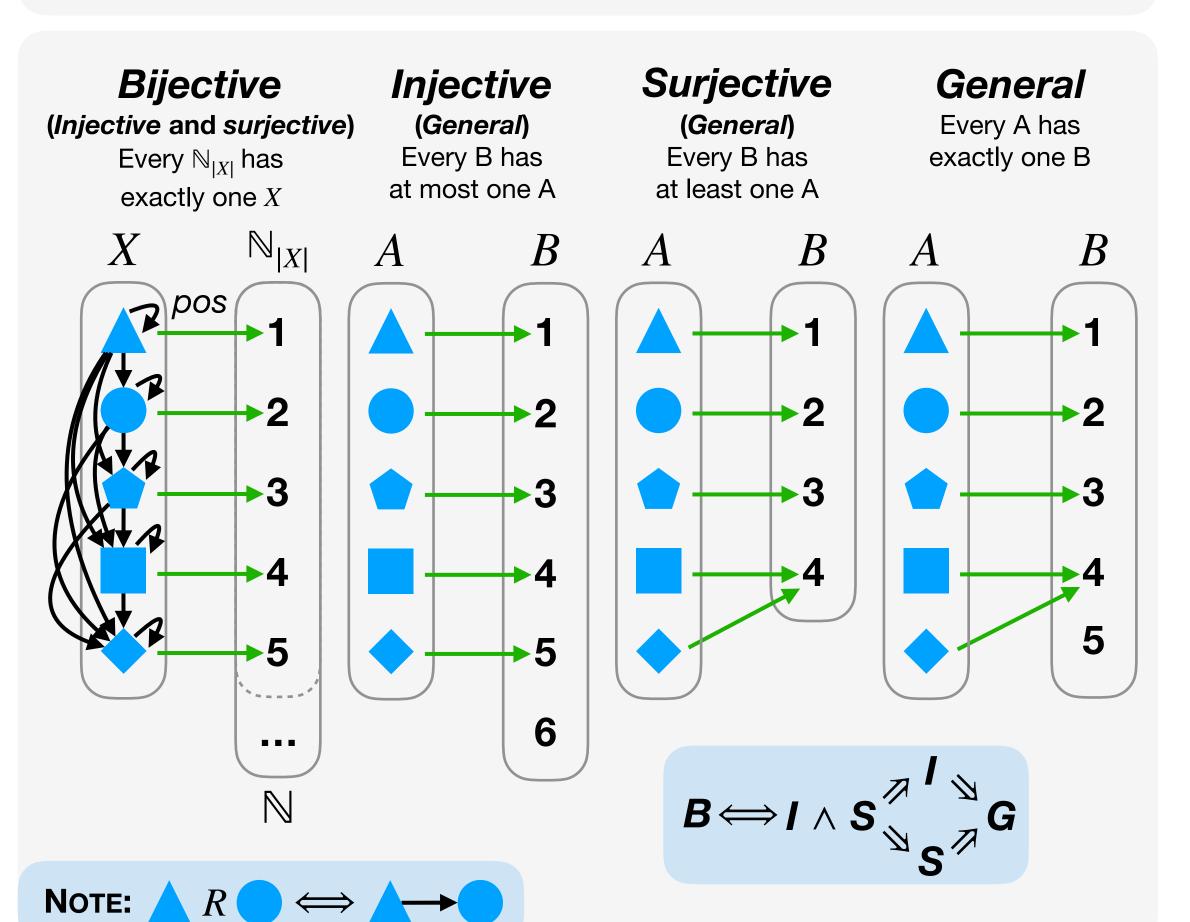
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**, $xRy \lor yRx$

CASE 1: $xRy \wedge yRx$, then by antisymmetry, x = y

Case 2: $xRy \wedge y\overline{R}x$, then by **reflexivity** $x \neq y$

By *transitivity*, $\forall_{z \in X} zRx \implies zRy$ and $pos(x) < pos(y)^{7}$

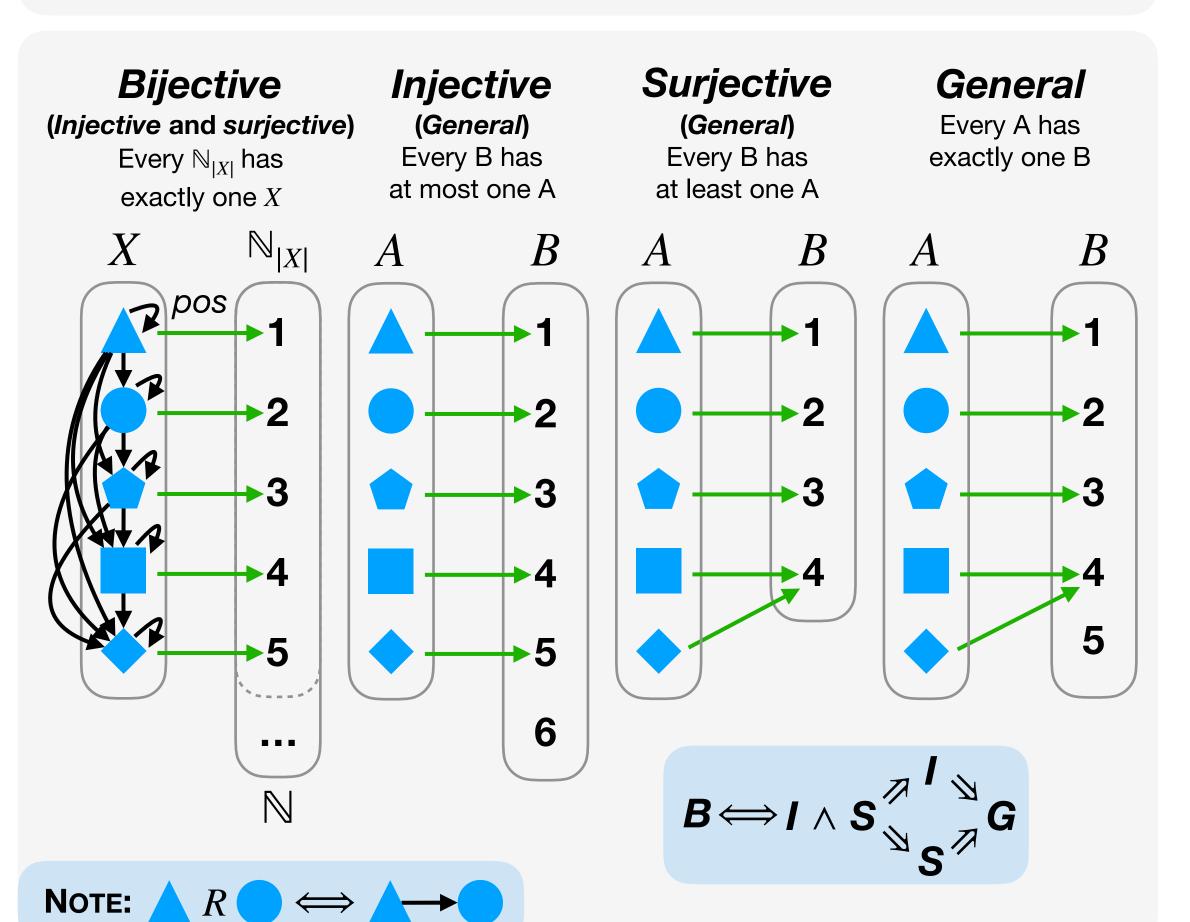
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**, $xRy \lor yRx$

CASE 1: $xRy \wedge yRx$, then by antisymmetry, x = y

Case 2: $xRy \wedge y\overline{R}x$, then by **reflexivity** $x \neq y$

By *transitivity*, $\forall_{z \in X} zRx \implies zRy$ and $pos(x) < pos(y)^{7}$

Case 3: $x\overline{R}y \wedge yRx \implies$ Isomorphic to Case 2

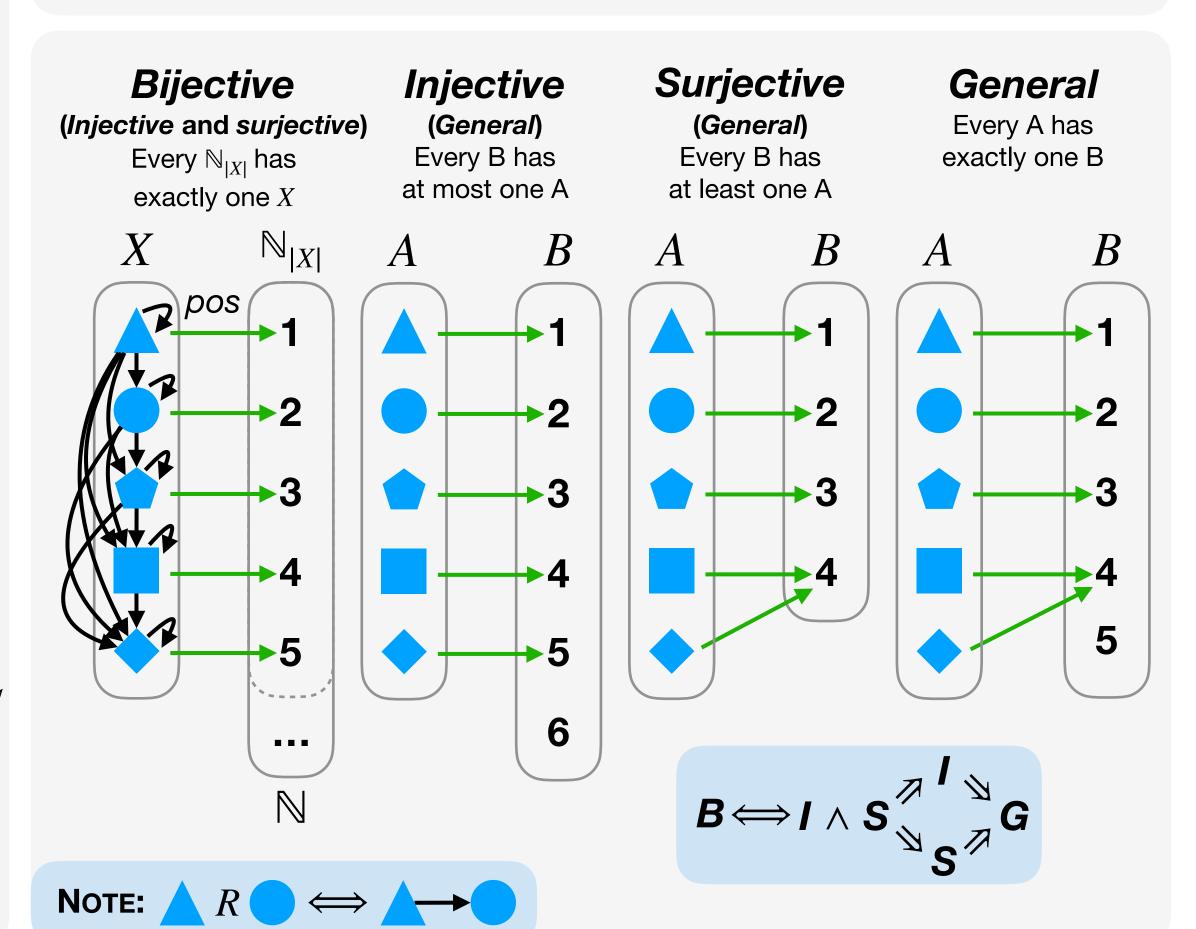
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since *R* is *reflexive* and *X* is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By **reflexivity**,
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**,
$$xRy \lor yRx$$

CASE 1:
$$xRy \wedge yRx$$
, then by antisymmetry, $x = y$

Case 2:
$$xRy \wedge y\overline{R}x$$
, then by **reflexivity** $x \neq y$

By *transitivity*,
$$\forall_{z \in X} zRx \implies zRy$$
 and $pos(x) < pos(y)$

Case 3: $x\overline{R}y \wedge yRx \implies$ Isomorphic to Case 2

Proof pos is surjective (existence):

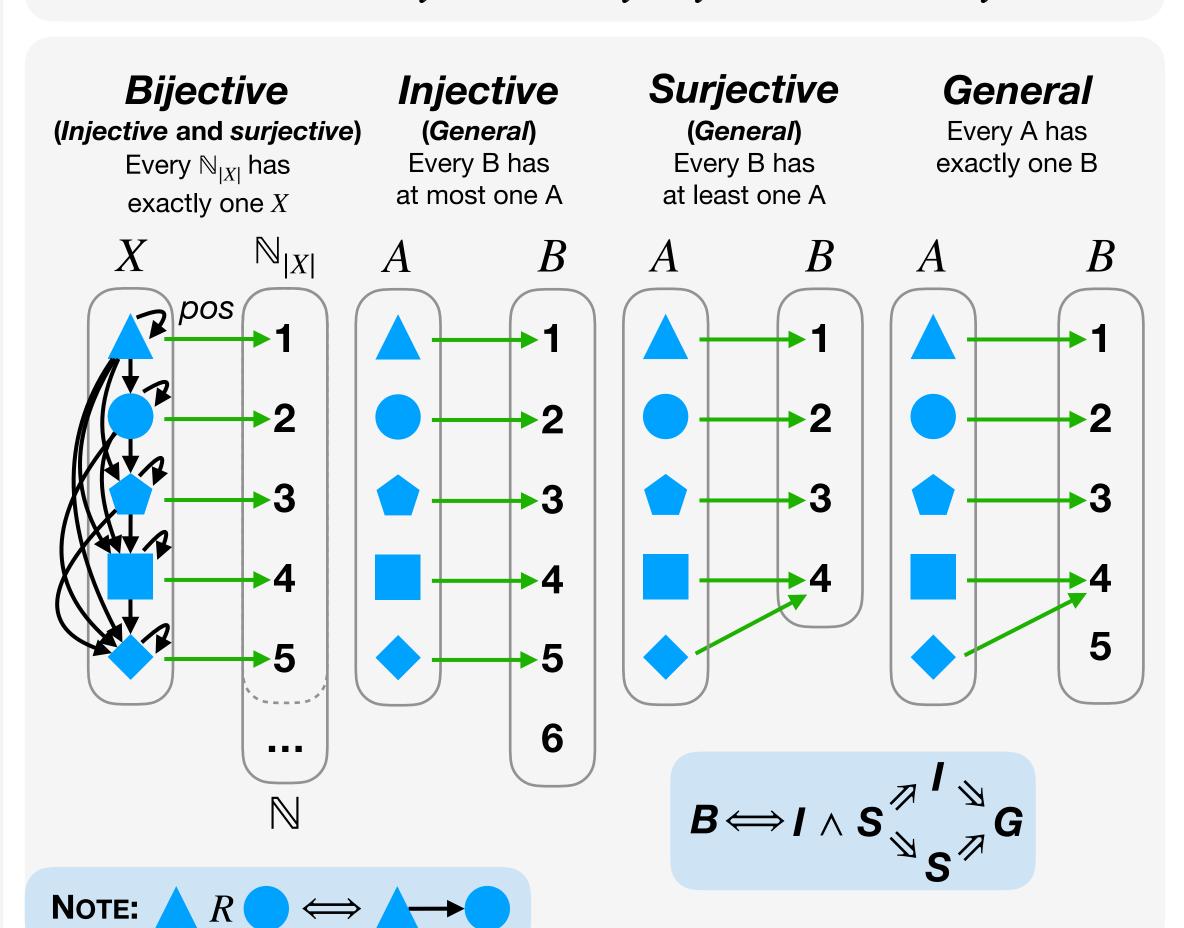
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since R is *reflexive* and X is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By **totality**,
$$xRy \lor yRx$$

CASE 1: $xRy \wedge yRx$, then by antisymmetry, x = y

Case 2: $xRy \wedge y\overline{R}x$, then by **reflexivity** $x \neq y$

By *transitivity*, $\forall_{z \in X} zRx \implies zRy$ and $pos(x) < pos(y)^{7}$

Case 3: $x\overline{R}y \wedge yRx \implies$ Isomorphic to Case 2

PROOF pos is surjective (existence):

By *injectivity* and $\mathbb{N}_{|X|} = |X|$, pos must also be *surjective*

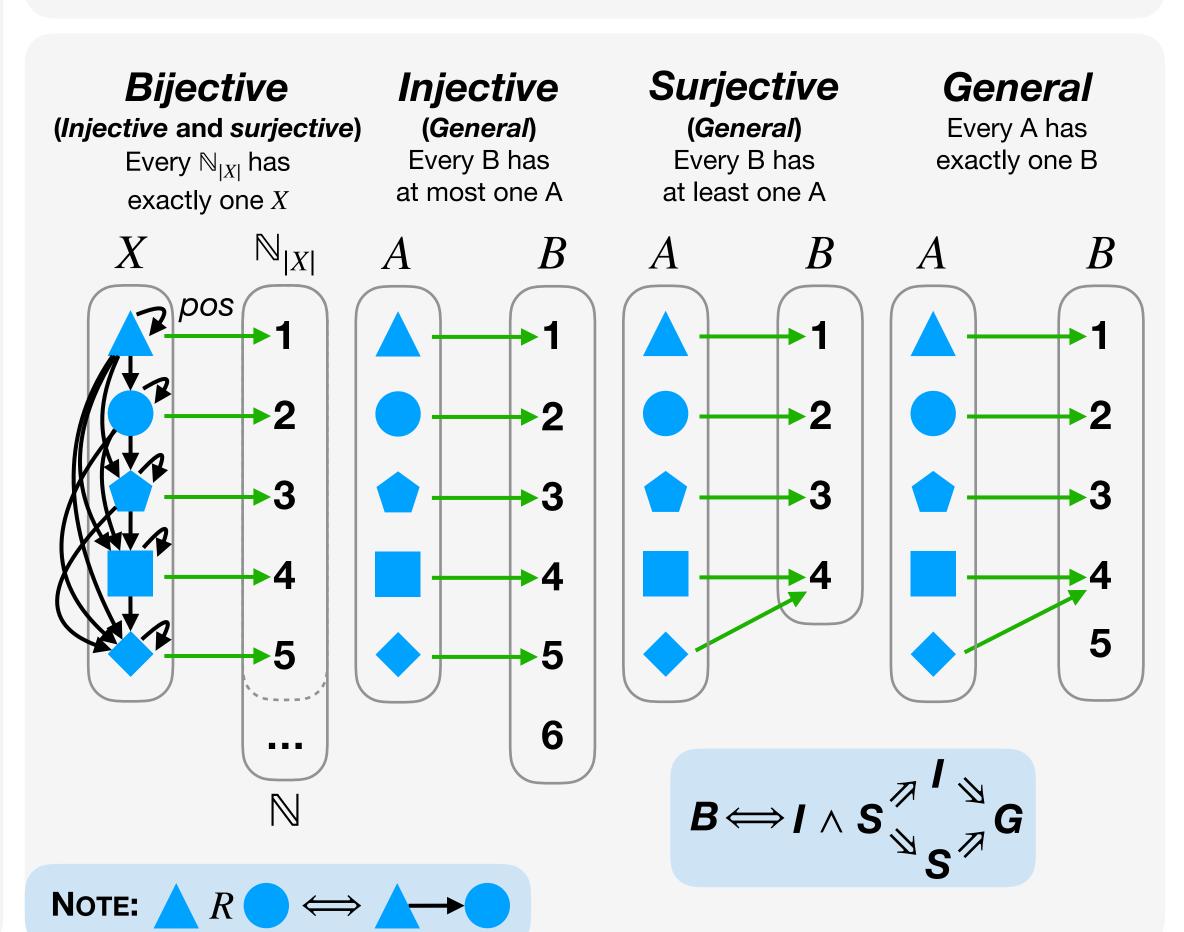
Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$



CLAIM:

For every non-empty, *finite* set X with a *total order* $R \subseteq X^2$, there *exists exactly one* $a \in X$ such that $\forall_{x \in X} (a, x) \in R$.

Proof claim is true:

Let
$$\mathbb{N}_{|X|} = \{1, \dots, |X|\} \subset \mathbb{N}$$

Let
$$pos: X \to \mathbb{N}_{|X|}, x \mapsto |\{iRx \mid i \in X\}|$$

Since R is *reflexive* and X is *finite*, $1 \le pos(x) \le |X|$

Let
$$a \in X : pos(a) = 1$$

By *reflexivity,*
$$\{iRa \mid i \in X\} = \{aRa\}$$

By **totality**,
$$\forall_{x \in X} aRx$$

If pos is **bijective**, then we know a **exists** (surjectivity) and is unique (injectivity)

Proof pos is *injective*:

Assume
$$x, y \in X : pos(x) = pos(y) \implies x = y$$

By *totality*,
$$xRy \lor yRx$$

CASE 1: $xRy \wedge yRx$, then by **antisymmetry**, x = y

Case 2: $xRy \wedge y\overline{R}x$, then by **reflexivity** $x \neq y$

By *transitivity*, $\forall_{z \in X} zRx \implies zRy$ and $pos(x) < pos(y)^{7}$

Case 3: $x\overline{R}y \wedge yRx \implies$ Isomorphic to Case 2

PROOF pos is surjective (existence):

By *injectivity* and $\mathbb{N}_{|X|} = |X|$, pos must also be surjective

Definitions

Reflexivity: $\forall x \in X : xRx$

NOTE: $xRy \iff (x,y) \in R$ $x\overline{R}y \iff (x,y) \notin R$

Totality: $\forall x, y \in X : xRy \lor yRx$

Transitivity: $\forall x, y, z \in X : xRy \land yRz \implies xRz$

