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2.3 Least Elements Problem

CLAIM:

For every non-empty, finite set X with a total order R C X7, =}

there exists exactly one a € X such that V, _y(a,x) € R.
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Let Ny = {1,....,]X]|} Cc N
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X
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PROOF pos Is Injective:
Assume x,y € X : pos(x) = pos(y) = x =1y
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Definitions

NOTE: xRy < (x,y) €ER

Reflexivity: . =
y: Vx € X : xRx Ry = (ty) &R

Totality: Vx,y € X : xRy V yRx
Transitivity: Vx,y,z € X : xRy A YRz =—> xRZ

Antisymmetry: Vx,y € X : xRy AyRx — x =y

Bijective Injective Surjective General
(Injective and surjective) (General) (General) Every A has
Every Ny, has Every B has Every B has exactly one B

at most one A at least one A

exactly one X

X Ny A B A B
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there exists exactly one a € X such that V, _y(a,x) € R.
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