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1 INTRODUCTION. 2

1 Introduction.

In this part of the course we will investigate the possibility to solve the Dirichlet
and Neumann problems in rather general domains. There are several reasons
for this. First of all it is a very important problem - in particular for applied
problems. But my main reason is that it is a difficult problem that will force
us to develop an abstract approach to mathematics. So far, most of the theory
in the course have been explicit. We construct solutions by means of greens
functions et.c. But if we have a complicated domain there is no hope to be
able to write down a formula for the solution. Instead we will develop some
functional analytic machinery that will help us to show that solutions exist.

The story is interesting and the method powerful. Also, I hope that it will
be very educational to see an abstract theory developed from scratch.

In this notes we will always assume that the space dimension n ≥
3. This assumption is not really necessary, but since the Newtonian kernel is
logarithmic at infinity when n = 2 the theory looks somewhat different in R2.
My main goal in the last part of the course is to make a transition into really
abstract, modern if you like, mathematics and not to provide an encyclopedia
of the existence results for the Laplace equation. Therefore is it reasonable to
consider either the case n = 2 or the case n ≥ 3 and the case n ≥ 3 seems to be
the more reasonable choice.

Also since I am mostly interested in the transition to abstract mathematics
I have mostly provided proofs for the Dirichlet problem when the corresponding
proofs for the Neumann problem are similar. I believe that understanding the
Dirichlet case is enough to understand how the theory fits together and that is
more important than having all the proofs in detail.

2 Overview

You have seen how to solve the Dirichlet problem

∆u = 0 in D
u = f on ∂D,

(1)

in the special case when D = B1(0) or D = Rn+. In this part of the course we
will investigate the existence of solutions to the Dirichlet problem (1) in more
general domains D. We will also show existence of solutions to the Neumann
problem:

∆u = 0 in D
∂u
∂ν = f on ∂D,

(2)

where ν is the outer normal of the domain D.
In order to find solutions to the Dirichlet problem (1) and the Neumann

problem (2) it is reasonable to try to adjust the methods that we used to solve
the Dirichlet problem in the domain Rn+. The solution to the Dirichlet problem
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in Rn+ with boundary data1 f(y′) was given by the integral formula

u(x) =
1

ωn

∫
Rn−1

2xn
(|x′ − y′|2 + x2

n)
n
2
f(y′)dy′. (3)

We will indeed take the approach of trying to write down an integral formula
like the one in (3), but there will be an interesting twist that will give us the
opportunity to look at how functional analysis methods are used in PDE theory.

Before we formally state the main area of investigation in this part of the
course we will have to define the domains D that will be of interest. Throughout
these notes all domains D will be bounded!

Definition 2.1. We say, for 0 < α ≤ 1, that a function f ∈ C1,α, at times
C1,α(Σ) if we want to specify the domain of definition Σ, if f is continuously
differentiable in its domain of definition Σ and if

‖f‖C1,α := sup
x∈Σ
|f(x)|+ sup

x∈Σ
|∇(x)|+ sup

x,y∈Σ

|∇f(x)−∇f(y)|
|x− y|α

<∞ (4)

We say that an open set D ⊂ Rn is a C1,α−domain if, for every x0 ∈
∂D, there exists a coordinate system (y1, y2, ..., yn) and an r > 0 such that
∂D ∩Br(x0) is the graph f(y′) = yn of some function f ∈ C1,α.

We say that something depends on the C1,α character of the domain if it
depends only on the dimension n, the r > 0 and the maximal C1,α−norm, as
defined in (4), of f in the definition of C1,α domain.

The main theorem we will prove over the next couple of lectures is

Theorem 2.1. Given a bounded C1,α−domain D and a continuous function
f ∈ C(∂D) then there exists a unique solution u to the Dirichlet problem

∆u = 0 in D
u = f on ∂D.

(5)

We will also prove a similar theorem for the Neumann problem (2). As it
turns out, in order to prove the existence of solutions to the Dirichlet problem
in D we will have to prove existence in the domain Dc as well and existence of
the Neumann problem in D and Dc. So we solve four problems simultaneously!

2.1 Strategy and Outline of the Lectures.

We may write the solution to the Dirichlet problem in Rn+ given by equation (3)
in the following form

u(x) =

∫
Rn−1

∂N(x, y)

∂νy
f(y′)dy′, (6)

1We will often use the notation x′ = (x1, x2, ..., xn−1), y′ = (y1, ..., yn−1) et.c. for the first
n− 1 coordinates.
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where νy = −en is the outward pointing normal and

N(x, y) =
−1

(n− 2)ωn

1

|x− y|n−2
(7)

is the Newtonian kernel2 (fundamental solution) for the Laplace equation.
Since we are interested in C1,α−domains that have a well defined normal ν

at every point of the domain we may guess (which is a good, but not exactly
right, guess) that the double layer potential defined according to

u(x) =

∫
∂D

∂N(x, y)

∂νy
f(y)dσ(y) (8)

is a solution to the Dirichlet problem (1) in an arbitrary C1,α−domain D. In

(8) the notation ∂N(x,y)
∂νy

, obviously, stands for the normal derivative of the

Newtonian kernel with respect to the normal of D and σ(y) is the area measure
of the boundary ∂D.

Considering the Neumann problem (2) one might guess that the solution
should be, the single layer potential defined according to

u(x) =

∫
∂D

N(x, y)f(y)dσ(y). (9)

At least if the guess (8) is correct for the Dirichlet problem; since then the
Neumann data of the function in (9) should be, after differentiating under the
integral sign,

∂u(x)

∂νx
=

∫
∂D

∂N(x, y)

∂νx
f(y)dσ(y). (10)

The good thing with these guesses is that we can actually calculate the
Dirichlet and Neumann data of the functions defined in (8) and (9). It is always
a very powerful tool in mathematics to be able to calculate things explicitly -
even when, as in this case, it turns out that the calculation leads to an answer
that we did not expect.

2.2 Calculation of the potentials.

We begin by showing that the functions defined by (8) and (9) are indeed har-
monic.

Proposition 2.1. Let D be a bounded domain then the functions defined by (8)
and (9) are harmonic in Rn \ ∂D.

Proof: Fix an x0 ∈ Rn\∂D then N(x, y) is C∞(B2ε(x0)) in the x variable for
every y ∈ ∂D; here we choose ε > 0 according to 3ε = dist(x0, ∂D). This means
that all x−derivatives of N(x, y) are uniformly continuous and equicontinuous

2Throughout these Notes we will assume that n ≥ 3 in order not to have to consider the
case n = 2 when the Newtonian kernel is logarithmic. The theory in R2 is very similar.
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for x ∈ Bε(x0) and y ∈ ∂D (here we use that ∂D is bounded and therefore
compact). We may therefore differentiate under the integral sign in (8) and (9)
which leads to, in the case of (8),

∆u(x0) =

∫
∂D

∂∆xN(x0, y)

∂νy
f(y)dσ(y) = 0,

since N(x, y) is harmonic for x 6= y. A similar calculation shows that u defined
by (9) is harmonic.

Next we calculate the boundary values on ∂D of the functions (8) and (9).
As it turns out the solutions does not have the boundary values that we would
hope. The calculations are also rather involved so we begin with some lemmata.

Lemma 2.1. Let Σ be a piece of C1 surface, with C1 boundary, not intersecting
the origin. We also assume that each ray through the origin only intersect Σ in
one point. Then ∫

Σ

∂N(0, y)

∂νy
dσ(y) =

α

ωn
, (11)

where α is the solid angle of the cone of rays from the origin through the surface
Σ.3

Proof: Let D be the cone consisting of all straight lines from the origin
through the points of the surface Σ and set Dε = D \ Bε(0) where ε > 0 is so
small that Bε(0) ∩ Σ = ∅.

Then, since N(0, y) is harmonic away from the origin,

0 =

∫
Dε

∆yN(0, y)dy =

∫
Σ

∂N(0, y)

∂νy
dσ(y) +

∫
∂Bε(0)∩D

∂N(0, y)

∂νy
dσ(y), (12)

where we used an integration by parts in the last inequality. Notice that the

surface integrals in (12) over ∂Dε \ (Σ ∪ ∂Bε(0)) vanishes since ∂N(0,y)
∂νy

= 0 on

that part of the boundary.
From (12) it follows that∫

Σ

∂N(0, y)

∂νy
dσ(y) = −

∫
∂Bε(0)∩D

∂N(0, y)

∂νy
dσ(y) =

=
1

ωn

∫
∂Bε(0)∩D

1

εn−1
dσ(y) =

α

ωn
,

where we have used that ∂
∂νy

= − y
|y| · ∇ in the second equality.

Next we need a lemma that controls

∂N(x, y)

∂νy
= − 1

(n− 2)ωn
νy · ∇y

1

|x− y|n−2
=

1

ωn

νy · (x− y)

|x− y|n
(13)

3The solid angle of a cone is just the area of the unit sphere intersected with the cone.
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for x, y ∈ ∂D. By shifting the coordinate system we may assume that x = 0
and ν0 = en. Furthermore, if D is a C1,α−domain (which we assume) then ∂D
consists of the graph of a C1,α function f(y′) in a small neighborhood of the
origin. In these coordinates and with this f we may write (the absolute value
of) the expression in (13) as∣∣∣∣∣ 1

ωn

(−∇′f, 1) · (y′, f(y′))√
1 + |∇′f |2

1

|y|n

∣∣∣∣∣ ≤ C |y′||∇′f(y′)|+ |f(y′)|
|y|n

≤

≤ C 1

|y′|n−1−α , (14)

for y small, say |y| ≤ c0. The constant to the right in (14) will depend on the
C1,α norm of f and also on the dimension - that is on the domain D but not
on the points x, y ∈ ∂D. Clearly (14) also holds for any |y| > c0 if the domain
is bounded, although we may have to increase the constant C for it to hold for
arbitrary y ∈ ∂D. But even if we increase C, it will still only depend on the
domain D. We have therefore shown the following lemma.

Lemma 2.2. Given a bounded C1,α−domain D there is a constant CD that
depend on the dimension and on the domain D, but not on x, y ∈ ∂D, such that∣∣∣∣∂N(x, y)

∂νy

∣∣∣∣ =

∣∣∣∣ 1

(n− 2)ωn
νy · ∇y

1

|x− y|n−2

∣∣∣∣ ≤ CD
|x− y|n−1−α.

(15)

From the estimate (15) we may derive the following estimate.

Lemma 2.3. Given a bounded C1,α−domain D there exist constants C1, c0 > 0
depending on D such that for every x0 ∈ ∂D and every r < c0 and x ∈ Br(x0)∩
D ∫

Br(x0)∩∂D

∣∣∣∣ (x− y) · νy
|x− y|n

∣∣∣∣ dσ(y) ≤ C1.

Proof: We let ε > 0 be so small that ∂D ∩ B2ε(x0) is the graph of some
function. Fix x ∈ Bε(x0)∩D then there exists some x̄ ∈ ∂D such that x lies on
the normal line of ∂D through x̄. To see this we just consider the largest ball
Bδ(x) ⊂ D, then Bδ(x)∩∂D 6= ∅ so there is an x̄ ∈ ∂Bδ(x)∩∂D and the normal
of of ∂D at x̄ will coincide with a radii of Bδ(x). We fix x̄ and δ = |x − x̄| as
above.

Let us compute, for y ∈ ∂D,

|x− y|2 = |x̄− y|2 − 2(x̄− y) · (x̄− x) + |x− x̄|2. (16)

Since x̄−x points in the direction of the normal of ∂D and ∂D is C1,α it follows
(as in (14)) that

|(x̄− y) · (x̄− x)| = δ|(x̄− y) · νx̄| ≤ Cδ|x̄− y|1+α, (17)

where we also used that |x̄− x| = δ.
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From (16) and (17) we may conclude that

|x− y|2 ≥ |x̄− y|2 + δ2 − Cδ|x̄− y|1+α ≥ 1

4
(|x̄− y|2 + δ2),

provided that |x̄− y| ≤ ε is small enough.
Next we use the triangle inequality, and that ∂D is C1,α, to estimate

|(x−y)·νy| ≤ |(x̄−y)·νy|+|(x−x̄)·νy| ≤ |(x̄−y)·νy|+δ ≤ C|x̄−y|1+α+δ. (18)

Using (17) and (18) we may deduce that

|(x− y) · νy|
|x− y|n

≤ C |x̄− y|
1+α + δ

(|x̄− y|+ δ)n

and therefore ∫
Bε(x0)∩∂D

|(x− y) · νy|
|x− y|n

dσ(y) ≤ (19)

≤
∫
Bε(x0)∩∂D

C

|x̄− y|n−1−α dσ(y) + Cδ

∫
Bε(x0)∩∂D

1

(|x̄− y|+ δ)n
dσ(y).

The first integral to the right in (19) is convergent since the exponent in
the denominator is less than n − 1. Furthermore, we may estimate the second
integral in (19) by noticing that Bε(x0) ⊂ B2ε(x̄) and therefore

Cδ

∫
Bε(x0∩∂D)

1

(|x̄− y|+ δ)n
dσ(y) ≤

≤ Cδ
∫
B2ε(x̄)∩∂D

1

(|x̄− y|+ δ)n
dσ(y) ≤ C1δ

∫ 2ε

0

dr

(r + δ)2
dr < C2, (20)

where we changed to polar coordinates in the second inequality and used that
δ < ε (since Bδ(x) ⊂ D and x ∈ Bε(x0) for an x0 ∈ ∂D). Using the last estimate
in (19) leads to

Cδ

∫
Bε(x0∩∂D)

1

(|x̄− y|+ δ)n
dσ(y) ≤ C,

where C is independent of x. This proves the lemma.

Theorem 2.2. The Dirichlet problem: Let f ∈ C(∂D) and u be defined
by the integral (8) in the domain D. Then u may be extended to a continuous
function u ∈ C(D) and

u(x) =
1

2
f(x) +

∫
∂D

∂N(x, y)

∂νy
f(y)dσ(y) (21)

on ∂D.
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The Neumann Problem: Let f ∈ C(∂D) and u be defined by the integral
(9) in the domain D. Then u may be extended to a continuous function u ∈
C(D) with well defined normal derivative:

∂u(x)

∂νx
= −1

2
f(x) +

∫
∂D

∂N(x, y)

∂νx
f(y)dσ(y) (22)

on ∂D.

Proof: We will only prove the theorem for the Dirichlet case, the Neumann
case is similar.

We split the integral, for x ∈ ∂D and z ∈ D, into∫
∂D

∂N(z, y)

∂νy
f(y)dσ(y) = f(x)

∫
∂D∩Bε(x)

(z − y) · νy
ωn|z − y|n

dσ(y)+

+

∫
∂D∩Bε(x)

(f(y)− f(x))
(z − y) · νy
ωn|z − y|n

dσ(y)+ (23)

+

∫
∂D\Bε(x)

f(y)
(z − y) · νy
ωn|z − y|n

dσ(y) = I1 + I2 + I3.

We begin by estimating I1. By Lemma 2.1 it follows that

I1 = f(x)
α(z, x, ε)

ωn
, (24)

where α(z, x, ε) is the solid angle of the cone with vertex in z and ∂D ∩ Bε(x)
as basis. Clearly,

I1 = f(x)
α(z, x, ε)

ωn
→ 1

2
f(x) (25)

as z → x and ε→ 0.
In order to estimate I2 we use Lemma 2.3

|I2| ≤ sup
y∈Bε(x)∩∂D

(|f(y)− f(x)|)

∣∣∣∣∣
∫
Bε(x)∩∂D

(z − y) · νy
|z − y|n

dσ(y)

∣∣∣∣∣ ≤ (26)

≤ C sup
y∈Bε(x)∩∂D

|f(y)− f(x)|.

Clearly, by sending z → x and ε → 0 it follows from (26) and continuity of f
that I2 → 0.

Also, sending ε→ 0 it follows, from Lemma 2.2, that

I3 →
∫
∂D

f(y)
(z − y) · νy
ωn|z − y|n

dσ(y).

The estimates of I1, I2 and I3 implies the Theorem.
A similar calculation shows that we may extend the potential to a continuous

function in Dc. The proof is very similar to the proof of Theorem 2.2 and
therefore omitted.
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Corollary 2.1. The Dirichlet problem: Let f ∈ C(∂D) and u be defined
by the integral (8) in the domain Dc. Then u may be extended to a continuous
function u ∈ C(Dc) and

u(x) =
1

2
f(x)−

∫
∂D

∂N(x, y)

∂νy
f(y)dσ(y) (27)

on ∂D, here νy is the exterior normal of D.
The Neumann Problem: Let f ∈ C(∂Dc) and u be defined by the integral

(9) in the domain Dc. Then u may be extended to a continuous function u ∈
C(Dc) with well defined normal derivative:

∂u(x)

∂νx
=

1

2
f(x) +

∫
∂D

∂N(x, y)

∂νx
f(y)dσ(y) (28)

on ∂D, here νx is the exterior normal of D.

We end this section by indicating that we may recover f if we know the
single layer potential.

Corollary 2.2. Let u be defined by (9) and let ν+ be the outer normal of Ωc

and ν− be the outer normal of Ω then

f(x) =
∂u

∂ν+
− ∂u

∂ν−
on ∂Ω.

2.3 The Strategy to show Existence of Solutions.

It follows directly from Theorem 2.2 and Proposition 2.1 that if we can find a
solution φ to the integral equation

f(x) =
1

2
φ(x) +

∫
∂D

∂N(x, y)

∂νy
φ(y′)dσ(y)

then the function

u(x) =

∫
∂D

∂N(x, y)

∂νy
φ(y)dσ(y)

will be harmonic by Proposition 2.1 and, by Theorem 2.2, satisfy the Dirichlet
boundary values u(x) = f(x) on ∂D. A similar reasoning reduces the Neumann
problem to finding a solution φ to the integral equation

f(x) = −1

2
φ(x) +

∫
∂D

∂N(x, y)

∂νx
φ(y′)dσ(y).

Therefore we will define the kernels

K(x, y) =
∂N(x, y)

∂νy
(29)
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and

K∗(x, y) =
∂N(x, y)

∂νx
(30)

and the operators(
1

2
I + T

)
φ(x) =

1

2
φ(x) +

∫
∂D

K(x, y)φ(y)dσ(y) (31)

and (
−1

2
I + T ∗

)
φ(x) = −1

2
φ(x) +

∫
∂D

K∗(x, y)φ(y)dσ(y), (32)

where I is the identity operator.
Knowing that solving the Dirichlet problem involves finding a φ such that

1
2φ+ Tφ = f and solving the Neumann problem involves finding a φ such that
− 1

2φ + T ∗φ = f our main goal will be to investigate the operators T and T ∗.
In particular, if we want to show that the Dirichlet (or Neumann) problem is
solvable for every f ∈ C(∂D) it is enough to show that 1

2I + T (and − 1
2I + T ∗

respectively) is surjective onto C(∂D). We will do this in several steps.

Step 1: In order to define the operators 1
2I + T and − 1

2I + T ∗ we need
to agree on a domain of definition. The operators 1

2I + T and − 1
2I + T ∗ will

certainly not be surjective onto the set of continuous functions if we restrict them
to a to small domain of definition. In order to properly investigate the domains
of definition we need to introduce Banach and Hilbert spaces. The Banach and
Hilbert spaces are vector spaces of functions that has good abstract properties
that will allow us to analyze not only the spaces but also operators defined on
them.

Step 2: Next we will investigate a certain class of operators called compact
operators. Compact operators plays an important role in functional analysis.
The aim is to develop Riesz-Shauder theory for operators (the Riesz-Schauder
Theory is sometimes called Fredholm theory and we will use both names inter-
changeably). This is a powerful tool to investigate the relationship between the
range and null space of operators and their adjoints. But we are getting ahead
of ourselves now and will have to wait before we define those concepts.

Step 3: With the Riesz-Shauder Theory at hand we will show that the
operators T and T ∗ falls under that theory and using that theory we will show
that there is a solution to the Dirichlet problem for arbitrary boundary data
f ∈ C(∂D) and that, under a natural condition, the Neumann problem also
have a solution.

2.4 Exercises

1. In this exercise we will motivate going from an integral on ∂D ∩ B′ε(2ε)
in (20). To that end let Σ = {(x′, f(x′)); |x′| ≤ 1} be the graph of the
function continuously differentiable function f(x′) with bounded gradient.
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Show that for any continuous function g ∈ C(Σ) there exist a constant Cf
such that ∫

Σ

|g(x)|dσ(x) ≤ Cf
∫
B′1(0)

|g(x′, f(x′))|dx′,

where the constant C only depend on supx′∈B′1(0) |∇f(x′)| but not on g.4

2. In Definition 2.1 we said that the C1,α−character of D depends on the
least r > 0 in the definition of C1,α−domain. Prove that for any bounded
C1,α−domain we may always cover ∂D by a finite number of balls Br(xj)
for xj ∈ ∂D with r independent of xj .

3 Banach and Hilbert Spaces.

In this section we will define Banach and Hilbert spaces and derive some of
the properties of those spaces that we need. It is obvious that the domain
of definition of an operator will determine its range. But it is a more subtle
relationship between the structural properties of the domain of definition and
the properties of the operator. One of the basic structures of a space is the
Banach space.

3.1 Definition of a Banach Space.

We need to define several simple concepts in order to define a Banach space.
First of all we need to define a linear space.

Definition 3.1. We say that a set A is a linear space over R if

1. A is a commutative group. That is there is an operation “+′′ defined on
A×A 7→ A such that

(a) For any u, v, w ∈ A the following holds: u + v = v + u (addition is
commutative), (u+ v) + w = u+ (v + w) (addition is associative).

(b) There exists an element 0 ∈ A such that for all u ∈ A we have
u+ 0 = u.

(c) For every u ∈ A there exists an element v ∈ A such that u + v = 0,
we usually denote v = −u.

2. There is an operation (multiplication) defined on R×A 7→ A such that

(a) For all a, b ∈ R and u, v ∈ A we have a · (u + v) = a · u + a · v and
(a+ b) · u = a · u+ b · u.

(b) For all a, b ∈ R and u ∈ A we have (ab) · u = a · (b · u).

4Here we use the standard mathematical practise to call Cf a constant even though it will
be a function of supx′∈B′1(0)

|∇f(x′)|. The important thing is that for a given function f we

can use the same constant for all functions g ∈ C(Σ).
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Examples: 1: The most obvious example is if A = Rn and “+′′ is normal
vector addition and “·′′ is normal multiplication by a real number.

2: Another example that will be much more important to us is if A is a
set of functions, say the set of functions with two continuous derivatives on Ω.
Clearly all the above assumptions are satisfied for twice continuously differen-
tiable functions if we interpret “+′′ and “·′′ as the normal operations.

Many linear spaces satisfies another important structure: that we can mea-
sure distances. Distances allow us to talk about convergence and to do analysis.
We will only be interested in spaces where we have a norm.5

Definition 3.2. A norm ‖ · ‖ on a linear space A is a function from A 7→ R
such that the following axioms are satisfied:

1. For any u ∈ A we have ‖u‖ ≥ 0 with equality if and only if u = 0 (The
Positivity Axiom).

2. For any u, v ∈ A we have ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (The Triangle Inequality).

3. For any u ∈ A and a ∈ A we have ‖a · u‖ = |a|‖u‖ (The Homogeneity
Axiom).

If a linear space A has a norm we say that A is a normed linear space, or just
a normed space.

At times we will use ‖u‖A to indicate that we are using the A−norm.6

Examples: 1: The linear space Rn is a normed space with norm ‖(u1, ..., un)‖ =
(u2

1 + u2
2 + ...+ u2

n)1/2.
2: The set of continuous functions on [0, 1] is a normed space under the

norm

‖u‖ =

∫ 1

0

|u(x)|dx.

3: If we define

‖u‖C2(Ω) = sup
x∈Ω
|u(x)|+ sup

x∈Ω
|∇u(x)|+ sup

x∈Ω
|D2u(x)|, (33)

Then the set of two times continuously differentiable functions u(x) on Ω for
which ‖u‖C2(Ω) is finite forms a normed space: C2(Ω). Notice that 1

x /∈ C2(0, 1)

even though 1
x is continuous with continuous derivatives on (0, 1).

The final property that we need in our function-spaces is completeness.

Definition 3.3. Let A be a normed linear space. Then we say that A is complete
if every Cauchy sequence uj ∈ A converges to an element u ∈ A.

5There is a slight difference between a norm and a distance function (metric). Every norm
‖ · ‖ defines a distance according to d(x, y) = ‖x− y‖. But not every distance function defines
a norm. The norm can be viewed as a distance that respects the linear space structure.

6This is important when we are working with several spaces simultaneously, in particular
if we are considering elements that lay in different normed spaces.
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Remember that we say that uj ∈ A is a Cauchy sequence if there for every
ε > 0 exists a Nε such that ‖uj − uk‖ < ε for all j, k > Nε. So if A is complete
and uj is a Cauchy sequence in A then there should exist an element u0 ∈ A
such that limj→∞ ‖uj − u0‖ = 0.

Examples: 1: It is an easy consequence of the the Bolzano-Weierstrass
theorem that Rn is complete. In particular, every Cauchy sequence is bounded.
Therefore the Bolzano-Weierstrass theorem implies that it has a convergent sub-
sequence. That the Cauchy condition implies that the entire sequence converges
to the same limit is easy to see.

2: The space of continuous functions on [0, 1] with norm ‖u‖ =
∫ 1

0
|u(x)|dx

is not complete. For instance if

uj(x) =


0 if 0 ≤ x ≤ 1

2 −
1
j

j
2

(
x−

(
1
2 −

1
j

))
if 1

2 −
1
j < x < 1

2 + 1
j

1 if 1
2 + 1

j ≤ x ≤ 1

then uj is continuous and forms a Cauchy sequence. However, the pointwise
limit is clearly

u0(x) =

 0 if 0 ≤ x < 1
2

1
2 if x = 1

2
1 if 1

2 < x ≤ 1.

But u0 is not continuous and therefore not in the space of continuous functions
on [0, 1]. Therefore that space is not complete.

However, if we consider the space C([0, 1]) of continuous functions with norm

‖u‖C([0,1]) = sup
x∈[0,1]

|u(x)|

then we get a complete space. This since the limit limj→∞ uj(x) is uniform and
continuity is preserved under uniform limits.

It is important to notice that the properties of the space is dependent on
the norm. Continuous functions with an integral norm are not complete, but
continuous spaces with a supremum norm are complete.

3: The space C2(Ω) with norm defined by the supremum as in (33) is also
a complete space.

Clearly, in order to do analysis on a linear space it is desirable that the linear
space is complete. We therefore make the following definition.

Definition 3.4. We call a complete normed linear space is a Banach space.

3.2 The Definition of a Hilbert Space.

Another structural property that makes Rn easy to work with is that we may
measure angles between vectors a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) by
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means of the formula

arccos

(
a · b
|a||b|

)
.

The important thing here is that Rn has a scalar product.
For some Banach spaces it is possible to define a scalar product that allows

us to define orthogonality between elements of the Banach space. But before
we investigate which spaces that have an inner product we need to axiomatize
the properties that we expect an inner product to have.

Definition 3.5. Let H be a Banach space. We say that a function (·, ·) :
H×H 7→ R is an inner product if

1. (x, x) ≥ 0 for all x ∈ H and (x, x) = 0 if and only if x = 0.

2. (x, y) = (y, x) for all x, y ∈ H

3.
(αx+ βx′, y) = α(x, y) + β(x′, y)

for all x, x′, y ∈ H and α, β ∈ R.

Example and Definition of l2: Let l2 be the space of all sequences of real
numbers a = (a1, a2, a3, ...), ak ∈ R such that

‖a‖ =

( ∞∑
k=1

a2
k

)1/2

<∞.

If a = (a1, a2, ...) and b = (b1, b2, ...) then we may define an inner product on l2

according to

(a, b) =

∞∑
k=1

akbk.

Example and Definition of L2: If we define the space L2([0, 1]) to consist

of all (Lebesgue) integrable functions on [0, 1] such that
∫ 1

0
|f(x)|2dx <∞. Then

the following defines an inner product on L2([0, 1])

(f, g) =

∫ 1

0

f(x)g(x)dx.

More generally we may define L2(D) to be the space of all functions f(x)7

defined on D such that

‖f‖L2(D) =

(∫
D

|f(x)|2dx
)1/2

<∞. (34)

7Lebesgue measurable functions to be exact.
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Definition 3.6. A Hilbert space H is a Banach space with an inner product
defined such that

‖x‖ = |(x, x)|1/2.

The examples above of l2 and L2([0, 1]) are Hilbert spaces.8

3.3 Schauder bases for Banach and Hilbert spaces.

To show that every Banach space has a basis we need to resort to Zorn’s Lemma.
Zorn’s Lemma is the consequence of the Axiom of Choice and transfinite induc-
tion. The proof is usually given in courses on the foundations of mathematics
and we will not give it here. Before we state Zorn’s Lemma we need a definition.

Definition 3.7. We say that a set P is partially ordered if there is a binary
relation ≤ defined on a subset of pairs of P so that ≤ satisfies9

1. if a ≤ b and b ≤ c then a ≤ c

2. if a ≤ b and b ≤ a then a = b

3. a ≤ a for all a ∈ P .

Lemma 3.1. [Zorn’s Lemma] Let P be a partially ordered set under the order
relation ≤ and assume that for every chain

p1 ≤ p2 ≤ p3 ≤ ...

there exists an element p ∈ P such that pj ≤ p for all pj in the chain. Then
there exists a maximal element pmax ∈ p such that pmax ≤ p0 if and only if
p0 = pmax.

We can now prove that every Banach space has a Basis.

Proposition 3.1. Every Banach space B has a basis. That is there exists a set
of basis vectors bα ∈ B such that every element b ∈ B can be written, for some
N ∈ N , in a unique way as

b =

N∑
j=1

ajbαj ,

where bαj are basis vectors and aj ∈ R.

8One of the most important reasons to introduce the Lebesgue integral is that L2(D)
becomes complete if we interpret the integral in (34) in the Lebesgue sense. We will not use
any specific properties of the Lebesgue integral in this course except that L2(D) is complete.
It is therefore not important that you know exactly what the Lebesgue integral is in the rest
of the course. Just think of the Riemann integral and assume that L2(D) is complete.

9Notice that for a partial order there might exist two elements x, y ∈ P such that neither
x ≤ y nor y ≤ x holds. For instance if P consists of all sequences of real numbers than we
may define the partial order a ≤ b if ak ≤ bk for all k. With this order, if a = (1, 0, 0...) and
b = (0, 1, 0, ...) then neither a ≤ b nor b ≤ a.
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Proof: Let P be the set of all sub-sets of linearly independent vectors of B.
Then P is a partially ordered set under the ordering p ≤ q if p ⊂ q for any
sets p, q ∈ P . By Zorn’s Lemma it follows that there is a set pmax ∈ P . Since
pmax ∈ P it is linearly independent. But it must also span B since if it does
not, say b0 /∈ Span(pmax), then pmax ∪ {b0} ∈ P and pmax ≤ pmax ∪ {b0} which
contradicts the maximality of pmax. This finishes the proof.

3.4 Linear operators on Banach Spaces.

Since we intend to view the Dirichlet and Neumann problems as mappings from
the boundary data to the solutions of the problems it is important to develop
some theory for linear mappings between Banach and Hilbert spaces. We begin
with a definition.

Definition 3.8. We say that an operator T : B1 7→ B2 between two Banach
spaces B1 and B2 is linear if

T (αx+ βy) = αTx+ βTy

for all x, y ∈ B1 and α, β ∈ R.
We say that a linear operator T : B1 7→ B2 is bounded if there exist a constant

C0 such that
‖Tx‖B2

≤ C0‖x‖B1
(35)

for all x ∈ B1.
We also define the operator norm of a bounded linear operator T : B1 7→ B2

by

‖T‖ = sup
x∈B1

‖Tx‖B2

‖x‖B1

,

that is ‖T‖ is the least constant C0 such that (35) holds for all x ∈ B1.

Linear operators have nice properties, for instance boundedness is equivalent
to continuity.

Proposition 3.2. A linear operator T : B1 7→ B2 between two Banach spaces
is continuous if and only if it is bounded.

Proof: If T : B1 7→ B2 is bounded and xj ∈ B1 converges to x0 then xj forms
a Cauchy sequence. Since

‖Txj − Txk‖B2
≤ C0‖xj − xk‖

and xj is Cauchy it follows that Txj is a Cauchy sequence in B2 and therefore
Txj → y0 for some y0 ∈ B2, here we use that B2 is complete (as is every Banach
space) by assumption. We need to show that Tx0 = y0. This follows from

‖Tx0−y0‖B2 ≤ ‖Txj−Tx0‖B2+‖Txj−y0‖B2 ≤ C‖xj−x0‖B1+‖Txj−y0‖B2 → 0,

since xj → x0 in B1 and Txj → y0 in B2. It follows that every bounded operator
is continuous.
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To prove that continuous operators are bounded we show that if T is not
bounded then T is not continuous. If T is not bounded then there exists a
sequence xj such that ‖xj‖B1

≤ 1
j but ‖Txj‖B2

= 1. Since T0 = 0 by linearity

and ‖Txj‖B2 = 1 it follows that Txj 6→ T0 = 0 even though xj → 0. It follows
that T is not continuous.

We continue by showing a first invertability result for linear mappings.

Proposition 3.3. let T : B 7→ B be a bounded linear mapping from the Banach-
space B to itself. Assume furthermore that ‖T‖ = λ < 1. Then I − T , where I
is the identity operator, is invertable and

(I − T )−1 =

∞∑
k=0

T k, (36)

where we interpret T 0 = I.

Proof: Fix K > 1. Then

(I − T )

K∑
k=0

T kx = (I − T )(I + T + T 2 + ...+ TK)x = x− TK+1x. (37)

But since ‖T‖ = λ < 1

‖TK+1x‖ ≤ λ‖TKx‖ ≤ λ2‖TK−1x‖ ≤ ... ≤ λK+1‖x‖. (38)

Since λ < 1 it follows that
∑K
k=0 T

kx is a Cauchy sequence in K and, since B
is complete, it converges.

From (37) and (38) it follows that

lim
K→∞

(I − T )

K∑
k=0

T kx− x = lim
K→∞

T kx = 0,

therefore
∑∞
k=0 T

k is indeed the inverse of I − T .

3.5 Riesz Representation Theorem and Duals in Hilbert
Spaces.

In this section we will gather some information of dual operators and prove an
important theorem called the Riesz representation Theorem.

Definition 3.9. Let T : H 7→ H be a linear operator on a Hilbert space H.
Then we say that an operator T ∗ is the adjoint of T if

(Tx, y) = (x, T ∗y)

for all x, y ∈ H.
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Theorem 3.1. [Riesz Representation Theorem] Let H be a Hilbert space
and F : H 7→ R be a bounded linear operator. Then there exists a unique element
f ∈ H such that

F (x) = (x, f).

Proof: If F (x) = 0 for all x ∈ H then f = 0 satisfies the properties of the
theorem. So let us assume that F 6= 0. Then there exist a vector z /∈ Ker(F ),
we may even choose z orthogonal to Ker(F ).

Then, since F is linear,

F

(
x− F (x)

F (z)
z

)
= F (x)− F (x)

F (z)
F (z) = 0,

that is x− F (x)
F (z) z ∈ Ker(F ).

Since z is orthogonal to the kernel of K it follows that(
x− F (x)

F (z)
z, z

)
= 0⇒ (x, z) =

F (x)

F (z)
‖z‖2.

That is

F (x) =

(
x,
F (z)

‖z‖2
z

)
.

This implies the existence of an f = F (z)
‖z‖2 z as in the conclusion of the theorem.

To show that the element f is unique we assume that there exists two f1, f2 ∈
H such that F (x) = (x, f1) = (x, f2). Then (x, f1 − f2) = 0 for all x ∈ H which
in particular implies, with x = f1 − f2, that

0 = (f1 − f2, f1 − f2) = ‖f1 − f2‖2,

that is f1 = f2.

Proposition 3.4. The operators T and T ∗ defined in (31) and (32) are adjoint
operators on L2(∂D) (which justifies our notation).

Proof: Pick f, g ∈ L2(∂D) then

(Tf, g) =

∫
∂D

(Tf(x))g(x)dσ(x) =

∫
∂D

[∫
∂D

∂N(x, y)

∂νy
f(y)dσ(y)

]
g(x)dσ(x).

Applying Fubini’s Theorem (change of order of integration) to this implies that

(Tf, g) =

∫
∂D

[∫
∂D

∂N(x, y)

∂νy
g(x)dσ(x)

]
f(y)dσ(y). (39)

We need to show that the integral in the square brackets in (39) is equal to

T ∗g(y) =

∫
∂D

∂N(y, x)

∂νy
g(x)dσ(x).
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This follows since
∂N(x, y)

∂νy
= − νy

ωn
· x− y
|x− y|n

which is the same as
∂N(y, x)

∂νy
= − νy

ωn
· x− y
|x− y|n

.

We may therefore continue (39)

(Tf, g) =

∫
∂D

[∫
∂D

∂N(x, y)

∂νy
g(x)dσ(x)

]
f(y)dσ(y) =

=

∫
∂D

(T ∗g(y))f(y)dσ(y) = (f, T ∗g).

Since f, g ∈ L2(∂D) where arbitrary it follows that T ∗ is the adjoint of T .

3.6 Exercises

1. State and prove the Riesz Representation Theorem in Rn.

2. Find the dual of the following linear operators

(a) A : Rn 7→ Rn when A is an n× n matrix.

(b) L : L2((0, 1)) 7→ L2(0, 1) when L is given by Lf(x) =
∫ x

0
f(t)dt.

3. Later we will use that L2(∂D) has a countable Schauder basis. Try to
convince yourself that any function f ∈ L2(∂D) may be written f(x) =∑∞
k=1 akχΩk(x) where ak ∈ R and

χΩk(x) =

{
1 if x ∈ Ωk
0 if x /∈ Ωk,

and the sets Ωk are the balls Brk(xk) where xk runs over all x ∈ Qn
and rk ∈ Q and rk > 0. In particular, the dimension of the vector space
L2(∂D) is at most countable.

4. Prove that C(D) is a Banach space with the norm ‖f‖ = supx∈D |f(x)|.
Prove that C1,α(D) is a Banach space.

5. Prove the triangle inequality in l2:

‖a+ b‖l2 ≤ ‖a‖l2 + ‖b‖l2 .

6. Prove that if TK : L2(D) 7→ L2(D) is given by

TKf(x) =

∫
D

K(x, y)f(y)dy

then T ∗K(x,y) = TK(y,x).
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7. Let L(B,B) be the space of all bounded linear functionals T : B 7→ B.
prove that L(B,B) is a Banach space under the norm

‖T‖ = sup
x∈B

‖Tx‖
‖x‖

.

8. Let ‖ · ‖B be a norm on a Banach space B. Show that the function

d(x, y) =
‖x− y‖

1 + ‖x− y‖

defines a metric on B.10 Is d(x, 0) a norm on B?

9. Let (x, y) be an inner product on H. Prove that ‖x‖ =
√

(x, x) satisfies
the assumptions for being a norm on H.

4 Linear Operators and Riesz-Schauder Theory.

Given a Banach (or Hilbert) space we are interested in mappings T : B 7→ B.
In particular to show when (if) an operator T is surjective. Let us begin with
some examples to get a feel for the kind of operators that appears in analysis.

Example 1: Let B = C([0, 1]) and define T : B 7→ B according to

Tφ(x) =

∫ x

0

φ(t)dt.

Then clearly T is defined on B (since every continuous function is integrable).
But the range of T consists of the subspace of C1([0, 1]) consisting of functions
that vanish at the origin. It follows that T is not surjective.

Example 2: Let B = C2(B1(0)) and define T : B 7→ B to be the operator
that Tf = u where u solves

∆u(x) = f(x) in B1(0)
u(x) = 0 on ∂B1(0).

The operator is well defined since the Dirichlet problem is solvable in the unit
ball.

Example 3: Let H = L2(R) and let F : H 7→ H be the Fourier transform

Ff(ω) =

∫ ∞
−∞

e−iωxf(x)dx.

By the Fourier inversion theorem F is invertable and therefore surjective.

10A metric is a function d : B × B 7→ R such that i) d(x, y) ≥ 1 with equality iff x = y, ii)
d(x, y) = d(y, x) and iii) d(x, z) ≤ d(x, y) + d(x, z).
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Example 4: Let H = l2 where l2 is the space of all sequences a =
(a1, a2, a3, ...), ak ∈ R, with the norm

‖a‖l2 =

( ∞∑
k=1

a2
k

)1/2

.

The space l2 is a Hilbert space with inner product (a, b) =
∑∞
k=1 akbk. We may,

for every bounded sequence t1, t2, ... ∈ R define the operator T : l2 7→ l2 by
Ta = (t1a1, t2a2, t3a3, ...). Then T is a bounded operator T : l2 7→ l2 and if
there exists constants 0 < c ≤ C such that c ≤ |tk| ≤ C then T is invertable
and therefore surjective.

Let us consider the operators 1
2I+T and − 1

2I+T ∗ defined in (31) and (32).
We will consider the operators to be defined on L2(∂D); that is T : L2(∂D) 7→
L2(∂D) and T ∗ : L2(∂D) 7→ L2(∂D). Both operators are of the form11 1

2I + S
where I is the identity mapping. Therefore we will consider T and T ∗ to be
a small perturbations of (half) the identity operator. The question is in what
sense the operator S is small: we will show that it is small in the sense that it
is compact.

Definition 4.1. We say that an operator between a Banach spaces B1 and B2,
T : B1 7→ B2, is compact if for every bounded sequence fj ∈ B1 the sequence
Tfj ∈ B2 has a convergent subsequence.

We need to develop some theory for compact operator in order to show that
T and T ∗ are compact. We begin by showing that compact operators are closed
under convergence in norm.

Proposition 4.1. Let H be a Hilbert space and T : H 7→ H. Assume further-
more that there exists a sequence of compact linear operators Tk : H 7→ H such
that ‖T − Tk‖ → 0 then T is also compact.

Proof: We have to show that given a bounded sequence xj ∈ H then for every
ε > 0 there exists a subsequence xlj such that if j,m > Jε then ‖Txlj−Txlm‖ <
ε. For that we assume that we have a sequence xj , such that ‖xj‖ ≤ M , and
pick an ε > 0. Since Tk → T there exists a Kε such that

‖T − Tk‖ ≤
ε

3M
for all k > Kε. (40)

Next we fix a k0 > Kε. Since Tk0 is compact Tk0xj has a convergent, and
therefore Cauchy, sub-sequence Tk0xlj . It follows that there exists an Jε such
that if j,m > Jε then

‖Tk0xlj − Tk0xlm‖ <
ε

3
for all j,m > Jε. (41)

11Possibly after an inconsequential multiplication by −1.
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It follows that for j,m > Jε

‖Txl,j − Txlm‖ ≤ ‖Txlj − Tk0xlj‖+ ‖Txlm − Tk0xlm‖+ ‖Tk0xlj − Tk0xlm‖ <

< ‖T − Tk0‖‖xlj‖+ ‖T − Tk0‖‖xlm‖+
ε

3
<
ε‖xlj‖
3M

+
ε‖xlm‖

3M
+
ε

3
≤ ε,

where we used (41) and the definition of operator norm in the first strict in-
equality, (40) together with k0 > K in the second strict inequality and that
‖xj‖ ≤M in the final inequality.

Example 5: Any bounded operator T : B 7→ B such that Range(T ) is
finite dimensional is compact. This follows since if xj ∈ B is bounded then
Txj is bounded (since T is a bounded operator). This means that Txj is a
bounded sequence in a finite dimensional vector space and we may use the
Bolzano-Weierstrass Theorem in finite dimensional spaces to find a convergent
sub-sequence.

Definition 4.2. We define the rank of an operator T : B1 7→ B2 between two
Banach spaces B1 and B2 to be the dimension of the range of T :

Rank(T ) = Dim(Range(T )).

Corollary 4.1. If Tk → T and each Tk is has finite rank then T is compact.

Proof: This follows from Proposition 4.1 since all operators Tk has finite
rank and are therefore compact.

Proposition 4.2. An operator T : H 7→ H from a Hilbert space to itself is
compact if and only if T ∗ is compact.

Proof: Since (T ∗)∗ = T ; that is(
(T ∗)∗x, y

)
=
(
x, T ∗y

)
=
(
Tx, y

)
for all x, y ∈ H, it is enough to show that if T is compact so is T ∗.

We begin by showing that if xn ∈ H is bounded and T is compact then
T ∗xn is bounded; that is if T is compact then T ∗ is bounded. Let xn ∈ H be a
sequence such that ‖xn‖ ≤M for some M ∈ R then

‖T ∗xn‖2 = (T ∗xn, T
∗xn) = (xn, T (T ∗xn)) ≤ (42)

≤ ‖xn‖‖T (T ∗xn)‖ ≤M‖T‖‖T ∗xn‖.

Dividing both sides of (42) by ‖T ∗xn‖ implies that ‖T ∗‖ ≤ ‖T‖ so T ∗ is
bounded.

Next we need to show that T ∗xn has a convergent subsequence. It is enough,
by the completeness of Banach spaces, to show that T ∗xn contains a Cauchy
sequence. First we notice that since T is compact by assumption and T ∗xn is
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bounded the sequence T (T ∗xn) has a convergent sub-sequence T (T ∗xnk). Now
we may calculate, as in (42),

‖T ∗xnk − T ∗xnl‖2 =
(
xnk − xnl , T (T ∗xnk)− T (T ∗xnl)

)
≤ (43)

≤ 2M‖T (T ∗(xnk)− T ∗(xnl)‖ → 0,

since T (T ∗xnk) is convergent. But (43) implies that T ∗xnk is a Cuahcy sequence.

Definition 4.3. We say that a function K : Σ × Σ 7→ R is a Hilbert-Schmidt
kernel if

‖K‖L2(Σ×Σ) =

(∫
Σ

∫
Σ

|K(x, y)|2dσ(x)dσ(y)

)1/2

<∞.

Given a Hilbert-Schmidt kernel K we say that the operator TK : L2(Σ) 7→
L2(Σ) defined by

TKf =

∫
Σ

K(x, y)f(y)dσ(y)

is a Hilbert-Schmidt operator.

Theorem 4.1. If TK is a Hilbert-Schmidt operator then TK is compact and

‖TK‖ ≤ ‖K‖L2(Σ×Σ).

Proof: We use the Hölder inequality to estimate12

|TKf(x)| ≤
∫

Σ

|K(x, y)||f(y)|dσ(y) ≤
(∫

Σ

|K(x, y)|2dσ(y)

)1/2

‖f‖L2(Σ). (44)

If we square (44) and integrate with respect to x we arrive at

‖TKf‖2L2(Σ) ≤ ‖K‖
2
L2(Σ×Σ)‖f‖

2
L2(Σ). (45)

It follows that TK is bounded form L2(Σ) to L2(Σ). By Corollary 4.1 the proof
is complete if we can approximate TK by a sequence of operators Tj with finite
dimensional range.

In order to do this we choose an orthonormal basis13 ψk(x) of L2(Σ). It
follows that we may write

K(x, y) =

∞∑
k,l=1

aklψk(x)ψl(y).

12Technically this estimate is only valid for almost every x since
∫
|K(x, y)|2dy might diverge

for some x - but only for a set of measure zero.
13Here we actually use that we may choose a countable basis. We will not prove that the

basis is countable in this course. However, see Exercise 3 from the previous section.
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By orthonormality of the basis ψk

‖K(x, y)‖2L2(Σ×Σ) =

=

∫
Σ

∫
Σ

 ∞∑
k,l=1

aklψk(x)ψl(y)

 ∞∑
α,β=1

aαβψα(x)ψβ(y)

 dσ(x)dσ(y) =

=

∞∑
k,l=1

|akl|2.

We may therefore approximate TK by the integral operator Tj where Tj is
defined by

Tjf(x) =

∫
Σ

j∑
k,l=1

aklψk(x)ψl(y)f(y)dσ(y).

Clearly the range of Tj , which is spanned by ψ1, ψ2, ..., ψj is finite dimensional.
Furthermore, by the estimate (45) with TK − Tj in place of TK ,

‖TK − Tj‖ =

∥∥∥∥∥∥K −
j∑

k,l=1

aklψk(x)ψl(y)

∥∥∥∥∥∥
L2(Σ×Σ)

=

 ∞∑
k,l>j

|akl|2
1/2

→ 0

as j → ∞ since the series
∑∞
k,l=1 |akl|2 is convergent. Therefore Tj → TK and

each Tj has finite dimensional range. It follows, from Corollary 4.1, that TK is
compact.

In order to show that T and T ∗ are compact operators we will need the
following lemma.

Lemma 4.1. Let K(x, y) be a kernel that satisfies

sup
x∈Σ

∫
Σ

|K(x, y)|dσ(y) ≤ C and sup
y∈Σ

∫
Σ

|K(x, y)|dσ(x) ≤ C.

Then if TK is the operator defined, on L2(Σ), according to

TKf(x) =

∫
Σ

K(x, y)f(y)dσ(y)

then
‖TKf‖L2(Σ) ≤ C‖f‖L2(Σ).

Proof: Notice that by Hölder’s inequality

|Tf(x)| ≤
(∫

Σ

|K(x, y)|dσ(y)

)1/2(∫
Σ

|K(x, y)||f(y)|2dσ(y)

)1/2

≤

≤ C1/2

(∫
Σ

|K(x, y)||f(y)|2dσ(y)

)1/2

.
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Squaring both sides and integrating (in x) over Σ leads to∫
Σ

|Tf(x)|2dσ(x) ≤ C
∫

Σ

∫
Σ

|K(x, y)||f(y)|2σ(y)dσ(x) =

= C

∫
Σ

[∫
Σ

|K(x, y)||f(y)|2σ(x)

]
dσ(y) =

= C

∫
Σ

[∫
Σ

|K(x, y)|dσ(x)

]
|f(y)|2dσ(y) ≤

≤ C2

∫
Σ

|f(y)|2dσ(y) = C2‖f‖2L2(Σ).

Taking the square root of both sides in the last inequality proves the lemma.

Theorem 4.2. The operators T and T ∗ defined by (31) and (32) are compact.

Proof: We approximate the operator T by Tε where Tε is defined by

Tεf(x) =

∫
∂D

Kε(x, y)f(y)dσ(y),

and
Kε(x, y) = ψε(x, y)K(x, y)

where ψε ∈ C∞, 0 ≤ ψε ≤ 1, ψε(x, y) = 1 when |x−y| ≥ ε and ψε(x, y) = 0 when
|x − y| ≤ ε/2. Then Kε is a bounded function and therefore Kε ∈ L2(Σ × Σ)
(here we also use that D is a bounded C1,α−domain). It follows from Definition
4.3 that Tε is a Hilbert-Schmidt operator and therefore, by Theorem 4.1. If we
can show that Tε → T then it follows, from Proposition 4.1, that T is compact.

To see that Tε → T we will use Lemma 4.1. Therefore we estimate, for small
ε > 0,

sup
x

∫
∂D

|K(x, y)−Kε(x, y)| dσ(y) = sup
x

∫
∂D

(1− ψε(x, y))|K(x, y)|dσ(y) ≤

≤ C sup
x

∫
Bε(x)∩∂D

1

|x− y|n−1−α dσ(y) ≤ Cεα,

where the constant C only depend on the dimension and the C1,α properties of
∂D. A similar estimate also holds for supy. It follows, from Lemma 4.1, that

‖(T − Tε)f‖L2 ≤ Cεα‖f‖L2 ,

and therefore that Tε → T . Since each Tε is compact it follows by Proposition
4.1 that T is compact.

That T ∗ is compact follows from Proposition 3.4 and Proposition 4.2.
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4.1 Riesz-Schauder Theory.

We begin this sub-section with a simple lemma.

Lemma 4.2. Let B be a Banach space and M ⊂ B be a closed linear subspace
(not equal to B). Then for every t < 1 there exists an xt ∈ B such that ‖xt‖B = 1
and dist(xt,M) ≥ t.

Proof: Let x ∈ B \M . Since M is closed there is a well defined distance
dist(x,M) = d > 0. Now we may pick an yt ∈M such that

‖x− yt‖ ≤
d

t
. (46)

With this choice of yt the element xt = x−yt
‖x−yt‖ satisfies ‖xt‖ = 1 and for any

y ∈M

‖xt − y‖ =

∥∥xt − yt − ‖yt − x‖y∥∥
‖yt − x‖

≥ d

‖yt − x‖
≥ t,

where we used the definition of xt, then the definition of the distance (and that
yt − cy ∈M) and finally (46).

We are now ready to prove the main theorem of this section.

Theorem 4.3. [The Fredholm alternative in Banach Spaces.] Assume
that T : B 7→ B is a compact linear mapping on the Banach space B. Then

1. either Tx = x has a nontrivial solution14; that is the nulls pace N (T−I) 6=
{0}

2. or for each y ∈ B the equation

x− Tx = y

has a unique solution x ∈ B and the operator (I − T )−1 : B 7→ B is
bounded.

Proof: Since the proof is long we will do it in five shorter steps.

Step 1: Let S = I − T and N = {x ∈ B; Sx = 0} be the null-space of S.
Then there exists aconstant C0 such that

dist(x,N ) ≤ C0‖Sx‖ for all x ∈ B.

Proof of Step 1: We will argue by contradiction and assume that there is a
sequence xk ∈ B such that

dist(xk,N ) ≥ k‖Sxk‖. (47)

Since S is linear there is no loss of generality to assume that ‖Sxk‖ = 1.

14A nontrivial solutions is a solution x 6= 0.
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We will need to assure that xk does not converge to infinity in order to use
the compactness of T . Therefore we define

zk =
xk − yk
‖xk − yk‖

,

where yk ∈ N is chosen so that

dist(xk,N ) ≤ ‖xk − yk‖ ≤ 2dist(xk,N ). (48)

By construction ‖zk‖ = 1 and form (47) and linearity of S we may conclude
that

‖Szk‖ ≤
1

k
→ 0. (49)

Now we use that T is compact which implies that Tzk → y0 ∈ B for some
y0 (at least for a sub-sequence of zk), it follows from (49) that

0← Szk = (I − T )zk = zk − Tzk ⇒ zk → y0.

By (49) and continuity of S it follows that y0 ∈ N . But y0 /∈ N since zk was
constructed so that dist(zk,N ) ≥ 1/2:

dist(zk,N ) = inf
y∈N
‖zk − y‖ = inf

y∈N

∥∥∥∥ xk − yk
‖xk − yk‖

− y
∥∥∥∥ =

= inf
y∈N

∥∥xk − yk − ‖xk − yk‖y∥∥
‖xk − yk‖

=
dist(xk,N )

‖xk − yk‖
≥ 1

2
,

where we used (48) in the last inequality. This proves step 1.

Step 2: The range of S is closed in B.

Proof of Step 2: We need to show that if Sxk → y0 ∈ B then there exists an
x ∈ B such that

Sx = y0. (50)

Using that, by step 1, dist(xk,N ) ≤ C0‖Sxk‖ and that ‖Sxk‖ is bounded
(since it is convergent) it follows from Step 1 that dist(xk,N ) is bounded. We
may therefore find yk ∈ N so that zk = xk − yk is bounded and

Szk = Sxk − Syk → y0 − 0. (51)

Since zk is bounded and T is compact there exist a sub-sequence, that we may
assumt to be the full sequence in order to simplify notation, such that Tzk → z0

for some z0 ∈ B. Therefore

zk = Izk − Tzk + Tzk = Szk + Tzk → y0 + z0. (52)

Using (52) together with continuity of S it follows that

S(y0 + z0) = lim
k→∞

Szk = y0,
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where we used (51) in the last equality. This proves (50) with x = y0 + z0 and
therefore step 2.

Step 3: If Sx = 0 does not have a non-trivial solution then Sx = y has a
unique solution for every y ∈ B.

Proof of Step 3: We assume that Sx = 0 implies that x = 0, that is the
null-space N = {0}. We will use Sj for the composition of S j−times: S2(x) =
S(Sx), S3 = S(S(Sx)) et.c. Then Range(Sj) is a non-increasing sequence
of closed (by step 2) sub-spaces of B. We claim that there is a j such that
Range(Sj) = Range(Sj+1). If not then, by Lemma 4.2, there is a sequence
xj ∈ Range(Sj) such that ‖xj‖ = 1 and

dist(xj ,Range(Sj+1)) ≥ 1

2
. (53)

Therefore, for k > j

Txj − Txk = xj + (−xk − Sxj + Sxk) = xj − y (54)

for some y ∈ Range(Sj+1). By (53) and (54) it follows that

‖Txj − Txk‖ ≥
1

2
(55)

contradicting that Txj has a convergent sub-sequence and therefore the com-
pactness of T . It follows that Range(Sj) = Range(Sj+1) for some j.

Next we use that N = {0} by the assumption in step 3. To use this we let
y ∈ B be arbitrary and j be so large that Range(Sj) = Range(Sj+1). Then
Sjy ∈ Range(Sj) = Range(Sj+1) which implies that there is an x ∈ B such
that Sj+1x = Sjy. Using linearity of S we may conclude that

0 = Sj+1x− Sjy = Sj(Sx− y). (56)

Since N = {0} equation (56) implies that Sx−y = 0 which implies that Sx = y.
This proves that Sx = y has a solution for every y ∈ B.

To see that in N = {0} then the solution is unique is trivial. If Sx1 = Sx2 =
y for some y then S(x1 − x2) = 0 which implies that x1 = x2. This proves step
3.

Step 4: If Range(S) = B then Sx = 0 implies that x = 0. In particular
case 1 or case 2 holds.

Proof of Step 4: We will use the notation Nj = {x; Sjx = 0} for the null-
space of Sj . Then Nj ⊂ Nj+1 and, since S is continuous, each Nj is a closed
subspace of B. We will argue as in step 3 in order to show that there is a j such
that Nj = Nj+1. In particular if no such j exists then we may find a sequence
xj ∈ Nj such that ‖xj‖ = 1 and

dist(xj ,Nj−1) ≥ 1/2. (57)
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It follows that for l > j

Txl − Txj = xl + (−xj + Sxj − Sxl). (58)

Since dist(xl, Tl−1) ≥ 1/2 and (−xj+Sxj−Sxl) ∈ Nl−1 it follows from (58) that
‖Txl − Txj‖ ≥ 1/2. Therefore Txj does not have a convergent sub-sequence
contradicting the compactness of T . We may conclude that Nj0 = Nj0+1 for
some j0.

If Range(S) = B then for any y there exist an x ∈ B such that Sj0x = y. If
also y ∈ Nj0 it follows that S2j0x = 0. But this implies that x ∈ N2j0 = Nj0
wherefore 0 = Sj0x = y. We have proved that y = 0 for any y ∈ Nj0 . Since
N0 ⊂ N1 ⊂ ... ⊂ Nj0 it follows that N0 = {0}. Step 4 follows.

Step 5: If we are in case 2, that Sx = y has a unique solution for every
y ∈ B, then S−1 exists and is bounded.

Proof of Step 5: Under the assumptions S is surjective and by step 4 N =
{0} and therefore S is injective. It follows that S is a bijection and therefore
invertible.

That S−1 is bounded follows directly from step 1 since if N = {0} then
dist(x,N ) = ‖x‖ and we may therefore rewrite the conclusion of step 1 as

‖S−1x‖ ≤ C0‖x‖.

This finishes the proof.

4.2 Riesz-Schauder Theroey in Hilbert Spaces.

Next we would like to prove the Fredholm alternative in Hilbert spaces. Since
every Hilbert space is a Banach space Theorem 4.3 naturally holds in Hilbert
spaces. But since Hilbert spaces have more structure than Banach spaces we
are able to prove a slightly stronger version in Hilbert spaces. We begin with a
lemma.

Lemma 4.3. Let T : H 7→ H be a bounded linear operator on H. Then the
closure of the range of T , Range(T ), is the orthogonal complement of the null
space of T ∗.

Proof: Let R = Range(T ) and N ∗ be the null-space of T ∗. To see that R
is contained in the complement of N ∗ we let y ∈ R and z ∈ N ∗. Since y ∈ R
there exists an x ∈ H such that Tx = y and therefore

(y, z) = (Tx, z) = (x, T ∗z) = (x, 0) = 0,

therefore y is orthogonal to every element in N ∗ and it follows that R ⊂ (N ∗)⊥.
Since (N ∗)⊥ is closed (Exercise 3) it follows that R ⊂ (N ∗)⊥.

In order to show that R = (N ∗)⊥ we need to show that (N ∗)⊥ ⊂ R. It is
enough to show that if x /∈ R then x /∈ (N ∗)⊥. To see this we pick an x /∈ R.

We may write x = x1 + x2 where x1 ∈ R and x2 ∈ R
⊥

, where x2 6= 0 since
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x /∈ R. It is enough to show that x2 /∈ (N ∗)⊥. Since x2 ∈ R
⊥

it follows that
for every y ∈ H

0 = (Ty, x2) = (y, T ∗x2).

But if (y, T ∗x2) = 0 for every y ∈ H then T ∗x2 = 0, which is seen by choosing
y = T ∗x2, and therefore x2 ∈ N ∗. We may conclude that x2 /∈ (N ∗)⊥. The
lemma follows.

Theorem 4.4. [The Fredholm alternative in Hilbert Spaces.] Let H be
a Hilbert space and T : H 7→ H be a compact linear operator. Then there exists
a countable set Λ ⊂ R with the following property.

1) If λ /∈ Λ and λ 6= 0 then for every y ∈ H the equations

λx− Tx = y and λx− T ∗x = y (59)

have a uniquely determined solution x ∈ H.

2) If λ ∈ Λ then the mappings λI − T and λI − T ∗ have equal, finite and
non-zero dimension of their null-spaces. Furthermore λx − Tx = y is solvable
if and only if y ∈ Ker(λI − T ∗)⊥ and λx − T ∗x = y is solvable if and only if
y ∈ Ker(λI − T )⊥.

Proof: We refer to the two cases in Theorem 4.3. If λx − Tx = 0 has no
non-trivial solutions then case 2 of Theorem 4.3 implies that λx−Tx = y has a
unique solution for every y ∈ H. This implies that the orthogonal complement
of Range(λI − T ) and, by Lemma 4.3, the null space of λI − T ∗ must be {0}.

If Null(λI − T ∗) = {0} then, by Theorem 4.3, λx − T ∗x = y has a unique
solution. This shows that 1) holds if λ is such that λx− Tx = 0 only have the
trivial solution. We may define Λ to be the complement of the set of λ ∈ R\{0}
such that λx− Tx = 0 only have the trivial solution.

If λ ∈ Λ, that is if λx − Tx = 0 has non-trivial solutions, then we need to
show that the second case in the theorem is satisfied. First we show that the
dimension of Null(λI − T ) is finite.

If Dim(Null(λI − T ))) = ∞ then we let xj be an orthonormal basis of
Null(λI − T ). That is for every j ∈ N

Txj = λxj

and thus ‖Txj‖ = ‖λxj‖ = |λ|‖xj‖ = |λ|. But since T is compact there should
be a convergent sub-sequence Txj = λxj which contradicts the orthonormality
of xj . It follows that the basis xj of Ker(λI − T ) cannot be infinite. A similar
argument shows that the dimension of Ker(λI − T ∗) must be finite.

That λx− Tx = y is solvable if and only if y ∈ Ker(λI − T ∗)⊥ follows from
Lemma 4.3.

Finally we need to verify that Ker(λI − T ) and Ker(λI − T ∗) has equal
dimension. To that end we assume that Dim(Ker(λI − T )) = n and that
Dim(Ker(λI − T ∗)) = m. Let us for definiteness assume that n ≤ m (if m ≤ n
is handled similarly) and show that n = m. The strategy to show that n = m



4 LINEAR OPERATORS AND RIESZ-SCHAUDER THEORY. 31

will consist in constructing a compact operator An with Dim(Ker(An)) = 0 and
Dim(Ker(A∗n)) = n−m - it follows from this and part 2) of Theorem 4.3 that
n = m.

Let {x1, x2, ..., xn} be an orthonormal basis for Ker(λI−T ) and {y1, y2, ..., ym}
be a basis for Ker(λI − T ∗). Define the operator A1 : H 7→ H

A1x = λIx− Tx− (xn, x)ym.

We claim that Dim(Ker(A1) = n − 1 and that Dim(Ker(A∗1)) = m − 1. To
see this we pick an x ∈ Ker(A1). Then(

1

2
I − T

)
x = (xn, x)ym ∈ Ker(λ− T ∗). (60)

From Lemma 4.3 we know that Range(λI − T ) = Ker(λ− T ∗)⊥. This together
with (60) implies that (λI−T )x = (xn, x)ym is orthogonal to the range of λI−T .
We may conclude that (λI − T )x = (xn, x)ym = 0; that is x ∈ Ker(λI − T ).

Since {x1, ..., xn} is a basis for Ker(λ− T ) it follows that we may write, for
some a1, ..., an ∈ R,

x =

n∑
j=1

ajxj .

But we have already shown that (xn, x) = an = 0 so any x ∈ Ker(A1) can be
written

x =

n−1∑
j=1

ajxj .

It follows that Dim(Ker(A1)) ≤ n− 1. That Dim(Ker(A1)) ≥ n− 1 follows di-
rectly from x1, x2, ..., xn−1 ∈ Ker(A1)). We have thus shown that Dim(Ker(A1)) =
n− 1.

To see that Dim(Ker(A∗1)) = m− 1 we argue similarly. Pick a y ∈ Ker(A∗1).
We aim to show that y ∈ Ker(λI −T ∗) in order to do that we need to calculate
the dual of the operator S : H 7→ H defined by S(x) = (xn, x)ym. The dual is
defined by

(Sx, z) = (xn, x)(ym, z) = (x, S∗z).

We can conclude that S∗z = (ym, z)xn. Since y ∈ Ker(A∗1) it follows that

A∗1y = (λ− T ∗)y − S∗y = 0⇒ (λI − T ∗)y = (ym, y)xn.

We may again refer to Lemma 4.3 to conclude that (ym, y)xn ∈ Range(λI −
T ∗)⊥, thus (ym, y) = 0 and y ∈ Ker(λI − T ∗). We may therefore write

y =

m−1∑
j=1

bjyj

and it follows that Ker(A∗1) is m− 1 dimensional.
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Inductively we may define the operatorsA2, A3, ..., An such that Dim(Ker(Ak)) =
n−k and Dim(Ker(A∗k)) = m−k. But this implies that Dim(Ker(An)) = 0 and
therefore, by part 1) of this theorem both Anx = y and A∗nx = y have unique
solutions for every y ∈ H. But this implies that 0 = Dim(Ker(A∗n)) = m − n.
We have thus shown that n = m.

4.3 Exercises

1. Formulate and prove the Fredholm alternative in the Hilbert space Rn.

2. Let D be a bounded set.

(a) Show that C∞(D) is a linear subspace in L2(D).

(b) Show that C∞(D) 6= L2(D).

It is true (try to prove it!) that C∞(D) = L2(D), this shows that we
may have a proper subspace of an infinite dimensional space whose
closure is the entire space.

(c) Is the same true in Rn. That is, does it exist a proper linear subspace
S ⊂ Rn such that S = Rn. Prove your result.

3. Let S : B 7→ B be a linear and continuous operator on the Banach space
B.

a) Show that
Ker(S) = {x ∈ B; Sx = 0}

is a closed subspace.

b) If B is a Hilbert space show that the orthogonal complement of Ker(S)
is also closed.

4. In the proof of Proposition 4.1 we showed that we can, for every ε > 0,
find a subsequence xlj such that ‖Txlj − Txlm‖ < ε whenever j,m > Jε.

(a) Show, maybe by means of an example, that this does not imply that
Txlj converges.

(b) Show that by a standard diagonalization argument (as in the proof
of the Arzela-Ascoli Theorem) one may save the proof.15

5 Existence of solutions to the Dirichlet and Neu-
mann problems.

In this section we will show the existence of solutions to the Dirichlet and
Neumann problems in bounded C1,α−domains. But before we do that we need

15It is rather usual in long and complicated texts to exclude standard arguments if it can be
assumed that the reader can fill in the details. It is arguable whether the proof of Proposition
4.1 is complete, it depends on what the reader think is obvious.
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to resolve a slight inconsistency in the theory we have developed so far. It has
been important to work in a Hilbert space L2(∂D); but our initial goal was to
show that 1

2I + T : C(∂D) 7→ C(∂D) was onto. Also, to assure that u has the

right boundary data we need to show that u is continuous in D - for that we
need f ∈ C(∂D).

Clearly if we show that we can always find solutions for f ∈ L2(∂D) then
we can find solutions for every f ∈ C(∂D)16 But we will in any case show that
the operator 1

2I − T : C(∂D) 7→ C(∂D) is onto.

Lemma 5.1. Assume that |K(x, y)| ≤ CK
|x−y|n−1−α for some constant CK and

α > 0 and that K(x, y) is continuous when x 6= y. Furthermore let D be a
bounded C1,α−domain in Rn. Then the operator

TKφ(x) =

∫
∂D

K(x, y)φ(y)dσ(y)

maps bounded functions to continuous functions.

Proof: Let x and y be arbitrary points and ε > 0 given. We choose a small
δ > 0 and, and points x and y such that |x− y| < δ, calculate

|TKf(x)− TKf(y)| =
∣∣∣∣∫
∂D

(K(x, z)−K(y, z)) f(z)dσ(z)

∣∣∣∣ ≤
≤

∣∣∣∣∣
∫
∂D∩{|x−z|<2δ}

(K(x, z)−K(y, z)) f(z)dσ(z)

∣∣∣∣∣+ (61)

+

∣∣∣∣∣
∫
∂D\{|x−z|<2δ}

(K(x, z)−K(y, z)) f(z)dσ(z)

∣∣∣∣∣ =

= I1 + I2.

Since f is bounded we may estimate, since |x− y| < δ,

I1 ≤ sup
x∈∂D

|f(x)|
∫
∂D∩{|x−z|<2δ}

(
CK

|x− z|n−1−α +
CK

|y − z|n−1−α

)
dσ(z) ≤

≤ CαCKδ1−α sup
x∈∂D

|f(x)|,

where the last estimate follows from integrating in polar coordinates and the
constant Cα depends on the C1,α character of Ω as well as on α. This implies
that if |x − y| is small enough, so that we may choose δ small enough, then
I1 < ε/2.

To see that also I2 < ε/2 we just that for z ∈ ∂D \B2δ(x) the kernel K(y, z)
is continuous in y for y ∈ ∂D∩Bδ(x). Since D is bounded it follows that K(y, z)
is uniformly continuous on z ∈ ∂D \ B2δ(x) and y ∈ D ∩ Bδ(x) and therefore

16Since C(∂D) ⊂ L2(∂D).
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that K(y, z)→ K(x, z) uniformly in z. It follows that I2 < ε/2 if |x−y| is small
enough.

Using the estimates on I1 and I2 together with (61) implies that for every
ε > 0 it follows that if |x− y| is small enough then

|TKf(x)− TKf(y)| < ε.

Proposition 5.1. If f ∈ C(∂D) and 1
2φ(x) ± Tφ(x) = f(x) then φ ∈ C(∂D).

A similar result holds for 1
2I ± T

∗.

Proof: We will only prove the proposition for 1
2φ(x) − Tφ(x) = f(x), the

other cases are proven in exactly the same way.

The idea of the proof is to approximate the kernel K(x, y) = ∂N(x,y)
∂νy

by

Kε(x, y) = ψε(x, y)K(x, y) where ψε ∈ C∞(R2n) and ψε(x, y) = 1 when |x−y| ≥
ε and ψε(x, y) = 0 when |x − y| ≤ ε/2. Then the operator Tε, where Tε is the
integral operator with kernelKε, maps L2(∂D) functions to continuous functions
since

|Tεφ(x)− Tεφ(y)| =
∣∣∣∣∫
∂D

(Kε(x, z)φ(z)−Kε(y, z)φ(z)) dσ(z)

∣∣∣∣ ≤
≤ ‖φ‖L2(∂D)

(∫
∂D

|Kε(x, z)−Kε(y, z)|2dσ(z)

)1/2

. (62)

But since Kε(x, y) is continuous the right side of (62) will converge to zero as
x→ y. It follows that Tεφ is continuous.

Next we notice that

Tφ(x) = Tεφ(x)− (T − Tε)︸ ︷︷ ︸
=Sε

φ(x),

where we define Sε : L2(∂D) 7→ L2(∂D) by the above expression. Next we
notice that we may also consider Sε : L∞(∂D) 7→ L∞(∂D). We claim that
the operator norm ‖Sε‖L∞ 7→L∞ is bounded by Cεα where the constant C is
independent of ε. To see this we calculate

‖Sεφ‖L∞(∂D) =

∥∥∥∥∫
∂D

K(x, y) (1− ψε(x, y))φ(y)dσ(y)

∥∥∥∥
L∞(∂D)

≤

≤ ‖φ‖L∞(∂D) sup
x∈∂D

∣∣∣∣∫
∂D

K(x, y) (1− ψε(x, y)) dσ(y)

∣∣∣∣ ≤
≤ ‖φ‖L∞(∂D) sup

x∈∂D

∫
Bε(x)∩∂D

|K(x, y)|dσ(y) ≤

≤ C‖φ‖L∞(∂D)

∫
Bε(x)∩∂D

1

|x− y|n−1−α dσ(y) ≤ Cεα‖φ‖L∞(∂D).
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It follows that the operator norm ‖Sε‖L∞(∂D)7→L∞(∂D) ≤ Cεα. In particular,

we may chose ε so small that ‖Sε‖L∞(∂D)7→L∞(∂D) ≤ 1
4 .

From Proposition 3.3 we may conclude that 1
2I−Sε is invertable, with inverse∑∞

k=0 2k−1Skε .
Now (

1

2
I − T

)
φ(x) = f(x) ∈ C(∂D) (63)

is equivalent to (
1

2
I − Sε

)
φ(x) = f(x)− Tεφ(x) ∈ C(∂D). (64)

By (64) and Proposition 3.3 it follows that

φ(x) =

(
1

2
I − Sε

)−1

(f(x)− Tεφ(x)) =

∞∑
k=0

2k−1Skε (f(x)− Tεφ(x)). (65)

The right side of (65) converges uniformly (since ‖Sε‖L∞(∂D)7→L∞(∂D) ≤ 1
4 ) and

by Lemma 5.1 each of the functions Skε (f − Tεφ) is continuous. It follows that
φ(x) is continuous.

Corollary 5.1. If 1
2I ± T : L2(∂D) 7→ L2(∂D) is surjective then 1

2I ± T :
C(∂D) 7→ C(∂D) is also surjective. (Similarly holds for 1

2I ± T
∗.)

Proof: Since for any function f ∈ C(∂D) ⊂ L2(∂D) we may find a solution
φ ∈ L2(∂D) such that 1

2φ(x) − Tφ(x) = f(x) (we work with minus sign for
definiteness, the proof for plus sign is similar). But Proposition 5.1 then implies
that φ ∈ C(∂D). That is, for every ∈ C(∂D) there is an φ ∈ C(∂D) such that
1
2φ(x)− Tφ(x) = f(x). It follows that 1

2I − T : C(∂D) 7→ C(∂D) is onto.
Next we need to investigate the kernels of T and T ∗ in order to use Riesz-

Schauder Theorem.

Proposition 5.2. Part 1: Assume that D is a bounded connected C1,α−domain
then the kernels of 1

2I−T and 1
2I−T

∗, defined in (31) and (32), have dimension
1.

Part 2: Furthermore, if Dc has m bounded components then the kernels of
1
2I + T and 1

2I + T ∗ have dimension m.

Proof: Again we have two different, but similar, cases to prove. We will only
provide details for Part 1 of the proposition. At the end of the proof we will
indicate the difference in the proof of Part 2 of the theorem. But we will leave
the details in the proof of Part 2 as an exercise (a rather difficult exercise).

We begin by claiming that all constants c ∈ R are contained in the kernel of
1
2I − T . This follows from Lemma 2.1 since if u(y) is defined by

u(y) = N(x0, y)
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then u(y) is harmonic in D for x0 ∈ ∂D. In particular,

0 =

∫
D\Bε(x0)

∆yN(x0, y)dy = (66)

=

∫
∂D\Bε(x0)

∂N(x0, y)

∂νy
dσ(y) +

∫
∂Bε(x0)∩D

∂N(x0, y)

∂νy
dσ(y).

But as ε → 0+ the solid angle of ∂Bε(x0) ∩D measured from x0 will converge
to half the unit sphere which implies, by Lemma 2.1, that the second integral
converges to −1/2. Therefore∫

∂D

∂N(x0, y)

∂y
dσ(y) = lim

ε→0

∫
∂Bε(x0)∩D

∂N(x0, y)

∂νy
dσ(y) =

1

2
.

It follows that, for any constant c,(
1

2
I − T

)
c =

(
1

2
− 1

2

)
c = 0 on ∂D. (67)

Therefore all constants are in the kernel of 1
2I − T . We may conclude that

Dim(Kernel( 1
2I − T )) ≥ 1.

From Theorem 4.4 we know that the dimension of the kernels of 1
2I − T

and 1
2I − T

∗ have the same dimension. So to show that the kernels are one
dimensional it is enough to show that the kernel of 1

2I − T
∗ has dimension less

than or equal to one. To that end we let f ∈ Ker( 1
2I − T

∗) and define

u(x) =

∫
∂D

f(y)N(x, y)dσ(y). (68)

Then, by Theorem 2.2 and since f ∈ Ker( 1
2I−T

∗), ∂u(x)
∂νx

= 0. We may conclude
that

0 =

∫
∂D

u(x)
∂u(x)

∂νx
dσ(x) =

∫
D

|∇u|2dx.

Thus u is constant in D.
To show that Dim(Ker( 1

2I − T
∗)) ≤ 1 it is therefore enough to show that if

we have two functions f1, f2 ∈ Ker( 1
2I−T

∗) and let u1 and u2 be defined by (68)
(with f1 and f2 in place of f) and u1 = u2 = constant then f1 = f2. That is the
same as showing that if u defined by (68) is identically zero in D then f = 0.
Now if u = 0 in D then by continuity of u, Lemma 5.1, it follows that u solves the
Dirichlet problem in Dc with zero boundary data. Also limx→∞ u(x) = 0 which
can be seen from the definition of u in (68).17 It follows from the maximum
principle that u = 0 in Dc, since u is continuous and zero in D it follows that
u = 0 in Rn. We may conclude from Corollary 2.2 that

f(x) =
∂u

∂ν+
− ∂u

∂ν−
= 0.

17This is really the only time we use that n > 2 in a fundamental way in these notes.
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This finishes the proof of Part 1.
The argument for Part 2 is similar. We begin by writing Dc =

⋃m
k=0D

c
k

where Dc
1, D

c
2, ..., D

c
m are the bounded components of Dc and Dc

0 is the un-
bounded component. Arguing as in (67) we may conclude that the function

fk(x) =

{
1 if x ∈ ∂Dc

k

0 else

is in the kernel of 1
2I + T . That is Dim(Ker( 1

2I + T )) ≥ m.

D

D

D

D
c c

c

1 2

3

D
0

c

Figure 1: The domain D is the purple domain and Dc consists of the
four parts Dc

0, ..., D
c
3. To show that Dim(Ker( 1

2I + T )) ≥ m we may apply the
argument for (67) in each of the domains Dc

k, k = 1, 2, 3.

To show that Dim(Ker( 1
2I + T )) ≤ m we use Theorem 4.4 as before to

conclude that Dim(Ker( 1
2I + T )) = Dim(Ker( 1

2I + T ∗)). It is therefore enough
to show that Dim(Ker( 1

2I+T ∗)) ≤ m. To that end we choose f ∈ Ker( 1
2I+T ∗)

and want to show that f = constant on each ∂Dc
k, that is f is contained in the

span of f1, f2, .., fm. The argument for this is analogous with the argument in
part 1.

Proposition 5.3. Part 1: Assume that D is a bounded connected C1,α−domain
then

L2(∂D) = Ker(
1

2
I − T )⊥ ⊕Ker(

1

2
I − T ∗)

and

L2(∂D) = Ker(
1

2
I − T ∗)⊥ ⊕Ker(

1

2
I − T ).

Part 2: Assume that D is a bounded connected C1,α−domain then

L2(∂D) = Ker(
1

2
I + T )⊥ ⊕Ker(

1

2
I + T ∗)

and

L2(∂D) = Ker(
1

2
I + T ∗)⊥ ⊕Ker(

1

2
I + T ).
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Proof: The proofs of Part 1 and Part 2 are similar so we will only prove Part
1.

Since both Ker( 1
2I − T ) and Ker( 1

2I − T
∗) are one dimensional it is enough

to show that

Ker(
1

2
I − T )⊥ ∩Ker(

1

2
I − T ∗) = {0}.

If φ ∈ Ker( 1
2I−T )⊥∩Ker( 1

2I−T
∗) then 1

2φ = T ∗φ and, by Theorem 4.4, there
exists a ψ such that 1

2ψ − T
∗ψ = φ.

If we define

u(x) =

∫
∂D

φ(y)N(x, y)dσ(y)

and

v(x) =

∫
∂D

ψ(y)N(x, y)dσ(y)

then ∆u = ∆v = 0 in D and, by Theorem 2.2, ∂u
∂νx

= 0 and ∂v
∂νx

= φ on ∂D.
Since ∆u = ∆v = 0 in D it follows that

0 =

∫
D

u∆v − v∆udx =

∫
∂D

u
∂v

∂νx
− v ∂u

∂νx
dσ(x) =

∫
∂D

u
∂v

∂νx
dσ(x), (69)

where we also used that ∂u
∂νx

= 0 on ∂D since φ ∈ Ker( 1
2I − T

∗).

Using that ∂v
∂νx

= φ and 1
2φ− T

∗φ = 0 on ∂D it follows that

∂v

∂νx
= φ = φ−

(
1

2
φ− T ∗φ

)
=

1

2
φ+ T ∗φ. (70)

From (70) and Corollary 2.1 it follows that ubDc has Neumann data φ on ∂Dc

∂u

∂ν
= φ on ∂D

c
. (71)

Using (69) we may also conclude that∫
Dc
|∇u(x)|2dx = −

∫
∂Dc

u
∂u

∂νx
dσ(x) = 0,

it follows that u is constant in Dc. But if u is constant then 0 = ∂u
∂νx

= φ,

where we also used (71). We have therefore shown that if φ ∈ Ker( 1
2I − T )⊥ ∩

Ker( 1
2I − T

∗) then φ = 0. The proposition follows.

Corollary 5.2. Part 1: Under the assumptions of Proposition 5.3 it follows
that

L2(∂D) = Ker(
1

2
I − T )⊕ Range(

1

2
I − T )

and

L2(∂D) = Ker(
1

2
I − T ∗)⊕ Range(

1

2
I − T ∗).
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Part 2: Under the assumptions of Proposition 5.3 it follows that

L2(∂D) = Ker(
1

2
I + T )⊕ Range(

1

2
I + T )

and

L2(∂D) = Ker(
1

2
I + T ∗)⊕ Range(

1

2
I + T ∗).

Proof: Since, by part 2 of Theorem 4.4, Range( 1
2I − T ) = Ker( 1

2I − T
∗)⊥

and Range( 1
2I−T

∗) = Ker( 1
2I−T )⊥ this is a direct consequence of the previous

Proposition.
We are now ready to prove the main theorem of these notes.

Theorem 5.1. Assume that D is a bounded connected C1,α−domain then

1. Exterior Dirichlet Problem. For every f ∈ C(∂Dc) there exist a
solution to the Dirichlet problem

∆u = 0 in Dc

u = f on ∂Dc.

2. Interior Neumann problem For every f ∈ C(∂D) such that∫
∂D

f(x)dσ(x) = 0

there exist a solution to the Neumann problem

∆u = 0 in D
∂u
∂νx

= f on ∂D.

3. Interior Dirichlet problem For every f ∈ C(∂D) there exist a solution
to the Dirichlet problem

∆u = 0 in D
u = f on ∂D.

4. Exterior Neumann problem If Dc consists of m+1 components, Dc =⋃m
k=0D

c
k, where Dc

0 is the unbounded component. Then for every f ∈
C(∂Dc) such that, for every k = 1, 2, ...,m∫

∂Dck

f(x)dσ(x) = 0

there exist a solution to the Neumann problem

∆u = 0 in D
∂u
∂νx

= f on ∂D.
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Proof: Let us start by proving the theorem for the interior Neumann prob-
lem. By Corollary 5.2 and Proposition 5.2 it follows that the co-dimension of
Range( 1

2I − T
∗) is 1. Also if f ∈ Range( 1

2I − T
∗) then there exist a harmonic

function u with Neumann data f and therefore

0 =

∫
D

∆u(x)dx =

∫
∂D

∂u

∂ν
dσ(x),

that is Range( 1
2I−T

∗) is orthogonal to the constant functions. The second part
of the theorem follows.

To prove the theorem for the exterior Dirichlet problem we also use Corollary
5.2. In particular,

L2(∂D) = Ker(
1

2
I − T )⊕ Range(

1

2
I − T ).

But Ker(1
2I − T ) is one dimensional and, by (67), contains the constants. We

may therefore write any function f ∈ L2(∂D) as

f(x) = c+ f̃(x),

for some constant c and f̃ ∈ Range( 1
2 −T ). In particular there exist a harmonic

ũ satisfying ũ = f̃ on ∂D. It follows that u(x) = c + ũ solves the Dirichlet
problem with boundary data f .

The proofs of parts 3 and 4 are similar.

5.1 Exercises

1. Use Lemma 5.1 to prove that if f ∈ C2(D) then there exists a function
u ∈ C(Rn) such that

∆u(x) = f(x) in D.

2. Let D be a bounded C1,α−domain, f ∈ C2(D) and g ∈ C(∂D). Prove
that the following problem has a unique solution

∆u(x) = f(x) in D
u(x) = g(x) on ∂D.

3. In Theorem 5.1 we assume, for the interior Neumann case, that∫
∂D

f(x)dσ(x) = 0

and similarly for the exterior Neumann case. One might ask if that is due
to a fault in the method (and another method would prove the theorem
without these assumptions) or if the assumptions are necessary. Prove
that Theorem 5.1 is false without these assumptions and therefore the
assumptions are necessary.
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A The Arzela-Ascoli Theorem.

We know that all continuous functions defined on a set D ⊂ Rn is a vector
space. We will denote this vector space by C0(D). We may also define a metric
on C0(D) in order to make C0(D) into a metric space. Often when one has
a vector space one defines a norm on the space. A norm is a slightly stronger
structure on the vector space than a metric. Also, a norm interacts well with
multiplication by scalars.

Definition A.1. Let V be a vector space over some number field K (most often
K = R or K = C). Then we say that a function ‖ · ‖ : V 7→ R is a norm on V
if

1. ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 if and only if v = 0.

2. ‖λv‖ = |λ|‖v‖ for all v ∈ V and all λ ∈ K.

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ w.

It is easy to see that if ‖v‖ is a norm on V then d(v, w) = ‖v−w‖ is a metric
on V .

We have total freedom to define any norm we would like on the space C0(D).
However one often feels that a norm is natural if it makes the space into a space
with good properties. For instance, we would like to define a norm ‖ · ‖ on
C0(D) that makes C0(D) into a complete space. For that we will use the norm

‖f‖C0(D) = sup
x∈D
|f(x)|. (72)

Let us first show that with this definition of norm C0(D) becommes a com-
plete space.

Proposition A.1. Let fj ∈ C0(D) be a Cauchy sequence in the norm of (72).
That is, for every ε > 0 there exist an Nε > 0 such that

j, k > Nε ⇒ ‖fj − fk‖C0(D) < ε.

Then there exists an f0 ∈ C0(D) such that limj→∞ ‖fj−f0‖C0(D) = 0. That
is: C0(D) is a complete space with the norm ‖f‖C0(D) defined in (72).

Proof: For any fixed x0 ∈ D we clearly have that

|fj(x0)− fk(x0)| ≤ sup
x∈D
|fj(x)− fk(x)| < ε,

if j, k > Nε. It follows that for every x0 ∈ D the sequence of real numbers fj(x
0)

forms a Cauchy sequence and is therefore convergent. We may therefore define
a function f0(x) = limj→∞ fj(x).

Also, if j > Nε then

sup
x∈D
|fj(x)− f0(x)| = sup

x∈D

(
lim
k→∞

|fj(x)− fk(x)|
)
< ε. (73)
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It follows that fj → f0 uniformly in x.
We need to show that f0 ∈ C0(D), that is that f0(x) is continuous. To that

end we fix an x0 ∈ D, an ε > 0 and a j > Nε/3 then by (73)

sup
x∈D
|fj(x)− f0(x)| < ε

3
. (74)

Also since fj ∈ C0(D) there exists a δ > 0 such that

|x− x0| < δ ⇒ |fj(x)− fj(x0)| < ε

3
. (75)

It follows from (74) and (75) that if |x− x0| < δ then

|f0(x)− f0(x0)| = |f0(x)− fj(x) + fj(x)− fj(x0) + fj(x
0)− f0(x0)| ≤

≤ |f0(x)− fj(x)|+ |fj(x)− fj(x0)|+ |fj(x0)− f0(x0)| < ε

3
+
ε

3
+
ε

3
= ε.

It follows that f0 is continuous in every point x0 ∈ D.
This shows that C0(D) is a complete space. But will C0(D) even satisfy the

Bolzano-Weierstrass property that every sequence fj ∈ C0(D) that is bounded
(‖fj‖C0(D) ≤M) has a convergent subsequence? The answer is no.

Example: Let fj ∈ C0([−1, 1]) be defined by

fj(x) =

 0 if − 1 ≤ x ≤ 0
jx if 0 < x < 1/j
1 if 1/j ≤ x ≤ 1.

Clearly ‖fj‖C0([−1,1]) ≤ 1 so fj forms a bounded sequence. Also fj(x)→ f0(x)
for every x ∈ [−1, 1] - but not in the sense that 1 = ‖fj − f0‖C0([−1,1]) → 0). It
follows that fj cannot have any sub-sequence that converges in C0([−1, 1]).

We need some other condition on a sequence fj ∈ C0(D) in order to assure
that it has a convergent subsequence. The right concept is equicontinuity.

Definition A.2. Let F be a set of functions defined in D. We say that F is
equicontinuous at x ∈ D if for every ε > 0 there exist an δx,ε > 0 such that

|f(x)− f(y)| ≤ ε

for all y ∈ D such that |x− y| < δx,ε and all f ∈ F .
We also say that F is equicontinuous in D if F is equicontinuous at every

x ∈ D.

Naturally, we may consider a sequence of functions {fj}∞j=1 defined on D as
a set F = {fj ; j ∈ N} and we may therefore say that a sequence {fj}∞j=1 is
equicontinuous at x or in D.

We are now ready to prove a very important theorem. The theorem exploits
the fact that the uncountable set R contains a dense and countable subset Q.
The idea has been very important in may areas of mathematics.
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Theorem A.1. [Arzela-Ascoli’s Theorem] Let {fj}∞j=1 be a uniformly
bounded sequence of functions defined on D, that is supx∈D |fj(x)| ≤ C for some
C independent of j. Assume furthermore that {fj}∞j=1 is equicontinuous in D.
Then there exist a sub-sequence {fjk}∞k=1 such that fjk(x) converges pointwise.

If we define f0(x) = limk→∞ fjk(x) then fjk → f0 uniformly on compact
subsets and f0 ∈ C(D).

Proof: The proof is rather long so we will divide it into several steps.
Step 1: There is a sub-sequence {fjk}∞k=1 that converges pointwise on a

countable dense set of D.
Consider the intersection of D and the points with rational coordinates DQ ≡

Qn∩D. Since Qn is countable it follows that DQ is countable. SayDQ = {yj ; j ∈
N, yj ∈ Qn}.

We will inductively define the sub-sequence {fjk}∞k=1 so that it converges
pointwise on DQ.

Consider the sequence {fj(y1)}∞j=1. Since |fj | ≤ C in D it follows that

|fj(y1)| ≤ C. In particular {fj(y1)}∞j=1 is a bounded sequence of real numbers.
We may thus extract a convergent sub-sequence which we will denote {f1,j}∞j=1

where the sub-script 1 indicates that the sequence converges at y1.
Next we make the induction assumption that we have extracted sub-sequences

{fl,j}∞j=1 for each l ∈ {1, 2, 3, ...,m}, such that

1. {fl,j}∞j=1 is a sub-sequence of {fl−1,j}∞j=1 for l = 2, 3, 4, ...,m

2. and fm,j(y
l) converges for l = 1, 2, 3, ...,m.

In order to complete the induction we need to show that we can find a sub-
sequence {fm+1,j}∞j=1 of {fm,j}∞j=1 such that {fm+1,j(y

m+1)}∞j=1 converges.

Arguing as before, we see that {fm,j(ym+1)}∞j=1 is a bounded sequence in
R and we may thus extract a sub-sequence, which we denote {fm+1,j}∞j=1, that
converges.

By induction it follows that for each m ∈ N there exist a sequence {fm,j}∞j=1

such that {fm,j}∞j=1 is a sub-sequence of {fm−1,j}∞j=1 and {fm,j(ym)}∞j=1 is
convergent.

Notice that since {fm,j}∞j=1 is a sub-sequence of {fm−1,j}∞j=1 and {fm−1,j(y
l)}∞j=1

converges for 1 ≤ l ≤ m− 1 it follows that {fm,j(yl)}∞j=1 converges to the same

limit for 1 ≤ l ≤ m− 1. In particular, {fm,j(yl)}∞j=1 converges for all l ≤ m.
Now we define the sequence {fjk}∞k=1 by a diagonalisation procedure

fjk = fk,k.

Noticing that {fjk}∞k=m = {fk,k}∞k=m is a sub-sequence of {fm,j}∞j=1. This
follows from the fact that fk,k is an element of the sequence {fk,j}∞j=1. But
{fk,j}∞j=1 is a sub-sequence of {fm,j}∞j=1 for k ≥ m.

We may conclude that {fjk}∞k=m converges at yl for all l ≤ k. But k is
arbitrary so fjk(yl) converges for every l ∈ N. This proves step 1.
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Step 2: The sequence {fjk}∞k=1 converges pointwise in D.
It is enough to show that {fjk(x)}∞k=1 is a Cauchy sequence for every x ∈ D.

To that end we fix an ε > 0. We need to show that there exist an Nε ∈ N such
that |fjk(x)− fjl(x)| < ε for all k, l > Nε.

Since {fjk}∞k=1 is equicontinuous at x ∈ D there exist a δx,ε/3 such that

|fjk(x)− fjk(y)| < ε

3
for all k ∈ N, (76)

and y ∈ D such that |x− y| < δx,ε/3.
Moreover since DQ is dense in D there exist an yx ∈ DQ such that |x −

yx| < δx,ε/3. In step 1 we showed that fjk(y) was convergent for all y ∈ DQ
in particular it follows that {fjk(yx)}∞k=1 is a Cauchy sequence. That is, there
exist an Nyx,ε/3 ∈ N such that

|fjk(yx)− fjl(yx)| < ε

3
for all k, l > Nyx,ε/3. (77)

From (76) and (77) we can deduce that

|fjk(x)−fjl(x)| ≤ |fjk(x)−fjk(yx)|+ |fjl(x)−fjl(yx)|+ |fjk(yx)−fjl(yx)| < ε,

for all k, l > Nyx,ε/3. It follows that {fjk(x)}∞k=1 is a Cauchy sequence and this
finishes the proof of step 2.

Step 3: Define f0(x) = limk→∞ fjk(x), then f0 ∈ C(D).
Since fjk(x) is convergent for every x ∈ D by step 2 it follows that f0 is well

defined in D. To show continuity we need to show that for every x ∈ D and
ε > 0 there exist a δε > 0 such that

|f0(x)− f0(y)| < ε

for every y ∈ D such that |x − y| < δε. By equicontinuity there exist a δx,ε/3
such that

|fjk(x)− fjk(y)| < ε

3
(78)

for every y ∈ D such that |x− y| < δx,ε/3 and all j ∈ N.
Also by step 2 there exist an Nx,ε/3 such that

|f0(x)− fjk(x)| < ε

3
(79)

for all k ≥ Nx,ε/3. And an Ny,ε/3 such that

|f0(y)− fjk(y)| < ε

3
(80)

for all k ≥ Ny,ε/3.
From (78), (79) and (80) we can deduce that for y ∈ D such that |x− y| <

δx,ε/3

|f0(x)− f0(y)| ≤ |f0(x)− fjk(x)|+ |f0(y)− fjk(y)|+ |fjk(x)− fjk(y)| < ε
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if k > max(Nx,ε/3, Ny,ε/3).
This proves step 3.

Step 4: {fjk}∞k=1 converges uniformly on compact sets.
We fix a compact set K ⊂ D. We need to show that for every ε > 0 there

exist an Nε such that when k > Nε then |f0(x)− fjk(x)| < ε for all x ∈ K.
Notice that by equicontinuity there exist a δx,ε/3 for each x ∈ K such that

for all k ∈ N
|fjk(x)− fjk(y)| < ε

3
(81)

for all y ∈ Bδx,ε/3(x) ∩ D.
Notice that the ballsBδx,ε/3(x) forms an open cover ofK: K ⊂ ∪x∈KBδx,ε/3(x).

Since K is compact there exist a finite sub-cover Bδ
xl,ε/3

(xl), for l = 1, 2, 3, ..., l0

for some l0 ∈ N. That is K ⊂ ∪l0l=1Bδxl,ε/3(xl).

Also, using that limk→∞ fjk(xl) = f0(xl), we see that there exist an Nxl,ε/3
such that

|fji(xl)− fjk(xl)| < ε

3
(82)

for all i, k > Nxl,ε/3. We choose Nε = max
(
Nx1,ε/3, Nx2,ε/3, ..., Nxl0 ,ε/3

)
.

SinceK ⊂ ∪l0l=1Bδxl,ε/3(xl) it follows that for every x ∈ K that x ∈ Bδ
xl,ε/3

(xl)

for some l. Using this and (81) and (82) we see that

|fji(x)−fjk(x)| ≤ |fji(x)−fji(xl)|+|fjk(x)−fjk(xl)|+|fji(xl)−fjk(xl)| < (83)

<
ε

3
+
ε

3
+
ε

3
= ε

for all k ≥ Nε. Taking the limit i→∞ in (83) we see that

|f0(x)− fjk(x)| < ε

for all k > Nε. This finishes the proof of the Theorem.

B Bibliographic note.

All the theory in these notes are classical and may be found in many books
on partial differential equations. Our development is very similar to the one
in Folland [2]. But some proofs and calculations comes from [1]. Some of the
functional analytic theory comes from [3]. A more advanced exposition of the
theory in these notes can be found in [4].
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