Data Analysis – Linear Regression
Read in data and set up factors:
Measure <- factor(LETTERS[1:6])
Measure
# [1] A B C D E F
# Levels: A B C D E F
pat_dat <-scan("tmp.patient_t1")
# Read 42 items
# pat_dat
# [1] 2.97 -6.54 1.17 0.20 0.66 -0.59 1.62 -8.20 -1.11 0.14 1.98 2.14 1.41 -7.68 0.79 -0.16 -0.70 -1.24
# [19] 1.11 -3.52 3.21 -0.02 -0.28 1.04 1.67 -6.24 1.36 0.35 0.74 1.09 0.07 -0.73 1.32 -0.41 -0.57 0.62
# [37] 1.96 -1.07 2.78 0.97 0.57 0.05
Patient<-factor(c(rep(1,6), rep(2,6), rep(3,6), rep(4,6), rep(5,6), rep(6,6), rep(7,6)))
# Patient
# [1] 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
# Levels: 1 2 3 4 5 6 7
Make a data frame:
pat.df <-data.frame(Measure,Patient,pat_dat)
pat.df
Measure Patient pat_dat
1 A 1 2.97
2 B 1 -6.54
3 C 1 1.17
4 D 1 0.20
5 E 1 0.66
6 F 1 -0.59
7 A 2 1.62
8 B 2 -8.20
9 C 2 -1.11
10 D 2 0.14
11 E 2 1.98
12 F 2 2.14
13 A 3 1.41
14 B 3 -7.68
15 C 3 0.79
16 D 3 -0.16
...
Transcript
Now, before you begin an ANOVA, you have to set up your -- read in your data and set up factors - which are the basis of your data. So, in this case, we have the 6 measurements, and we have 7 patients.