R: Experiment 1: With varying numbers of samples

Descriptive Statistics First 100 First 1K First 10K First 100K
Mean 0.02000071 0.020000066 0.020000004 0.02
Standard Error 2.12714E-06 7.53406E-07 2.51164E-07 9.69855E-08
Median 0.020005 0.020004 0.020004 0.020004
Mode 0.020005 0.020005 0.020005 0.020005
Standard Deviation 2.12714E-05 2.38248E-05 2.51164E-05 3.06695E-05
Sample Variance 4.52471E-10 5.67621E-10 6.30831E-10 9.40618E-10
Kurtosis 28.87137928 21.46428225 19.07376827 12.23083198
Skewness -5.453831468 -4.509853108 -3.831289593 -2.003065575
Range 0.000135 0.000252 0.000277 0.000374
Minimum 0.01988 0.019872 0.019868 0.019815
Maximum 0.020015 0.020124 0.020145 0.020189
Sum 2.000071 20.000066 200.000044 1999.999951
Count 100 1000 10000 100000
Confidence Level(95.0%) 4.2207E-06 1.47844E-06 4.92331E-07 1.9009E-07
foo<-function(n){
v <-1:12
v[1]=mean(To_Chip_RTP_delay[1:n])
v[2]=std.error(To_Chip_RTP_delay[1:n])
v[3]=names(sort(-table(To_Chip_RTP_delay[1:n])))[1]
v[4]=sd(To_Chip_RTP_delay[1:n])
v[5]=var(To_Chip_RTP_delay[1:n])
v[6]=kurtosis(To_Chip_RTP_delay[1:n])
v[7]=skewness(To_Chip_RTP_delay[1:n])
v[8]=min(To_Chip_RTP_delay[1:n])
v[9]=max(To_Chip_RTP_delay[1:n])
v[10]=sum(To_Chip_RTP_delay[1:n])
v[11]=length(To_Chip_RTP_delay[1:n])
v[12]=qnorm(0.965)*std.error(To_Chip_RTP_delay[1:n])
return(v)}
seq1<-c(foo(100),foo(1000),foo(10000),foo(100000))
mat1<-matrix(seq1,  ncol=4)

fee<-function(n) {foo(To_Chip_RTP_delay, 10^n)}

lapply(c(2:5), fee)
[[1]] [1] "0.0200006800000119"   "2.12697347407497e-06" "0.0200049999984913“
       [4] "2.12697347407497e-05" "4.52401615941855e-10" "30.3672958382318“ 

Transcript

Now, it's really easy to compute the statistics over the first hundred, thousand, ten thousand, hundred thousand.

Well, yes just define yourself a function to compute the statistics we want, and then 

calling the function to be applied to the function with a hundred, a thousand, ten thousand, or a hundred thousand samples will produce the columns. We are set.  Off we go!