R: Experiment 1: Inter-arrival times of RTP packets: From network to local user agent
Using Excel
Mean | 0.019999999 |
Standard Error | 9.28526E-08 |
Median | 0.020004 |
Mode | 0.020005 |
Standard Deviation | 3.04446E-05 |
Sample Variance | 9.26874E-10 |
Kurtosis | 12.36652501 |
Skewness | -2.054662184 |
Range | 0.000374 |
Minimum | 0.019815 |
Maximum | 0.020189 |
Sum | 2150.11991 |
Count | 107506 |
Confidence Level(95.0%) | 1.8199E-07 |
Using R functions
mean(To_Chip_RTP_delay): 0.02
library(plotrix); std.error(To_Chip_RTP_delay): 9.284597e-08
The mode is the most frequently occurring value (hence via https://stat.ethz.ch/pipermail/r-help/1999-December/005668.html):
names(sort(-table(To_Chip_RTP_delay)))[1]: "0.0200049999984913“
sd(To_Chip_RTP_delay): 3.044357e-05
var(To_Chip_RTP_delay): 9.268109e-10
library(moments);
kurtosis(To_Chip_RTP_delay): 15.36689
skewness(To_Chip_RTP_delay): -2.054706
min(To_Chip_RTP_delay): 0.019815 max(To_Chip_RTP_delay): 0.020189
sum(To_Chip_RTP_delay): 2150.28
length(To_Chip_RTP_delay): 107514
qnorm(0.975)*std.error(To_Chip_RTP_delay): 1.819748e-07
Transcript
We can, of course, compute the same statistics as we did with R using a set - in this case of R functions - we get the same values out (basically)-